NEW DEVELOPMENTS IN RANKING AND SELECTION:

An Empirical Comparison of Three Main Approaches

Jürgen Branke² Stephen E. Chick¹ Christian Schmidt²

¹(speaker) Technology Management Area INSEAD Fontainebleau. France

²Institut AIFB Universität Karlsruhe (TH) D-76128 Karlsruhe, GERMANY

2005 Winter Simulation Conference

Selecting the Best of a Finite Set

- There are a plethora of ranking and selection approaches
 - Indifference zone, VIP, OCBA, ETSS, ...
 - Each approach has variations, parameters, approximations leading to different allocation, stopping and selection rules
 - Optimizations more demanding of such procedures
- 2 Today: Which *sequential* selection procedure is "best" (given independent, Gaussian samples, unknown means/variances).
 - New procedures (stopping rules, allocations)
 - New measures and mechanisms to evaluate procedures
 - Summarize observations from what is believed to be the largest numerical experiment to date
 - Identify strengths/weaknesses of leading procedures

See also *Selecting a Selection Procedure* Branke, Chick, and Schmidt (2005), more allocations, experiments, . . .

Introduction Evaluation Results Summary References "Goodness" Setup Evidence/Stopping Procedures

Outline

- Overview for Ranking and Selection
 - What are Measures of a Good Procedure?
 - Problem Formulation
 - Evidence for Correct Selection and New Stopping Rules
 - Procedures Tested
- 2 Empirical Evaluation
 - Empirical Figures of Merit
 - Numerical Test Bed
 - Implementation
- 3 Summary of Qualitative Conclusions
 - Stopping Rules
 - Allocations
 - General Comments
- 4 General Summary
 - Which procedure to use?
 - Discussion (time permitting)

What are measures of a good procedure?

- Utopia: always find true best with zero effort.
 - Fact: Variability implies incorrect selections or infinite work.
- Theoretical properties:
 - Derivations are preferred to ad hoc approximations
 - Reasonable people may choose different assumptions
- Empirical properties:
 - Efficiency: Mean evidence for correct selection as function of mean number of samples
 - Controllability: Ease of setting parameters to achieve a targeted evidence level
 - Robustness: Dependency of procedure's effectiveness on underlying problem characteristics
 - Sensitivity: Effect of parameters on mean number of samples

Problem formulation

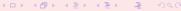
- Identify best of k systems (biggest mean).
- Let X_{ij} be output of jth replication of ith system:

$$\{X_{ij}: j=1,2,\ldots\} \stackrel{i.i.d.}{\sim} ext{Normal}\left(w_i,\sigma_i^2
ight), ext{ system } i=1,\ldots,k.$$

- True (unknown) order of means: $w_{[1]} \leq w_{[2]} \leq \ldots \leq w_{[k]}$
- Configuration:

$$\chi = (\mathbf{w}, \sigma^2).$$

- Samples statistics: \bar{x}_i and $\hat{\sigma}_i^2$ updated based on n_i observations seen so far.
- Order statistics: $\bar{x}_{(1)} \leq \bar{x}_{(2)} \leq \ldots \leq \bar{x}_{(k)}$
- If select (k), then $\{w_{(k)} = w_{[k]}\}$ is a correct selection event



Evidence for Correct Selection

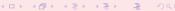
- Loss function if system D is chosen when means are w:
 - Zero-one: $\mathcal{L}_{0-1}(\mathfrak{D},\mathbf{w}) = \mathbb{1}\left\{w_{\mathfrak{D}} \neq w_{[k]}\right\}$
 - Expected opportunity cost (EOC): $\mathcal{L}_{oc}(\mathfrak{D}, \mathbf{w}) = w_{[k]} w_{\mathfrak{D}}$
- Frequentist measures (distribution of $\mathfrak{D} = f(\mathbf{X})$)

$$\begin{aligned} &\mathsf{PCS}_{\mathsf{iz}}(\chi) &\stackrel{\mathsf{def}}{=} & 1 - \mathsf{E}\left[\mathcal{L}_{0-1}(\mathfrak{D}, \mathbf{w}) \,|\, \chi\right] \\ &\mathsf{EOC}_{\mathsf{iz}}(\chi) &\stackrel{\mathsf{def}}{=} & \mathsf{E}\left[\mathcal{L}_{oc}(\mathfrak{D}, \mathbf{w}) \,|\, \chi\right] \end{aligned}$$

