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Abstract 
Ordinal Optimization offers an efficient approach for simulation optimization by 
focusing on ranking and selecting a finite set of good alternatives. Because simulation 
replications only give estimates of the performance of each alternative, there is a 
potential for incorrect selection. Two measures of selection quality are the alignment 
probability or the probability of correct selection (P{CS}), and the expected 
opportunity cost, E[OC], of a potentially incorrect selection. Traditional ordinal 
optimization approaches focus on the former case. This paper extends the optimal 
computing budget allocation (OCBA) approach of [2], which allocated replications to 
improve P{CS}, to provide the first OCBA-like procedure that optimizes E[OC] in 
some sense. The procedure performs efficiently in numerical experiments. 
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I. Introduction 

Discrete-event systems (DES) simulation is a popular tool for analyzing systems 
and evaluating decision problems since real situations, more often than not, do not 
satisfy the assumptions of analytical models. A sample application is to choose the 
best inventory policy from several alternatives. DES simulation has many advantages 
for modeling complex systems and has been studied in several cases (cf. [8]). 
However, efficiency is still a significant concern when conducting simulation 
experiments [17]. Good estimates of the mean performance of a system (expressed as 

a confidence interval) typically have errors of size O(1/ N ), the result of averaging 

independent and identically distributed (i.i.d.) noise, where N is the number of 
simulation samples, or replications.  Ordinal Optimization has emerged as an 
effective approach in DES when the primary objective is to select the design with the 
best mean performance, relative to the  others, rather than accurately estimating the 
mean performance of each alternative [12]. The error rate for identifying the best 
system decays exponentially in some cases, as opposed to the square root law for 
estimating means  [9]. This idea has been successfully applied to several problems 
(e.g., [11], [13], [18], [22]). 

While ordinal optimization could significantly reduce the computational cost for 
DES simulation, there is potential to further improve its performance by intelligently 
controlling the simulation experiments, i.e., by determining the best number of 
simulation samples among different designs as simulation proceeds.  The main 
theme of this paper is to further enhance the efficiency of ordinal optimization in 
simulation experiments. The efficiency of ordinal optimization approaches relies on 
the effectiveness of the underlining selection procedure. Selection procedures are 
statistical sampling techniques used to efficiently identify the best or some top ones of 
a finite set of simulated alternatives, where ‘best’ is defined with respect to the mean 
performance of each alternative.  There are two main measures of selection quality, 
and three main approaches to framing the problem of selecting the best system.  We 
describe the measures of selection quality before describing the main approaches.  
The alignment probability or the probability of correct selection (P{CS}) is the most 
commonly studied measure of performance.  A second important measure of 
selection quality is the expected opportunity cost (E[OC]), which penalizes 
particularly bad choices more than mildly bad choices.  For example, it may be 
better to be wrong 99% of the time if the penalty for being wrong is $1 (an expected 
opportunity cost of 0.99 × $1 = $0.99) rather than being wrong only 1% of the time if 
the penalty is $1,000 (an expected opportunity cost of 0.01 ×$1,000 = $10) [5].  
Quantiles are another measure, but is beyond the scope of this paper. 

The indifference-zone approach mainly focuses on guaranteeing a prespecified 
probability of correct selection (P{CS}), the probability taken over repeated 
applications to any problem instance taken from a given class of problems.  In the 
simulation context, this usually means all problems so that the mean performance of 
the “best” system is at least δ units better than each of the alternatives, where δ  is the 



 3 

minimum difference worth detecting (e.g., [1], [20]).  [7] present a two-stage 
indifference-zone procedure that provides an ‘unexpected’ expected opportunity cost 
guarantee, and show that some existing indifference-zone selection procedures that 
were originally developed to provide P{CS} guarantees can be adapted to provide 
E[OC] guarantees.  A second approach to selection procedures is the Bayesian, 
expected value of information approach of [6-7], that can allocate samples in two 
stages or sequentially to improve either P{CS} or E[OC]. 

