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ABSTRACT proaches are distinguished by their assumptions about how
the evidence for correct selection is described. REAC
Selection procedures are used in many applications totselec Proceedingslescribe many developments for the three main
the best of a finite set of alternatives, as in discrete optmi approaches, including many variations for the sampling as-
tion with simulation. There are a wide variety of procedures sumptions, approximations, stopping rules and parameters
which begs the question of which selection procedure to that combine to define a procedure.
select. This paper (a) summarizes the main structural ap- Few papers present a thorough assessment of how those
proaches to deriving selection procedures, (b) describes a variations compare with each other. Special cases of the VIP
innovative empirical testbed, and (c) summarizes results outperform specific 1Z and OCBA procedures (in a compar-
from work in progress that provides the most exhaustive as- ison of two-stage procedures), and specific sequential VIP
sessment of selection procedures to date. The most efficientand OCBA procedures are more efficient than two-stage
and easiest to control procedures allocate samples with a procedures Ifoue et al. 1999 He et al. (2005)derived
Bayesian model for uncertainty about the means, and use an OCBA-type procedur&)CB.A 1, that uses an expected

a new expected opportunity cost-based stopping rule. opportunity cost (EOC) loss function inspired by the VIP
approach. They showed that the origidaf 8.4 procedure,
1 INTRODUCTION the newOCBA.; and the VIP-based £ performed bet-

ter than some other procedures in several empirical tests.
Ranking and selection procedures seek to identify the Branke et al. (2005provides the most exhaustive compar-
best of a finite set of alternatives, where best is de- ison of a wide variety of procedures (some new, some old),
termined with respect to the largest sampling mean, with new stopping rules that improve the performance of
and the mean is inferred through statistical sampling. both VIP and OCBA procedures, tested over a large battery
Procedures are used in commercial simulation products of selection problem instances.
like ARENA (Kelton et al. 1998 and in combination This paper summarizes some findings from work in
with optimization tools like evolutionary algorithms or  progress Branke et al. 2005 and includes some observa-
discrete optimization via simulationBfesel et al. 2003 tions that arose during our study but are not included in that

Branke and Schmidt 2004among other areas. paper. The goal is to understand the strengths and weak-
There are three main approaches to the selection prob- nesses of each approach. The focus here is on ranking and
lem: the indifference zone (1ZKim and Nelson 200p/ selection, but the results are intended to find technigues fo
the expected value of information procedure (VIP, approaching verylarge numbers of different system designs
Chick and Inoue 2001 and the optimal computing bud- For each of the three main approaches, we selected

get allocation (OCBA,Chen 199% approaches. The ap- “state of the art”, highly sequential procedures (the 1Z
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procedurdC N+ + of Goldsman et al. 2002heLL and 0-1 mean ands? = > (z;; — 7;)%/(n; — 1) be the sample

=1
of Chick and Inoue 20Qithe OCB.A of Chen et al. 2005 variance. Letr ;) Jg Ty < ... < Z(y,) be the ordering of
and theOCBAL of He et al. 200% in conjunction with the sample means. The quantities 7;,67 and (i) may
new and old allocation and stopping rules. We assess: change as more replications are observed. Each selection
procedure generates estimatesof w;, for: =1,... k.
* Efficiency: The mean evidence for correctselection |n procedures studied heré,; = z;, and a correct selection
as a function of the mean number of samples. is when the selected system, syst®mhas the same mean
« Controllability: The ease of setting a procedure’s  as the best systerfk]. Usually® = (k) is selected as best.
parameters to achieve a targeted evidence level. The Student distribution with meany, precisionx,

* Robustness: The sensitivity of a procedure’s ef- and v degrees of freedom is denoted (1, k,v). The
fectiveness to the underlying problem structure.  variance isx~'v/(v — 2) if v > 2. The differenceZ; — Z;

o . o of independent random variablesZ, ~ St (u¢, ke, ve) IS

We focus on jointly independent and normally distributed approximated below by adistribution with mean; — 1,

simulation output with unknown variances. scale(r; ' + ;1) "1, and theWelch (1938)approximation

K3

The results indicate that a Bayesian EOC-based stopping o the degreés of freedom;. Let @,() be the cdf of the

rule is the most controllable and robust of the stopping giandarg distribution (=0, x = 1) and ¢, () be the pdf.
rules we considered, and is typically the most efficient. ' v