ullet Bayesian measures (given all output \mathcal{E} , $\mathfrak D$ and posterior of $\mathbf W$)

$$\begin{array}{ll} \mathsf{PCS}_{\mathit{Bayes}} & \stackrel{\mathsf{def}}{=} & 1 - E\left[\mathcal{L}_{0-1}(\mathfrak{D}, \mathbf{W}) \,|\, \mathcal{E}\right] \\ \\ \mathsf{EOC}_{\mathit{Bayes}} & \stackrel{\mathsf{def}}{=} & E\left[\mathcal{L}_{oc}(\mathfrak{D}, \mathbf{W}) \,|\, \mathcal{E}\right] \end{array}$$

• Similar for PGS $_{\delta^*}$, for "good" selections (within δ^* of best) INSEAD



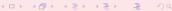
Bayesian Evidence and Stopping Rules

- Bounds (approximate) for Bayesian measures
 - Normalized distance: $d_{jk}^* = d_{(j)(k)} \lambda_{jk}^{1/2}$, where

$$d_{(j)(k)} = (\bar{x}_{(k)} - \bar{x}_{(j)}) \text{ and } \lambda_{jk}^{-1} = \left(\frac{\hat{\sigma}_{(j)}^2}{n_{(j)}} + \frac{\hat{\sigma}_{(k)}^2}{n_{(k)}}\right).$$

$$\begin{array}{ll} \mathsf{PCS}_{\mathit{Bayes}} & \geq & \prod_{j:(j) \neq (k)} \mathsf{Pr} \left(W_{(k)} > W_{(j)} \, | \, \mathcal{E} \right) \; \text{(Slepian)} \\ \\ & \approx & \prod_{j:(j) \neq (k)} \Phi_{\nu_{(j)(k)}} (d_{jk}^*) \stackrel{\mathsf{def}}{=} \mathsf{PCS}_{\mathit{Slep}} \; \text{(Welch)} \end{array}$$

- EOC $_{Bonf} = \sum_{j:(j) \neq (k)} \lambda_{jk}^{-1/2} \Psi_{\nu_{(j)(k)}} \left[d_{jk}^* \right]$. ("newsvendor" loss)
- $PGS_{Slep,\delta^*} = \prod_{j:(j)\neq(k)} \Phi_{\nu_{(j)(k)}}(\lambda_{jk}^{1/2}(\delta^* + d_{(j)(k)})).$
- PCS_{Slep, δ^*} = $\prod_{j:(j)\neq(k)} \Phi_{\nu_{(j)(k)}}(\lambda_{jk}^{1/2} \max\{\delta^*, d_{(j)(k)}\})$ (Chen and Kelton 2005).



Bayesian Evidence and Stopping Rules

- New "adaptive" stopping rules provide flexibility
 - Sequential (S): Repeat sampling if $\sum_{i=1}^k n_i < B$ for a given total budget B. [Default for most previous VIP and all OCBA work
 - 2 Repeat if $PCS_{Slep,\delta^*} < 1 \alpha^*$ for a given δ^*, α^* .
 - **3** Repeat if PGS_{Slep, δ^*} < $1 \alpha^*$ for a given δ^* , α^* .
 - Repeat if $EOC_{Bonf} > \beta^*$, for an EOC target β^* .
- We use PCS_{Slep} to denote PCS_{Slep,0}.