The third approach, and the approach espoused in this paper, is the OCBA [2], 
which allocates samples sequentially in order to maximize an approximation to the 
Bayesian posterior P{CS}.  This is a nonlinear optimization problem. [3] introduce a 
greedy heuristic to iteratively determine which design appears to be the most 
promising for further simulation.  OCBA procedures have been shown to be efficient 
empirically (e.g., [15]), but so far variations only exist to improve P{CS}. 

In this paper, we develop a new greedy selection procedure to reduce the E[OC] 
of a potentially incorrect selection by using the OCBA approach to selection.  The 
main idea is to allocate samples sequentially so that an approximation to E[OC] can 
be minimized when the simulations are finished.  In addition to presenting a new 
efficient simulation budget allocation, this paper i) compares several different budget 
allocation procedures through a series of numerical experiments; ii) demonstrates that 
our budget allocation approaches are much more efficient than procedures that 
allocate samples evenly between systems or proportional to the variance of each 
system; and iii) shows that our approach is robust in different settings.  Section II 
formulates the allocation problem. Since our approach is based on a Bayesian model, 
a brief discussion of that model is included. Sections III and IV present a greedy 
heuristic  allocation rule for improving E[OC] us ing the OCBA approach. The 
performance of the technique is illustrated with a series of numerical examples in 
Section V. Section VI summarizes the conclusions of the paper –  the new 
OCBA-EOC procedure compares quite favorably with several other procedures. 
 

II. Problem Statement 
This section recalls a formal description of the selection problem from a Bayesian 

perspective, and then discusses the  expected opportunity cost, (E[OC]).  The goal of 
the selection procedure is to identify the best of k  simulated alternatives, where best is 
defined as the system with the smallest mean (the largest mean would be handled 
similarly), which is unknown and to be inferred from simulation.  The selection 
procedure is developed with the assumption that the output is normally distributed 
with an unknown mean and a known variance. The normality assumption is generally 
not a problem, because typical simulation output is obtained from an average 
performance or batch means, so that Central Limit Theorem effects usually hold.  
Numerical experiments show that the new procedure works well even when the 
variance is estimated, and cases tested where the distribution is not normally 
distributed.  The output of each system (design) is presumed to be independent in 
this paper. Common random numbers are not allowed in this paper. Denote by 

iµ  : the unknown mean of design i,  



 4 

2
iσ  : the known variance of design i. In practice, 2

iσ  is unknown beforehand 

and so it is approximated by the sample variance. 
iX  : the sample mean of design i, 

2
iS  : the sample variance of design i, 

iN  : the number of simulation replications (so far) for design i. 

 
The sample statistics are updated continually as simulations are run.  We assume 

a noninformative prior distribution for the unknown mean, so that the posterior 
distribution for the unknown mean of system i, given Ni simulation replications so far, 
is ([4], [10], [14]):  

iµ  ~ N( iX ,
i

i

N

2σ ),     i=1,…,k       (1) 

After the simulation is performed, iX  can be calculated according to the system 

outputs, and 2
iσ  is approximated by the corresponding sample variance.  

 
A. Opportunity Cost (OC) 

The opportunity cost is “the cost of any activity measured in terms of the best 
alternative forgone.” [21] . For the simulation selection problem, the opportunity cost 
is the difference between the unknown mean of the selected system b (defined below) 
and the unknown mean of the actual best system.  Set  

jiJ ,
~  = iµ - jµ . 

Because both iµ  and jµ  have a normal posterior distribution, the random variable 

jiJ ,
~  is normally distributed when ji ≠ , 

jiJ ,
~  ~ N( iX - jX ,

i

i

N

2σ +
j

j

N

2σ ). 

Denote by 

b  : the design with the smallest sample  mean so far , so b = arg
i

min { 1X , 2X ,…, 

kX } is the design we would select if no more replications were run, 

i*  : the true best design, *i = arg
i

min { 1µ , 2µ ,…, kµ }, 

)(, xf ji  : the probability density function (PDF) of the normally distributed 

random variable, jiJ ,
~ , evaluated at x , for ji ≠ . 
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The opportunity cost is therefore  

*,
~

ibJ  = bµ - *iµ  = 






≠≥
==

. if0
 if0

*

*

ib
ib  

If the best system is correctly selected, then the opportunity cost is zero. 
 