It is certainly more efficient than stopping rules used in 5 1 Evidence for Correct Selection
the original formulations of both the VIP and OCBA. The

KN++ can be more efficient in some special cases, but g hroceduresin Sections 2.2 to 2.4 below each run arlinitia
it is typically somewhat less efficient and it appears t0 be ga46 of sampling, then allocate additional replicatiaas s

very difficult to control. Probability of good selection es quentially until the evidence for correct selection is sigént.

can be more efficient when problem instances are sampled | 4qg functions are used here to measure selection quality.
randomly, but are also difficult to control. Among all tested The zero-one loss functioty_ (D, w) = ]l{w® + w[k]}
procedures, th&L, OCBA and OCBAL L, modified with equalsl if the best system is not correctly selected, and is
new stopping rules, are the most effective. The 0-1 and g inerwise. The opportunity Cost.(D, w) = wy — we

Equal allocations are the least effective. is 0 if the best system is correctly selected, and is otherwis

the difference between the best and selected systems. The

opportunity cost makes more sense in business applications
The 1Z procedures take a frequentist perspective. The

frequentist probability of correct selection (P&Sis the

probability that the system selected as best (sysfnis

the system with the highest mean (systg), conditional

2 ASSUMPTIONS, NOTATION, PROCEDURES

The best oft simulated systems is to be identified, where
“best” means the largest output mean. B&t be a random
variable whose realization;; is the output of thej-th

simulation replication of sgstem, fori =1,....k and on the problem instance. The probability is with respect to
j = 1,2,.... Letw; ando; be the unknown mean and o simulation outpufX;; that determines,

variance of system, and letwp; < wyg < ... < wpy

be the ordered means. The orderipgis unknown, and def

system[k] is to be identified with simulation. Vectors are PCS;(x) = 1 - E[Lo-1(D,w)[x]. )
written in boldface, such a& = (w1, ...,w;) ando? = .

(62,...,02). The procedures considered below are derived [ndifference zone procedures attempt to guarantee a lower
from the assumption that simulation output is independent Pound on PC, subject to the indifference-zone constraint
and normally distributedconditional on w; and 03' for that the best system is at least better than the others,
i=1,...k

i iid. 2 7))
{(Xij:§=1,2,...} "% Normal (w;, o7). The frequentist EOCQhick and Wu 200Fis

A problem instance (“configuration”) is denoted by def
EOCIZ (X) =F ['Coc(gv W) ‘ X] . (3)
X = (w, 02)'

Bayesian approaches (VIP, OCBA) use the posterior
Although the normality assumption is not always valid, distribution of the unknown means to measure the quality
it is often possible to batch outputs so that normality is
approximately satisfied. Let; be the number of replications
for systemi run so far. Lett; = Z;‘;l x;5/n; be the sample



Branke, Chick, and Schmidt

of a selection. Given the dataseen so far, the quantities  propose the following PCS-related measure for VIP and
OCBA stopping rules to incorporate to stop sampling if

PCSsayes def | _p [Lo_1 (D, W) |€] all competitors for the best are “good enough”,
def
EOCpuyes = E[Loc(®,W)|E], (4) PGSsicpss = || oy A (0" + dijy)-
3:()#(k)
measure selection quality, the expectation taken over both
® and the posterior distribution d#%. Assuming a non- Chen and Kelton (2005)sedmax instead of+,
informative prior distribution for the unknown mean and
. : : AR 1/2 .

varlance,the posterior marg|nal'd|str|7but|onAf20rthe unkin PCSsiep.se = H (I)V(j)(k)(Ajlé max{5*, (k) })-
meandV; givenn; > 2 samples iSt (xi,nj,/ai , ui) where 5:G)£ (k)

v; = n; — 1 (Chick and Inoue 2001 Each of the Bayesian
procedures (VIP and OCBA) select the system with the best The VIP and OCBA will use thesstopping rules below:
posterior mean after sampling sto3,= (k).

Approximations in the form of bounds on the above 1. Sequential§): Repeat sampling iEle n; < B
losses are useful to improve the speed of computing an for a given total budgeB.
allocation. Slepian’sinequality states the posterior evidence Repeat if PC., 5« < 1 — o for a givend™, a*.
that system(k) is best satisfies Repeat if PG§ep - < 1 — o* for a givend™, a*.
Repeat if EOG,,,; > 8*, for an EOC target*.