State-of-the-Art and New Procedures Tested

- Indifference-zone (IZ): KN++ (Kim and Nelson 2001)
- OCBA Allocations with all stopping rules
 - Usual OCBA allocation (Chen 1996; PCS_{Slep} objective)
 - \mathcal{OCBA}_{LL} for EOC_{Bonf} objective (He, Chick, and Chen 2005)
 - $\mathcal{OCBA}_{\delta^*}$: Like \mathcal{OCBA} but with PGS $_{\delta^*}$ -allocation
 - $\mathcal{OCBA}_{max,\delta^*}$: Like \mathcal{OCBA} , with max replacing + in PGS_{δ^*} -allocation (cf. Chen and Kelton 2005)
- VIP Allocations (Chick and Inoue 2001) with all stopping rules
 - Sequential \mathcal{LL} allocation (for EOC_{Bonf} objective)
 - Sequential 0-1 allocation (for PCS_{Bonf} objective)
- Equal allocation with all stopping rules
- Names: Allocation(stop rule), e.g. $\mathcal{LL}(EOC_{Bonf})$.

Comparing Procedures

- Theoretical evaluation:
 - Hard. Different objectives. Each makes approximations.
 - Can link large-sample EVI \mathcal{LL} with small-sample \mathcal{OCBA}_{II}
- Empirical measures of effectiveness:
 - Parameters of procedures implicitly define efficiency curves,

$$(E[N], \log PICS_{iz})$$
 or $(E[N], \log EOC_{iz})$

"More efficient" procedures have lower efficiency curves.

- Efficiency ignores how to set parameter to achieve desired target PICS_{iz} or EOC_{iz}
- Target curves relate procedures parameter with desired target,

$$(\log \alpha^*, \log PICS_{i7})$$
 or $(\log \beta^*, \log EOC_{i7})$

"Conservative" procedures are below diagonal "Controllable": Can pick parameters to get desired target

Robust: Efficient and controllable over range of configs.

Configurations: Stylized

• Slippage configuration (SC): All worst systems tied for second.

$$egin{array}{lll} X_{1j} & \sim & ext{Normal} \left(0, 2
ho/(1+
ho)
ight) \ X_{ij} & \sim & ext{Normal} \left(-\delta, 2/(1+
ho)
ight) ext{ for } i=2,\ldots,k \ \delta^* & = & \gamma\delta. \end{array}$$

Best has largest variance if $\rho > 1$. Var $[X_{1i} - X_{ii}]$ constant for all ρ . γ allows δ^* to differ from difference in means.

Monotone decreasing means (MDM): Equally spaced means.

$$X_{ij} \sim \text{Normal}\left(-(i-1)\delta, 2\rho^{2-i}/(1+\rho)\right)$$

 $\delta^* = \gamma \delta.$

• Tested hundreds of combinations of $k \in \{2, 5, 10, 20, 50\}$; $\rho \in \{0.125, 0.177, 0.25, 0.354, 0.5, 0.707, 1, 1.414, 2, 2.828, 4\};$ $n_0 \in \{4, 6, 10\}; \ \delta \in \{0.25, 0.354, 0.5, 0.707, 1\};$ $\delta^* \in \{0.05, 0.1, \dots, 0.6\}.$

Configurations: Randomized

- SC and MDM are unlikely to be found in practice
- Randomized problem may be more representative
- Randomized problem instances (RPI1):
 - Sample χ randomly (conjugate prior)

$$p(\sigma_i^2) \sim ext{InvGamma}(\alpha, \beta)$$

 $p(W_i | \sigma_i^2) \sim ext{Normal}(\mu_0, \sigma_i^2 / \eta).$

- We set $\beta = \alpha 1 > 0$: standardize mean of variances to be 1. Increase η : means more similar (OCBA, VIP and $\eta \to 0$); Increase α : reduce variability in the variances.
- Tested all combinations of $k \in \{2, 5, 10\}$; $\eta \in \{.707, 1, 1.414, 2\}; \alpha \in \{2.5, 100\}.$
- Also tested other RPI experiments

Summary: Numerics

- 20,000 combinations of allocation-stopping rule-configuration. Each generates an efficiency and target curve
- Each curve estimated with at least 100,000 macro-replications of each allocation/stopping rule combination
- CRN across configurations
- C++, Gnu Scientific Libary for cdfs and Mersenne twister RNG (Matsumoto and Nishimura 1998, 2002 revised seeding)
- FILIB++ (Lerch et al. 2001) for interval arithmetic (stability for \mathcal{LL}_1 , 0-1₁, and sometimes \mathcal{OCBA})
- Mixed cluster of up to 120 nodes: Linux 2.4 and Windows XP; Intel P4 and AMD Athlon; 2 to 3 GHz.
- Distributed via JOSCHKA-System (Bonn et al. 2005).