B. The Expected Opportunity Cost E[OC] 

The expected opportunity cost (E[OC]) is defined as follows 

E[OC] = E[ *,
~

ibJ ] = E[ bµ - *iµ ] = ∑
≠=

k

bii ,1

P(i = i*) E[ bµ - iµ |i = i*]. 

The expectation is take n with respect to the posterior distribution of the 1µ , 2µ ,…, kµ  

given all simulation seen so far.  According to the definition of the conditional 
expectation [23] , 

E(X|A)=
)]([

)]([
AIE

AIXE ⋅ =
)(

)]([
AP

AIXE ⋅ , 

where X is a random variable, and for an event A we define the indicator function to 

be I(A)= 




occur.not  does if0
occur. does  if1

A
A . Therefore, 

E[OC] = ∑
≠=

k

bii ,1

E[I(i = i*) × ( bµ - iµ )]. 

A convenient closed-form expression for E[OC] is unknown for all but a few 
special cases. We therefore present an approximation of E[OC] that is key for the new 

selection procedure. Denote the vector of means byµ={ 1µ , 2µ ,…, kµ }, denote the set 

of configurations where i is best by iW  ≡ {µ: *i = i }={µ| ijji ≠<  allfor  ,µµ }, and 

denote the set of configurations where the true mean of system i is better than the true 

mean of the system whose sample mean is currently best by iΩ  ≡ {µ : iµ < bµ }. 

Since iW ⊆ iΩ ,  

P(i = i*) = P( iµ < bµ )*P( iµ < jµ  for all j ∉{i, b} | iµ < bµ ) ≤ P( iµ < bµ ). 

 
We establish an upper bound, 

E[I(i = i*)*( bµ - iµ )] ≤ E[I( iµ < bµ )*( bµ - iµ )]. 

Thus, 

E[OC] ≤ ∑
≠=

k

bii ,1

E[I( iµ < bµ )*( bµ - iµ )] 
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= ∑
≠=

k

bii ,1

 P( iµ < bµ )E[ bµ - iµ | iµ < bµ ] = EEOC, 

and we refer to this upper bound of the expected opportunity cost as the Estimated 
Expected Opportunity Cost (EEOC). Since system b has the best (smallest) sample 

mean so far, ( bX < iX  for all i ), the conditional probability, P( iµ < jµ  for all j∉{i, b} 

| iµ < bµ ), will often be close to 1, so that P( iµ < bµ ) is often a good approximation to 

P(i = i*). Similarly we hope E[I( iµ < bµ )*( bµ - iµ )] would be a reasonable 

approximation to E[I(i = i*)*( bµ - iµ )]. Numerical tests below show that using EEOC 

to approximate E[OC] leads to a highly efficient procedure. According to the 

definition of EEOC and definition of jiJ ,
~  in Section II.A, 

 

    EEOC  = ∑
≠=

k

bii ,1

 P ( ibJ ,
~ >0) E[ ibJ ,

~ | ibJ ,
~ >0] 

= ∑
≠=

k

bii ,1
∫

+∞

0
x ibf ,  (x) dx, 

where ibf , (x) is the PDF of ibJ ,
~ .  Define 2

,ibσ =
i

i

N

2σ +
b

b

N

2σ  and ib ,δ = bX - iX , and let 

ibz , = - ibib ,, σδ  be the standardized statistic for the difference in means for systems b 

and i.  Using integration by parts, one can show that 

∫
+∞

0
x ibf ,  (x) dx  = ib,σ φ ( ibz , ) + ib,δ * Φ (- ibz , ), 

where φ (x) and Φ (x) are the PDF and CDF of standard normal distribution 

respectively. 
Then we get 

EEOC  = ∑
≠=

k

bii ,1
∫

+∞

0
x ibf , (x) dx 

= ∑
≠=

k

bii ,1

{ ib,σ φ ( ibz , ) + ib,δ * Φ (- ibz , ) }.   --- (2) 