Pwn

PCSBayes > H PT(W(k) > W(j) ‘5) . (5)

3:(5)# (k) We use PCg., to denote PC§po. The IZ requires

0* > 0, but we allows* = 0 for the VIP and OCBA to allow
The r.h.s. of Inequality (5) is approximately (Welch) for a pure PCS-bz?\sed stopping condition. All previously
published sequential VIP and OCBA work appears to have
used theS stopping rule, but the other stopping rules will
be shown to improve the efficiency of both approaches. Let
PICS=1-PCSand PBS = 1—-PGS- measure evidence
for the probability ofincorrect andbad selections.

PCSsiep = H D (d)- (6)
J:(3)#(k)

if d7; is a normalized distance for systerfyy and (k),

N 1/2 2.2 Indifference Zone (1Z) Procedure
dj, = Ay s ()
The 1Z approachKim and Nelson 200pbseeks to guaran-
) tee PCG > 1 — o, whenever the best system is at le&st
better than the other systems. Early IZ procedures were
statistically conservative in the sense of excess samphng
cept with very particular configurations of the means. The
KN family of procedures improves sampling efficiency
over a broad set of configurationifn and Nelson 2001
While a PCS guarantee in the sense of Equation (2) was
not proven, an asymptotic guaranteeyas— 0 was shown.
One member of the familyC /44 (Goldsman et al. 2002
might be considered to be the state of the art for the 1Z

5 , Ol
dijyky = Ty — Z¢y) and Al = | =2 +
k) = (k) — () ik (n(j) e

The term EOG,,.. May be expensive to computekif> 2.
Summing the losses frork — 1) pairwise comparisons
between the current best and each other system gives
an easily computed upper boun@Hhick and Inoue 20Q1
Chick and Inoue 2002 Let f))(-) be the posterior
pdf for the differencelV(;) — Wy, given all data& (ap-
proximatelyst (—d( ;). Ajk» V(j)(x)) distributed), and set

Uyls] = [i=,(u— )by (u)du = vt (s) — 50, (—s). approach. That procedure can handle correlation. Here
Then EOGyyes < EOCpopy, Where we specialize Procedur€ N ++ for independenteplica-
tions. The procedure screens out some systems as runs
EOCpon; = Z /OO w iy (w) duw are made, and eagh non-eliminated system is simulated the
A w=0 same number of times.
J:(5)#(k)
~ Z A;k,l/Q\Ifu(jw [d5,]- (8) Procedure KA++ (independent samples)
5:G)2 (k) 1. Specify a confidence levél- o*, an indifference-
zone parametef* > 0, a first-stage sample size
Some 1Z procedures satisfy frequentist probability of ng > 2 per system, and a numbérof samples
good selection (PGp;. > 1 — o, for selections withirg* per noneliminated system per subsequent stage.

of the best) guaranteed¢lson and Banerjee 2001 We
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2. Initialize the set of noneliminated systems;—
{1,...,k}, setn — 0,7 — nyg.

3. WHILE |I| > 1 DO another stage:
@)

Observer additional samples from systein
independent of all other samples, fora# 1.

Setn «—n+ 7. Setr « &.

(b)  Update: For alli € I, setz; « 7, x;;/n
and&f — Z;-l:l@h‘j —Lfi)Q/(n— 1). Setn —
% {[2(1 _ (1 _ a*)l/(k—l))}—Q/(n—l) _ 1}
andh? «— 2n(n — 1).
Screen: Forall,j € I,7 > j, setd;; «— z; —
5= (h*(67+67)

) 2n 5+2 - .
If dij > €45 thenl I\{’L} If dij < —€45
thenl — I\{j}.

(©

Z; ande;; < max {O

4. Select the remaining syster®) as best.
2.3 Value of Information Procedure (VIP)

Two VIPs in Chick and Inoue (2001allocate samples to
each alternative to maximize the expected value of in-
formation (EVI) subject to a sampling budget constraint.
Procedures 0-15) and LL(S) are sequential variations of
those procedures that improve Pg&$.s and EOGyes,
respectively. Allocations were derived with asymptotie ap
proximations to the EVI. They allocate replications per
stage until a total ofB replications are run. That stopping
rule allows for full control of the number of replications.
This section examines stopping rules that afford more effi-
ciency and a more direct comparison with 1Z procedures.