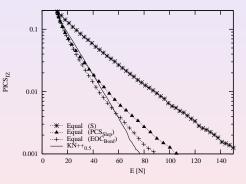
Flexible Stopping Rules Help

General observations for efficiency

- ullet Flexible stopping beats ${\cal S}$ for VIP, OCBA, and Equal; all configs; PICS_{iz} and EOC_{iz}.
- For SC, MDM: EOC_{Bonf} beats PCS_{Slep} beats S

Example in Figure

- Equal allocation, $\mathcal{K}\mathcal{N}++$
- SC: k = 2; $\delta^* = 0.5$; $\rho = 1$
- NB: Equal and $\mathcal{KN}++$ are optimal if k=2, $\rho=1$, difference is stopping rule.

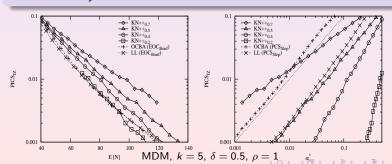


Introduction Evaluation Results Summary References Stopping Allocations General

Efficiency of Allocations for SC, MDM

Observations for SC and MDM

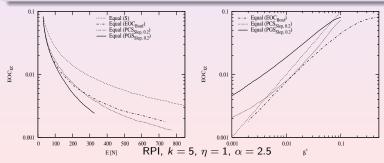
- Equal performs poorly if $k \neq 2$, or unequal variances.
- NO procedure is controllable (robustly).
- \mathcal{OCBA} , \mathcal{OCBA}_{LL} , \mathcal{LL} with EOC_{Bonf} typically most efficient.
- Often, $\exists \delta^*$ so that $\mathcal{KN}++$ is most efficient, but $\mathcal{KN}++$ extremely conservative at that δ^*



Efficiency of Allocations for RPI1

RPI brings possibility of very close means

- Important to use $PBS_{\delta^*} = 1 PGS_{\delta^*}$, not PICS = 1 PCS.
- $\exists \delta^*$ such that $\mathsf{PGS}_{Slep,\delta^*}$ more efficient than EOC_{Bonf} , even for $\mathsf{EOC}_{\mathsf{iz}}$, but only EOC_{Bonf} is controllable for $\mathsf{EOC}_{\mathsf{iz}}$
- ullet Only PGS_{Slep, δ^*} is controllable for PGS_{iz, δ^*}

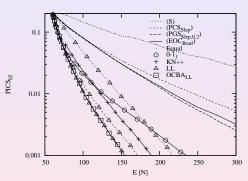


INSEAD

General Comments

Typically . . .

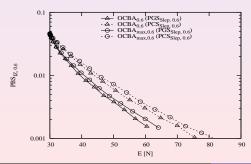
- $\mathcal{K}\mathcal{N}++$ more efficient than original OCBA(S)and $\mathcal{LL}(\mathcal{S})$
- LL, OCBA, OCBAIL with PGS_{Slep} or EOC_{Bonf} more efficient than $\mathcal{K}\mathcal{N}++$
- \mathcal{LL} beats 0-1 (even for PICS_{iz})
- \bullet OCBA and \mathcal{LL} are greedy, but don't have that problem



MDM, k = 10, $\delta = 0.5$, $\rho = 1$

Variations on the theme: Typically ...

- OCBA: t (unknown σ^2) vs. normal $(\hat{\sigma}^2)$ distribution approx.
- same efficiency in allocation; but t better in stopping rule
- Student d.o.f. approximation for OCBA and VIP
 - Welch *slightly* beats Wilson and Pritsker (1984)
- Can use '+' or 'max' to include δ^* in allocation or stop rule (+ matches OCBA, 'max' like ETSS of Chen and Kelton).
 - '+' is more efficient than 'max'
 - Efficiency loss greater in stopping rule than in allocation.