This is easily and stably computable by many mathematical packages. We therefore 
use EEOC in the above equation to approximate E[OC] in our selection procedure. 
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 The term EEOC  can be interpreted as the sum of expected opportunity costs for 
each of the k -1  pairwise comparisons between the best and each alternative, given all 
of the sampling information that is available.  This term therefore resembles the 
well-known Bonferroni bound for probabilities , which states that the probability that 
the best system is not correctly selected, is less than the sum of the probabilities that 
the best is not correctly selected in the k -1 pairwise comparisons of the best with each 
alternative.  The Bonferroni bound is tight when k=2 , and is known to become less 
tight as k  increases.  If only a few competing alternatives have a similar performance, 
then the bound can be relatively tight.  Plotting a few numerical examples shows that 
the same is true for the EEOC bound. 
 

III. Approximation to the Estimated Expected Opportunity Cost (EEOC) 
Ideally we would choose N1, N2, …, N k to minimize E[OC], given a limited 

computing budget.  Since it can be very expensive to compute E[OC], this paper 
sequentially minimizes EEOC  by using (2).  Using the basic ideas of the OCBA 
approach, as they were applied for P{CS}, we now allocate a few replications at each 
stage of a sequential procedure to reduce EEOC iteratively. 

A critical component in the proposed procedure is to estimate how EEOC changes 
as Ni changes. Let ∆i be a nonnegative  integer denoting the number of additional 
simulation replications allocated to design i in the next stage of sampling.  We are 
interested in assessing how EEOC would be affected if design i were simulated for ∆i 

additional replications. In other words, we are interested in assessing how promising it 
is to simulate design i. This assessment must be made before actually conducting ∆i 

simulation replications. According to (1) in Section 2, if we conduct ∆i additional 
replications of design i, given a finite Ni, the posterior distribution for the unknown 
mean of design i is approximately 

N( ∑
∆+

=∆+

iiN

j
ij

ii
X

N 1

1 ,
ii

i

N ∆+

2σ ), 

where Xij is the j-th sample of design i. When ∆i is relatively small compared to Ni, the 

difference between ∑
=

iN

j
ij

i
X

N 1

1  and ∑
∆+

=∆+

iiN

j
ij

ii
X

N 1

1 will be small. A heuristic approach 

to the approximation of the predictive posterior distribution yields 

                   iµ ~ N( ∑
=

iN

j
ij

i
X

N 1

1 ,
ii

i

N ∆+

2σ )   for design i.     --- (3) 

 
We therefore approximate the distribution of the unknown mean, given that ∆i is 

small, by a N( ∑
=

iN

j
ij

i
X

N 1

1 ,
ii

i

N ∆+

2σ ) distribution. 

The EEOC can then be calculated by plugging (3) into the EEOC formula in (2).  
In particular, if we allocate ∆Ni additional samples for  system i (for any i, including 
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system b), then the corresponding estimated expected opportunity cost, denoted as 
EEOCi , is determined by using the original distributions for the unknown means of 
systems other than i, and using the modified distribution immediately above for 
system i, to obtain 

EEOC i = ∑
≠=

k

bjj ,1
∫

+∞

0
x *

,, ijbf (x) dx    for i = 1 ,..., k ;  

where *
,, ijbf (x) is the PDF of the difference between system b and system j, given that 

∆N i more replications are given to system i, and none is allocated to the others, for 

any i and j ≠ b .  If i=b, then )(*
,, xf ijb  is the PDF of a N( bX - jX ,

bb

b

NN ∆+

2σ +
j

j

N

2σ ) 

random variable.  If i=j, then )(*
,, xf ijb  is the PDF of a N( bX - jX ,

b

b

N

2σ +
jj

j

NN ∆+

2σ ) 

random variable.  If i is neither j nor b , then no new information is available to 

distinguish systems j and b, and )(*
,, xf ijb  = )(, xf jb . 