Procedure 0-1.

1. Specify a first-stage sample sizg¢ > 2, a number
of samplesr > 0 to allocate per subsequent stage,
and stopping rule parameters (Section 2.1).
Take independent replicatiods;, . . ., X;,,, and
initialize the number of replications; < ng run
so far for each system,= 1,..., k.
Determine the sample statistits— >~ | zi;/n;
and 6'12 — Z;-L;l(xij — .TZ)Q/(TLL — 1), and the
sample mean ordering, so that) < ... < Z).

4. WHILE stopping rule not satisfied DO:

@) Initialize the set of systems considered for
additional replicationsS «— {1,...,k}.

For each() in S\{(k)}: If (k) € S then set
)‘i_kl — &(Qi)/n(i) + 6(2k)/n(k), and set (i)
with Welch’s approximation. I1fk) ¢ S then
set\;, — n(l)/&(%) and V(i (k) < M) — 1.

(b)

and Schmidt
(c) Tentatively allocate;) replications to systems
(i) € S (setr;) < 0 for (j) ¢ S):

T+ ) icshy

(i) < 2jes s 73 — (), Where
LRz

2jes (&({.)m))
~ (_{ )\ikdjkqb,,(i)(k)(djk) for (z:) # (k)
g Z(j)eS\{(k:)}V(j) for (i) = (k).

(d) IF any 7;) < 0 THEN remove(i) from S
for all () with 7;) < 0; go to Step 4b ELSE
round ther; so > | 7, = 7; go to Step 4e.
Run7; additional independent replications for
systemi, fori =1,..., k. Updaten; < n; +
7;; the sample statisticg; «— Z;’;l zij/n;
ands? «— >0 (24— 7;)?/(n; — 1), and the
sample mean ordering,;) < ... < Z(,).

5. Select system® = (k) as best.

()

Step 4b uses the Welch approximation, and the formu-
las in Step 4c are derived i@hick and Inoue (2001from
optimality conditions to improve a Bonferroni-like bound o
the EVI for asymptotically large. Step 4 requires the selec-
tion of a stopping rule. The resulting procedures are named
0-1(S), 0-1(PCSsep,s+)s 0-UPGSsiep s+ ), 0-1(EOCgon ),
with the stopping rule in parentheses.

ProcedureCL (for linear loss) is a variant of 0-1 where
sampling allocations seek to minimize E@gL,¢. This
procedure can also use any of the stopping rules.

Procedure LL. Same as 0-1, except sgt in Step 4c to

Y@y < {

2.4 OCBA Procedures

AL/2 Vi + ik (d)?
ik V(i) —1

2 (Hes\ (k) 1)

¢V(7‘,)(k) (dzﬁk) for (Z) 7é (k)
for (i) = (k).

The OCBA (Chen 1996 Chen et al. 200bassumes that
if T replications are allocated for systeinbut none are
allocated for the others, then the variance scales acaiydin

W; ~ st(z,(ni+7)/68n; —1+7)
Wj ~ St (fj,ﬂj/ﬁjz,’ﬂj 71) forj %Z

The usual OCBA assumes normal distributions to approxi-
mate the effect, but we ugedistributions, for consistency
with a Bayesian assumption for the unknown variance.
Chen et al. (2005jound no notable difference in perfor-
mance when comparing a normal vergudistribution for
W;. Allocating an additionat replications to system but
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no replications to the others, leads toestimated approx-
imate probability of correct selectio(EAPCS) evaluated
with respect toW = (W7q,..., W),

EAPCS = [ Pr(Wy<Wwle) O
3GV (R)
~ ]I (1—%wk)(/\;fd(j)(k)))(10)
5 ) (R)
~ 52, 2.\ "
M o= (2242 (11)
Aky )
e = ne+7L{(0) =i}

Procedure OCB.As- allocates replications to systems
that maximize the improvement in EAPGS — PGSy 5
in Step 3b, withé* > 0.