INSEAD RPI, k = 5, $\eta = 1$, $\alpha = 100$

- If budget constraint, use $\mathcal{OCBA}(S)$, $\mathcal{OCBA}_{LL}(S)$ or $\mathcal{LL}(S)$.
- No procedure controllable for SC and MDM.
- Only PGS_{Slep, δ^*} controllable for PGS_{17, δ^*}; only EOC_{Bonf} controllable for EOC_{iz} in RPI.
- Some advantages and disadvantages of $\mathcal{KN}++$
 - Plus: Beats old $\mathcal{LL}(S)$, $\mathcal{OCBA}(S)$; robust to n_0 ; $1 - \alpha^* \leq \mathsf{PCS}_{\mathsf{iz}}$; CRN
 - Minus: Not controllable; conservative (if want $1 - \alpha^* = \mathsf{PICS}_{i_7}$ rather than $1 - \alpha^* \leq \mathsf{PCS}_{i_7}$), e.g. large k, heterogeneous $\overline{\sigma_i^2}$, δ^* too small.



Which procedure to use (2)

- We recommend \mathcal{LL} , \mathcal{OCBA}_{II} or \mathcal{OCBA} allocation with PGS_{Slep,δ^*} or EOC_{Bonf} stopping rule (depending on goal)
 - Plus: Most efficient; controllable for RPI; robust; ability to incorporate sampling costs; how about PCS_{Baves} and EOC_{Baves} guarantees; prior information ok; ...
 - Minus: Sensitive to n_0 for extreme levels of evidence; slight degredation if many good systems; independence (although two-stage for VIP; recent work for OCBA).
- Do not use: 0-1; 'max' instead of '+' to bring in δ^* into allocation; normal distribution in stopping rule if variance unknown; small n_0 if extreme evidence levels desired; new 'small sample' EVI allocations.
- Caveats: Empirical observations limited to our testbed; assumed normality; no autocorrelation; no CRN; did not examine combinatorially large k

Chick

Discussion

- Link top procedures in large search spaces, assess with companion tools (DOvS; evolutionary algorithms; etc.)
- $\mathcal{KN}++$ -like procedure with different number of reps/system.
- Standardized testbed. Performance evaluation criteria.
 - Within class: strengths and weaknesses
 - Across classes: broader testbed
- Economic basis for simulation projects. Why stop simulating? Statistical versus economic significance? e.g. mean # reps. versus simulation project costs and net revenues accrued from decision. (Chick and Gans 2005 suggest DP/bandit/real options approach.)

Bonn, M., F. Toussaint, and H. Schmeck. 2005.

JOSCHKA: Job-Scheduling in heterogenen Systemen mit Hilfe von Webservices.

In PARS Workshop Lübeck, ed. E. Maehle, in press.

Gesellschaft für Informatik.

Branke, J., S. E. Chick, and C. Schmidt. 2005.

Selecting a selection procedure.

working paper.

Chen. C.-H. 1996.

A lower bound for the correct subset-selection probability and its application to discrete event simulations.

IEEE Transactions on Automatic Control 41 (8): 1227–1231.

Chen, E. J., and W. D. Kelton. 2005.

Sequential selection procedures: Using sample means to improve efficiency.

European Journal of Operational Research 166:133–153.

Chick, S. E., and K. Inoue. 2001.

New two-stage and sequential procedures for selecting the best simulated system.

Operations Research 49 (5): 732-743.

He, D., S. E. Chick, and C.-H. Chen. 2005.

The opportunity cost and OCBA selection procedures in ordinal optimization. *submitted*.

(□) (□) (₹) (₹) (₹) (₹) (₹) (₹)

A fully sequential procedure for indifference-zone selection in simulation. *ACM TOMACS* 11:251–273

Lerch, M., G. Tischler, J. W. von Gudenberg, W. Hofschuster, and W. Kraemer. 2001.

The interval library filib++ 2.0 - design, features and sample programs. Preprint 2001/4, University of Wuppertal.

Matsumoto, M., and T. Nishimura. 1998.

Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator.

ACM TOMACS 8 (1): 3-30.

Wilson, J. R., and A. A. B. Pritsker, 1984.

Experimental evaluation of variance reduction techniques for queueing simulation using generalized concomitant variables.

Management Science 30:1459-1472.