EEOCi is the estimated expected opportunity cost before an additional ∆N i 
replications are applied for system i, for any i, and EEOCi can be computed easily. 
 

IV. A Selection Procedure  
Our goal is to minimize the E[OC] of a potentially incorrect selection.  Doing so 

optimally and in full generality is a challenging optimization problem with an 
unknown solution.  Inspired by the OCBA approach (which provides a heuristic that 
seeks to minimize a bound on the probability of correct selection, and where that 
bound is defined in a manner that is similar in spirit to the bounds and approximations 
in Section III above), we reduce E[OC] by sequentially minimizing the upper bound 
in Equation (2) , EEOC , for E[OC].  At each stage, we allocate additional samples in 
a manner that greedily reduces the EEOC as much as possible.  That improvement is 
based upon a heuristic measure of the improvement in EEOC at each step that is 
justified by the development in Section III.  The effect of running an additional few 
replications on the expected opportunity cost, EEOC, is estimated by: 

 
Di  = EEOCi – EEOC 

= ∫
+∞

0
x *

,, iibf (x) dx - ∫
+∞

0
x ibf , (x) dx ≤  0, i ≠ b, 

and 

Db  = EEOCb – EEOC 

= ∑
≠=

k

bii ,1

{ ∫
+∞

0
x *

,, bibf (x) dx - ∫
+∞

0
x ibf , (x) dx} ≤  0, 

where D i and Db represent the reduction of EEOCi and EEOCb respectively at each 
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step. These inequalities can be verified with a bit of algebra.  They imply that more 
information leads to smaller losses, on average. 
 Note that before conducting the simulation, neither the APCS nor a good way to 
allocate the simulation budget is known. Therefore, all designs are initially simulated 
with n0 replications in the first stage. We then sequentially allocate replications to the 
systems that provide the greatest reduction in the EEOC. Note the Di and Db are less 
than zero. This is consistent with our intuition that the expected opportunity cost will 
decrease as more samples are observed. With this approximation, the ∆Ni, i = 1,..., k , 
should not be too large. In summary, we have the following new selection procedure. 
 

OCBA-EOC Allocation Procedure  

Step 0. Choose a number of systems per stage to simulate, m, and a (small) total 
number of simulation replications per stage, ∆ such that τ =∆/ m is an 
integer , and a total number of replications T to run (assuming T-kn0 is a 

multiple of ∆, where k  is the total number of designs and n0 is number of 

simulation replications for each design that are run in an initial stage). 
Step 1. Perform n0 simulation replications for each of the k  designs. 

Step 2. Select system b = arg
i

min { 1X , 2X , …, kX } as the best so far. 

Step 3. For i =1,...,k , approximate the improvement in EEOC by: 
  Di ≡ EEOCi – EEOC. 
Step 4. Find the set S( m ) ≡ { i : Di is among the m lowest values}. 
Step 5. ∆Ni =τ , for all i ∈S( m ); otherwise, ∆N i =0.  
Step 6. Update all statistics and repeat Steps 2-6 until a total of T replications are 

observed.  
 

Since this selection procedure is derived using the framework presented in [4] , we 
named it OCBA-EOC to be consistent with the previous allocation procedure 
‘Optimal Computing Budget Allocation (OCBA)’. The original OCBA is P{CS} 
oriented, whereas our new procedure in this paper is focused on reducing E[OC] by 
sequentially minimizing the approximation to EEOC, from Section III above, in a 
greedy manner at each iteration. To distinguish these two procedures, we denote the 
original OCBA by the name OCBA-PCS in later sections. 
 

V. Numerical Experiments  
 
A. Summary of procedures 

We compared the new OCBA-EOC procedure with five other procedures to 
compare their relative effectiveness at identifying the best system.  They are 
measured with respect to two measures of the quality of a correct selection: (i) the 
empirical probability of correct selection, P{CS}iz, and (ii) expected opportunity cost 
of a potentially incorrect selection, E[OC]iz, as a function of the total number of 
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replications taken during the simulation.  Both P{CS}iz and E[OC]iz are frequentist 
measures, and are estimated by averaging over many applications of a procedure to a 
given selection problem.  
 