Procedure OCBA, . 5~ allocates replications to sys-
tems that maximize EAPGS- — PCSg¢p 5« in Step 3b,
with §* > 0 (cf. Chen and Kelton 2005

Each procedure can use any of the stopping rules. We
implemented a fully sequential OCB&A & 7 = 1).

3 NUMERICAL TESTS
Table 1 summarizes the procedures that we evaluated. The

naming convention is the type of allocation followed by the
stopping rule in parenthesis. There are no EOC analogs to

The OCBA uses these approximations to sequentially OCBAs- andOCBA, .. s~ because EOC already accounts
allocate samples at each stage to systems that most increaséor the size of the difference between the best and second bes

EAPCS

— PC&;ep. An innovation for the OCBA is the

use of the stopping rules from Section 2.3.

Procedure OCBA.

1.

Specify a first-stage sample sizg > 2, a number
g of systems to simulate per stage, a sampling
incrementr > 0 to allocate per subsequent stage,

and stopping rule parameters.

2.

Do steps 2-3 of Procedure 0-1.

3.  WHILE stopping rule not satisfied DO:

@)
(b)

(©
(d)

4.

He et al. (2005proposed an OCBA variation that ac-
counts for the expected opportunity cost. Define AEOC to

Compute EAPCSfor i =1,.. ., k.
Setr; « 7/q for the ¢ systems with largest
EAPCS — PCS;e,, Setr; « 0 for the others.
Taker; additional observations for systein
For alli with =, > 0, updaten; < n; +7;, the
sample statistics; «— E?;lxij Ini, 67
S5t (x5 —2;)?/(n;—1), and order statistics,
SO thatf(l) < STy

Select syster® = (k) as best.

be the approximation to EQ&,.¢ in the right hand side

of Equation (8). The OCBA-like approximation for EOC

(cf. Equation (9)) with respect t8 is

o —1/2 $1/2
EEOCS = Y AW, [N (12)

Procedure OCB.Ay, allocates replications to systems that
maximize the improvement in expected opportunity cost

3:(9)#(k)

(linear loss), AEOCG- EEOCS in Step 3b.

We consider two other variations on the allocations that

generalize the idea of EAPGC® account ford* using the
approximations at the end of Section 2.1

in the allocations. Procedure Equal allocates the same num-
ber of replications to each systefdranke et al. (2005Jif-

fers in that it derives another set of VIP allocations antktes
more configurations, but does not assess&BA, 4,5+
allocation or the PC§,,, s~ stopping rule.

3.1 Evaluation Criteria

Theory that compares the different approaches is hard to
develop due to the differing assumptions and approximation
of each. We turn here to empirical and practical perspextive
The efficiency of a procedure is a frequentist measure of
evidence for correct selection (PGSPGS; ;- and EOG)
introduced in Section 2.1, as a function of the average num-
ber of replicationsE[N]. For each problem instance and
sampling allocation, the stopping rule parametenglic-
itly defineefficiency curvedn the (E[N],log(1 — PCS;,))
plane. Efficiency curves for EQLand PG§ ;. are defined
similarly. “More efficient” procedures have curves that are
below those of other procedures.
Efficiency curves ignore the question of how to set
a procedure’s parameters to achieve a particulariPGS
EOG,. As a practical matter, some deviation may oc-
cur between a stopping rule target and the actual value
achieved. The deviation between the desired and real-
ized performance is measured witirget curvesthat plot
(log a*,log(1—PCS;,)) for PCS-based targeis— o*, and
(log B*,log EOG;,) for EOC targetss*. Curves that typi-
cally follow the liney = x for a broad class of problems
indicate that a procedure is “controllable”. If the curves
depend strongly on the problem instancedoy it is hard
to obtain the desired level of evidence for correct selectio
without additional knowledge of the problem structure.
Procedures that are both efficient and controllable over
a broad range of problem instances (robust) are desirable.
Figures were estimated by running0® macro-
replications for each combination of problem instance,
sampling allocation, and stopping rule parameter value.
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Table 1: Procedures Tested in Addition to Procedutdé++ and Equal.

We used the Gnu Scientific Libary (gsl) for cal-
culating cdfs and for the Mersenne twister RNG
(Matsumoto and Nishimura 199&ith 2002 revised seed-
ing), and FILIB++ (erch et al. 200} for interval arith-
metic. The interval arithmetic discerned whether the max-
imum EVI or EAPCS were numerically unique (due to
numerical stability issues for the OCBA family and other
VIP procedures that were tested but not reported here).