Equal Allocation 
This is the simplest way to conduct simulation experiments and has been widely 

applied. The  simulation budget is equally allocated to all designs, so that all designs 
are simulated equally often. Such a procedure is equivalent to the sole use of ordinal 
optimization. The ordinal optimization can ensure that P{CS}iz converges to 1.0 
exponentially fast, even with equal allocation. The performance of equal allocation 
will serve as a benchmark for comparison.  

 

Proportional to Variance (PTV) Allocation 
The two-stage procedure of Rinott [20] has been widely applied in the simulation 

literature. In the first stage, all designs are simulated for n0 samples.  The number of 
additional simulation samples for each design in the second stage is proportional to 

the sample variance ( 2
iS ) from the first stage of sampling, 

 ∆Ni = max(0, ( 2
iS h2/ d

2
  - n0), for i = 1, 2,…, k ,        --- (4) 

where • is the integer "round-up" function, d is minimum difference worth detecting, 
h is a constant that solves Rinott's integral (see [1], [24] ). To get a sequential 
procedure, we modify Rinott’s procedure to allocate samples so that the total number 
of replications grows in proportion to the sample variance.  While we do not claim 
that the indifference-zone P{CS}iz guarantee is maintained, this maintains the spirit 
of allocating replications proportional to the sample variance. 
 

LL(S) and 0-1(S) Allocation  
The LL(S) and 0-1 (S) procedures [5]  are sequential versions of two-stage 

procedures that were developed to improve the expected value of information of 
additional samples for the opportunity cost (LL stands for linear loss, another name 
for opportunity cost ) and 0-1 loss functions (probability of incorrect selection).  Both 
procedures function well in numerical experiments, although 0-1 (S) performs less 
well than LL(S) due to an extra asymptotic approximation in its derivation [15]. 
 

OCBA-PCS by Chen el al. (2000) 
The OCBA-PCS procedure is derived with asymptotic approximations, togethe r 

with an approximation of the posterior probability of correct selection.  There are 
several variations on the OCBA-PCS that are based upon various approximations.  
Numerical testing demonstrates that the following variation of the OCBA-PCS is very 
efficient and can dramatically reduce the number of simulation replications.  
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• 
j

i

N
N = 

2

,

,












jbj

ibi

δσ

δσ
, i, j ∈ {1, 2, ..., k}, and i ≠ j ≠ b,       --- (5) 

• Nb  = ∑
≠=

k

bii i

i
b

N

,1
2

2

σ
σ .            --- (6) 

This allocation is a function with respect to the difference of sample means and the 
variances. The variances are approximated by sample variances in practice. 
 

OCBA-EOC Procedure  
 The OCBA-EOC procedure is introduced in this paper. The details of the 
procedure are described in Section IV. 
 

In summary, the key structural feature of the OCBA-EOC and LL procedures is 
that their greedy optimization steps focus on reducing the probability of particularly 
bad errors.  That is, they weight each potential error by the amount worse that a 
potentially incorrect selection is worse than the true best. The OCBA-PCS and 0-1 
procedures focus on reducing errors, but equally weight all potential errors, rather 
than treating potentially large errors differently than small errors.  The PTV and 
Equal allocations are easy to describe and to implement, but do not appear to have any 
easy-to-describe weighting scheme for the relative size of errors. 
 
B. Numerical Results  

In order to compare the performance of the six procedures in previous subsection, 
we tested them empirically for several typical selection problems. In all of the 
following figures, T represents the total computing budget. For all experiments in this 
paper, m=1.  A summary is presented after presenting the results of each example. 
 
n Example 1 : Monotone means and constant variances  

The first example assumed that there are 10 systems, and that the alternatives have 
N(i , 62) distribution, for system i = 1, 2, …, 10.  We implemented n0 = 10 first-stage 
replications per system, and ∆  = 10 replications per stage until a total of T = 5000 
replications are run per application of each procedure. Estimates of P{CS}iz and 
E[OC]iz are based on 100,000 applications of each procedure to the problem.  