3.2 Configurations

In a slippage configuration (SQhe means of all systems

VIP OCBA OCBA for PGSsiep 5« | OCBA for PCSiep 5
PCS- | 0-1(S) OCBA(S) OCBAs«(S) OCBApmaz,5+(S)
based| 0-1(PCSsicps-) | OCBA(PCSsicp,s+) OCBAs+(PCSs1ep,5+) | OCBApmaz.5+(PCSsiep)
alloc- | 0-1(PGSsiep,s+) | OCBA(PGSsiep.s+) OCBAs+(PGSsieps+) | OCBApmaz.5+(PCSsiep)
ations O L(EOCsony) OCBA(EOCg,n ) OCBAs+(EOCgony) OCBA 1,5+ (EOCgony)
EOC- | LL(S) OCBALL(S)
based ﬁﬁ(PCSSlep 5*) OCB.ALL(PCSSlep,g*)
alloc- | LL(PGSsiep.s+) | OCBALL(PGSsiep.5+)
ations [:,C(EOCBonf) OCB.ALL(EOCBonf)

the o2 independently, then sampling th&; conditionally
independent, given?,

~

p(o7)
p(W; | 01.2) ~ Normal (,uo, 01'2/77)-

(13)

InvGamma (v, 3)

Increasingn makes the means more similar. We get=

a — 1 > 0 to standardize the mean of the variances to be
1. Increasinga reduces the variability in the variances.
The noninformative prior distributions used to derive VIP
and OCBA procedures correspondrte— 0, so there is a
mismatch in the sampling distribution ¢of and the prior

except the best are tied for second best. We use the param-gistributions assumed by the VIP and OCBA.

etersd, p to describe the configurations of the independent
outputs withNormal (w;, o?) distribution,

X1 Normal (0,07)
X;j ~ Normal (—5, af/p) fori=2,...,k
0 ~é.

All systems have the same variancg i 1. The best system
has the largest variance jf> 1. We seto? = 2p/(1 + p)
so that Varl(;; — X;;] is constant for allp > 0. The
parametery allows the indifference zone parametgr to
differ from the difference in means

In amonotone decreasing means (MD&t)nfiguration
the means are equally spaced. Agadontrols the variances,
~ relatesé* to the difference in means, and independent
outputs have alormal (w;, o?) distribution,

X;; ~ Normal (—(i —1)8,2p* /(1 + p))
0F = ~o.

Random problem instance®PI) are more realistic
in the sense that problems faced in practice typically are
not the SC or MDM configuration. The RPI experiment
here samples configuratiogsfrom normal-inverse gamma
family. If S ~ InvGamma (a, (), then E[ | = ﬁ/(a -
1) and S7! ~ Gamma (o, 3) with E[S™!] = a3~! and
Var[S—1] = a372. A randomy is generated by sampling

For the SC and MDM, we testemiany combinations
of ng, number of systemg, spacings of the means, and
degrees of heterogeneity in the variances. For the RPI we
testedk = 2,5,10;n = .707,1,1.414,2; a = 2.5, 100.

4 RESULTS

The results below summarize work to date for
Branke et al. (2005which will present a much more thor-
ough discussion and broader set of experiments. In addition
we compare PC8,, s+ With PGSgcp 5-, the OCBA's use

of ¢ vs. Gaussian distributions, and an alternative to Welch'’s
approximation. Additional subscripts refer to specific pa-
rameter values (e.dCN++- specifiess*). Graphs below
useng = 6.

Fork = 2 systems and equal variance, the Equal alloca-
tion is optimal from both Bayesian and frequentist perspec-
tives (e.g.Gupta and Miescke 1994 Figure 1 compares
different stopping rules on SC or MDM (which are equiv-
alent for k = 2) with Equal. The EOG,,; Stopping rule
is more efficient than the PG, stopping rule, which is
more efficient than thé& stopping rule, an order that could
be observed for all SC and MDM configurations (also for
k > 2, or whenk = 2 and the variances are unequal,
and for PC$, efficiency as well as EQOg efficiency). As
KN++ also samples equally fdr = 2, the efficiency of
its stopping rule can be directly compared with the other
stopping rules on the scenario of Figure 1. For low levels of
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' 01l