The LL, OCBA-EOC, and OCBA-PCS procedures each do best for both the 
P{CS}iz and the  E[OC]iz criteria.  The Equal allocation is relatively much less 
effective. 
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Figure 1a .  Performance comparison of P{CS}iz in Example 1 
 
 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T 3930 2880 990 1060 1020 1280 
Table 1a. Computation costs in order to attain P{CS}iz  =99% for Example 1. 
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Figure 1b Performance comparison of E[OC]iz in Example 1 
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 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T 3420 2500 990 930 910 1180 
Table 1b. Computation costs in order to attain E[OC]iz = 0.015 for Example 1.  

 
 
n Example 2: Monotone means and increasing variances 
 

The second example  is a variant of example 1 with increasing variances. This 
example assumed that there are 10 systems, and that the alternatives have N(i , i4) 
distribution, for system i = 1, 2, …, 10.  We implemented n0 = 10 first stage 
replications per system, and ∆  = 10 replications per stage until a total of T = 5000 
replications are run per application of each procedure.  Estimates of P{CS}iz and 
E[OC]iz are based on 100,000 applications of each procedure to the problem. 

The 0-1 procedure does best for low levels of evidence for correct selection, but 
becomes worse as higher probabilities of correct selection are desired.  The 
OCBA-PCS and OCBA-EOC, with the LL procedure, are best as more samples are 
taken. 
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Figure 2a  Performance comparison of P{CS}iz in Example 2 
 
 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T >5000 4860 2150 1920 2060 4120 
Table 2a. Computation costs in order to attain P{CS}iz  =99% for Example 2. 
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Figure 2b  Performance comparison of E[OC]iz in Example 2 
 
 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T >5000 4310 2300 1920 1900 4210 
Table 2b. Computation costs in order to attain E[OC]iz = 0.065 for Example 2. 
 
 
n Example 3 : Monotone means and decreasing variances 
 

The third example assumed that there are 10 systems, and that the alternatives 
have N(i, (11-i) 4) distribution, for system i = 1, 2, …, 10.  We implemented n0 = 500 
first stage replications per system, and ∆  = 10 replications per stage until a total of T 
= 5000 replications are run.  Estimates of P{CS}iz and E[OC]iz are based on 
100,000 applications of each procedure, except LL and 0-1 procedures. Since we ran 
LL and 0-1 under Matlab, 100,000 applications would take long time to run, so we 
reduced the number of applications of LL and 0-1  to 5000. The Matlab 
implementations run about the same speed for all procedures (OCBA-PCS, 
OCBA-EOC, LL(S), 0-1(S), etc.). 

Because of the structure of the problem, including a larger variance than for the 
previous examples, many more samples are required to achieve a similar level of 
evidence for correct selection.  PTV performs as well as the better procedures, unlike 
in other experiments, apparently due to the special relationship of the means and 
variances that are specific to this problem.  
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Figure 3a  Performance comparison of P{CS}iz in Example 3 
 
 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T >50000 41450 38350 37040 39120 >50000 
Table 3a. Computation costs in order to attain P{CS}iz  =80% for Example 3. 
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Figure 3b  Performance comparison of E[OC]iz in Example 3 
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 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T >50000 41520 38310 36840 38330 >50000 
Table 3b. Computation costs in order to attain E[OC]iz = 0.22 for Example 3. 
 
 
n Example 4 : Slippage Configuration Problem with constant variances 

The slippage configuration (SC) assumed that there are 10 systems, and that the 

alternatives have N( iµ , 52) distribution, where 1µ  = 0 and iµ  = 1 when i = 2,…,10.  

We implemented n0 = 200 first stage replications per system, and ∆  = 10 
replications per stage until a total of T = 7000 replications are run per application of 
each procedure.  Estimates of P{CS}iz and E[OC]iz are based on 100,000 
applications of each procedure to the problem.  

The OCBA-PCS, OCBA-EOC and LL procdures are again the best for both 
figures of merit. 
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Figure 4a  Performance comparison of P{CS}iz in Example 4 
 
 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T 4450 3710 2890 3020 2970 3720 
Table 4a. Computation costs in order to attain P{CS}iz  =99% for Example 4. 
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Figure 4b  Performance comparison of E[OC]iz in Example 4 
 
 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T 4450 3680 2890 3010 2970 3710 
Table 4b. Computation costs in order to attain E[OC]iz = 0.01 for Example 4. 
 
 
n Example 5 : Inventory Problem. 

The fifth example is an (s, S) inventory policy problem introduced by [16], and 
that was later analyzed by [19].  When random demand brings the inventory of 
system i on hand down to si  units on hand, inventory is reordered so that the total 
inventory is Si., for i = 1,2,…,k .  This example assumed that there are 5 systems, and 
that the alternative designs are defined by the parameters s = (s1, s2,…,s5) = 
(20,20,40,40,60) and S = (40,80,60,100,100), respectively. The second system has the 
smallest mean, which means the second system has the best policy. We implemented 
n0 = 10 first -stage replications per system, and ∆  = 10 replications per stage until a 
total of T = 300 replications are run.  Estimates of P{CS}iz and E[OC]iz are based 
on 10,000 applications of each procedure to the problem. 

For this configuration, procedure 0-1 performs about as well as procedures LL, 
OCBA-PCS and OCBA-EOC.  
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Figure 5a  Performance comparison of P{CS}iz in Example 5 
 
 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T 160 120 100 100 100 110 
Table 5a. Computation costs in order to attain P{CS}iz  =99% for Example 5. 
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Figure 5a  Performance comparison of E[OC]iz in Example 5 
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 Equal PTV OCBA-PCS OCBA-EOC LL 0-1 
T >500 260 190 180 180 190 
Table 5b. Computation costs in order to attain E[OC]iz = 0.001 for Example 5. 
 
 
C. Discussion 

In these five examples, the OCBA-PCS, OCBA-EOC and LL procedures 
converge efficiently and these three procedures are similar in performance. While the 
0-1  and PTV selection procedures can perform about as well as those three procedures 
in some specific examples, they perform clearly worse in other examples.  In the 
third example, because the best design has the largest variance, PTV allocates most of 
the budget to the best design and it is similar to the allocation pattern of the 
OCBA-PCS, OCBA-EOC and LL procedures. The performance of PTV is therefore 
closer to the performance of OCBA-PCS, OCBA-EOC and LL in the third example , 
but this is due to the special structure of the specific selection problem. The equal 
allocation (which is equivalent to crude ordinal optimization) is the worst in all five 
examples.  The 0-1  allocation performs less well than the three best procedures, for 
several experiments, due to the extra asymptotic approximation in its derivation [5]. 

 
VI. Conclusions 

Traditional ordinal optimization approaches focus on the alignment probability, 
or the probability of correctly selecting the best design.  The  use of the opportunity 
cost to guide a selection procedure’s sampling allocations has proven to be efficient in 
the expected value of information context.  The opportunity cost differs from 
previous approaches, which tend to focus on the probability of correct selection, in 
that it penalizes particularly bad choices more than slightly incorrect selections.  
This is particularly useful when the performance of each alternative is measured in 
financial terms (economic value) as opposed to other engineering measures (speed, 
etc.).  This paper shows that the OCBA approach to sampling allocations can be 
adapted to account for opportunity costs in a computationally tractable way, and that 
the resulting selection procedure is consistently numerically efficient for each of the 
five empirical examples in this paper.  This is important because the expected 
opportunity cost is often more important than the probability of correct selection when 
sampling allocations reflect the economic value of each simulated alternative . Our 
OCBA approach was shown to further enhance simulation efficiency over crude 
ordinal optimization in this context. 
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