—— KN++¢ ,
; Kol
—- KN++.
- ocsA fEOC?Om)
~ % LL (EOCggpg
i g oul -
o 001 E a [
[ > Equal (S)
| -a- Equal éPC \s;) |
- R, e o
0.001 ! ! ! ! 0.001
0 20 40 60 80 100 120 140 40 140
E [N] E[N]
Figure 1. Performance of Equal Allocation and Figure 2: Efficiency of Procedur€ N'++ Better
KN4+ with §* =6 (SC, k=2, =0.5, p=1). for Smallers* (MDM, k=5, 6 =0.5, p=1).
evidence for correct selectiollV++ was more efficient
than the Bayesian EO§;,, ¢ stopping rule, but EOg,,, ¢
is more competitive for larger levels of PIGS In general,
KN++ tended to do better than in the graph for SC with
close meansi(< 0.5) and was worse than EQG,, s for g

all PICS, > 1072 in tests withs > 271/2,

For k = 2 and equal variance, allocation proce-
dures other than Equal naturally perform slightly worse.
However, as configurations diverge from this special case
(p # 1,k > 2) the relative efficiency of V++ and 0001
Equal allocation became worse than thatddl(EOCgo, ), 0.001
OCBALL(EOCgons) and OCBA(EOCg,nys) (assuming
that 6* was set to the difference between the best and
second best). Figure 2 shows a typical phenomenon seen
for a variety of SC or MDM configurations. The effi-
ciency curve of C N++ with 6* = § is worse than for
€.0.OCBA(EOCBony) or LL(EOCBony), however it be-
comes competitive ag* is decreased. Unfortunately, this
phenomenon depends on the problem configuration (it does
not hold for RPI, for example), and the correspondence
between the desired and obtained PICS varies widely de-
pending upon the relation of the differentieetween the best
two systems, and th&* selected for the procedure. Figure 3
shows that ag* gets smallerK N4+ samples much more
than necessary to obtain a given desired level of evidence
(curve below the diagonal on the target plot). This makes
it difficult to set o* to actually achieve a desired PIGS
with N++, as the target curves are highly sensitive to
the underlying (and typically unknown) configuration. One
samples much more than necessary*ik ¢.

For the RPI configurations, it was necessary to choose . . N .
5% > 0 for the PGSy, 5- and PCS.,.s- Stopping rules under-delivers EOC relative t6* = 6*a* (Figure 6).

because there was a reasonable probability that the two best. Another_mterestmg factto not_e in Figure 4 and F|gur9 5
o : ; is that the line for Equal allocation and Budget stopping
systems had very similar means, in which case= 0

. . : . rule is curved, while it is straight for all SC and MDM
resulted in excessive sampling. -Therefare = 0 is to configurations. While this might at first sight appear to be
be avoided in practice. The EQG, s rule does not suffer g } g gh app

from that problem, and it replaces the difficulty of speaityi inconsistent with a hypothesis of exponential convergence

Figure 3. Sensitivity ofC V++ w.r.t. §* and o*
(MDM, k=5, =0.5, p=1).

two parametersy*, o*, with one parametef3*. EOCgy, s
gave excellent control over the actual EQ@eceived for
the RPI. For MDM, the target plot for EQ%;,,r tended to
be parallel to the desireg= z, but was shifted high or low
depending upod, whereas PG§,,, 5 could have different
slopes for different*, not unlike CN+-+ in Figure 3

Figure 4 compares different stopping rules in combi-
nation with Equal allocation based on P@s efficiency.
The effect is quite dramatic, with PG, s- stopping rule
and appropriatey* performing best. Note that while this
is not surprising for PGS ;. efficiency, also for EOG
efficiency there seems to exist a setting fr such that
PGSsicp,s- Outperforms the EOg,,. ¢ stopping rule (Fig-
ure 5). Whether that finding is of practical use remains to
be seen, as it is not yet clear how to setand PGg;¢p 5+
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Figure 5: EOG, Efficiency for Equal Allocation
(RPILLE=5,n=1, a=2.5).

for ordinal comparisons, those convergence results are typ
ically for a fixed configuration. For RPI, we observed that

EOG;,

0.01F

0.001 L= P | P |
0.001 0.01 0.1

Figure 6: Target Plot for EOC (RPk, =5, n =1,
a = 2.5).
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Figure 7: Different Allocations for Budget Stopping
Rule (RPLE =5, n =1, a = 100).

Figure 10 compare®CBAs- and OCBAqz,5+ With
both the PGg¢p 5+ and PCSgiep 5+ Stopping rules. The

the curvature was largely due to a long tail associated with resultis typical, namely tha?CB.A4;- is the better allocation
a large number of samples for some very “hard” configu- and PGg, s~ is the better stopping rule.

rations (the means of the best two systems are very close,

especially with large variances).

We now turn to two implementation issues.
Chen et al. (2005yvrote that the efficiency o©OCB.A(S)

While the stopping rule has a very large influence on was not significantly different whetherteor a normal dis-

efficiency, theCL, OCBA;, andOCB.A were more or less

equivalent, with the first two usually being somewhat better
with 0-1 worse (it was derived with more approximations,

tribution is used for EAPCS(by substituting in the sample
variance for the unknown actual variance into a normal dis-
tribution version of EAPCS, but did not publish results.

and it is hard to improve PCS for two very close competitors Figure 11 confirms those claims and generalizes to other

in the RPI) and Equal worst. A typical plot is shown in
Figure 7 for theS stopping rule (which may be needed if

a simulation project has a strict time constraint).

stopping rules. A normal distribution in the allocation is
denoteddCBAGaussian- ON the other hand, using a normal
distribution for the stopping rule (PGS, caussian) dO€S

Figure 8 compares three selection procedures with degrade performance. The probable cause is that absolute

flexible stopping rules, Equ@GSsicp s-), KN++, and

OCBAs+(PGSsicp,5-) as representative for the Bayesian
As is typical for the RPI problems tested,

procedures.
OCBAs- outperformsCA/++ not only in terms of effi-

ciency, but also with respect to meeting the target (Figiwre 9

values are important for stopping, but for allocation, tieta
values for different systems are compared.

A refined estimator of the degrees of freedom that gave
good CI coverage for queueing experiments with small
numbers of observation$\{lson and Pritsker 1984didn’t
improve upon Welch’s approximation for the SC in Fig-
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Figure 9: Target Plot for Flexible Procedures (RPI,
k=5 n=1,a=205).

ure 12. The associated target plot gave a small (statistical
significant) decrease in PGSor W&P relative to Welch.

5 DISCUSSION

For a fixed budget constraint on the number of samples, Pro-
ceduresLL(S), OCBALL(S) and OCBA(S) were most
efficient. Among flexible stopping rules, thBOCpg,, ¢
stopping rule was the most controllable for reaching a de-
sired level of evidence for correct selection over a broagea

of problems (for RPI the control was very precise), and were
often the most efficient (for SC, MDM, RPI tested), espe-
cially with ££, OCBAr;, andOCBA;-. The PGiep, 5+
stopping rule for RPI instances can be more efficient, but
is not as controllableKCA'++ was more efficient than the
original OCBA and VIP proposals, but was less efficient
than LL(EOCgony) and OCBALL(EOCgoy ), €Xcept for
special configurations and mostly for low PICS. A con-
cern for practical usage dfN++ is its sensitivity to the

01 T T
T ocs (PG
A ocsﬁgg Step. 03
- OCB ax 0. 6 é’glep 0.
-O- CBAmax 0. S(PC%Iep 0.
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Figure 10: Different Ways to Us& (RPI, k = 5,
n =1, a = 100).
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Figure 11: Allocation with Normal Approximation as
Efficient ast, But Normal for Stopping Rule is Less
Efficient (SC,k =2, =0.5, p=1).
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Figure 12: Wilson and Pritsker’s (W&P) Degree of
Freedom Correction was Not More Efficient Than
Welch's (SC,k =2, 6§ =0.5, p = 1).

We did not test the effect of autocorrelation from steady-

state simulations, but do not see why batching would affect

indifference zone parameter for efficiency and moreso for one procedure differently than another. Future work inetud

controlling PC§, or PGS; ;..

extensions to common random numbers (CRN) and integra-
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tion of efficient selection procedures into optimizationl#
that handle combinatorially large numbers of alternatives
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