The Opportunity Cost and OCBA Selection Proceduresin Ordinal

Optimization for a Fixed Number of Alternative &/stems+

Donghai He
Department of Systems Engineering and Operations Research
George Mason Univ ersity

Stephen E. Chick
Technology Management Area
INSEAD

Chun-Hung Chen
Department of Systems Engineering and Operations Research
George Mason Univ ersity

Abstract

Ordinal Optimization offers an efficient approach for simulation optimization by
focusing on ranking and selecting afinite set of good alternatives. Because simulation
replications only give estimates of the performance of each aternative, there is a
potential for incorrect selection. Two measures of selection quality are the alignment
probability or the probability of correct selection (P{CS}), and the expected
opportunity cost, E[OC], of a potentialy incorrect selection. Traditional ordinal
optimization approaches focus on the former case. This paper extends the optimal
computing budget allocation (OCBA) approach of [2], which allocaked replications to
improve P{CS}, to provide the first OCBA-like procedure that optimizes E[OC] in
some sense. The procedure performs efficiently in numerical experiments.
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|. Introduction

Discrete-event systems (DES) simulation is a popular tool for analyzing systems
and evaluating decision problems since real situations, more often than not, do not
satisfy the assumptions of analytical models. A sample application is to choose the
best inventory policy from several aternatives. DES simulation has many advantages
for modeling complex systems and has been studied in several cases (cf. [§]).
However, efficiency is still a significant concern when conducting simulation
experiments [17]. Good estimates of the mean performance of a system (expressed as

aconfidence interval) typically have errors of size O(1/ N ), the result of averaging

independent and identically distributed (i.i.d.) noise, where N is the number of
simulation samples, or replications. Ordinal Optimization has emerged as an
effective approach in DES when the primary objective is to select the design with the
best mean performance, relative to the others, rather than accurately estimating the
mean performance of each alternative [12]. The error rate for identifying the best
system decays exponentially in some cases, as opposed to the sguare root law for
estimating means [9]. This idea has been successfully applied to several problems
(e.g., [11], [13], [18], [22]).

While ordinal optimization could significantly reduce the computational cost for
DES smulation, there is potential to further improve its performance by intelligently
controlling the simulation experiments, i.e, by determining the best number of
simulation samples among different designs as simulation proceeds. The main
theme of this paper is to further enhance the efficiency of ordinal optimization in
simulation experiments. The efficiency of ordinal optimization approaches relies on
the effectiveness of the underlining selection procedure. Selection procedures are
statistical sampling techniques used to efficiently identify the best or some top ones of
afinite set of smulated alternatives, where ‘best’ is defined with respect to the mean
performance of each aternative. There are two main measures of selection quality,
and three main approaches to framing the problem of selecting the best system. We
describe the measures of selection quality before describing the main approaches.
The aignment probability or the probability of correct selection P{CS}) is the most
commonly studied measure of performance. A second important measure of
selection quality is the expected opportunity cost (E[OC]), which penalizes
particularly bad choices more than mildly bad choices. For example, it may be
better to be wrong 99% of the time if the penalty for being wrong is $1 (anexpected
opportunity cost of 0.99- $1 = $0.99) rather than being wrong only 1% of the time if
the pendty is $1,000 (an expected opportunity cost of 0.01° $1,000 = $10) [5].
Quantiles are another measure, but is beyond the scope of this paper.

The indifference-zone approach mainly focuses on guaranteeing a prespecified
probability of correct selection (P{CS}), the probability taken over repeated
applications to any problem instance taken from a given class of problems. In the
simulation context, this usually means all problems so that the mean performance of
the “best” system is at least d units better than each of the aternatives, where d is the



minimum difference worth detecting (e.g., [1], [20]). [7] present a two-stage
indifference-zone procedure that provides an ‘unexpected’ expected opportunity cost
guarantee, and show that some existing indifference-zone selection procedures that
were originally developed to provide P{CS} guarantees can be adapted to provide
E[OC] guarantees. A second approach to selection procedures is the Bayesian,
expected value of information approach of [6-7], that can allocate samples in two
stages or sequentialy to improve either P{CS} or E[OC].

The third approach, and the approach espoused in this paper, is the OCBA [2],
which allocates samples sequentialy in order to maximize an approximation to the
Bayesian posterior P{CS}. This is a nonlinear optimization problem. [3] introduce a
greedy heuristic to iteratively determine which design appears to be the most
promising for further simulation. OCBA procedures have been shown to be efficient
empirically (e.g., [15]), but so far variations only exist to improve P{CS}.

In this paper, we develop a new greedy selection procedure to reduce the E[OC]
of a potentially incorrect selection by using the OCBA approach to selection. The
main idea is to alocate samples sequentialy so that an approximation to E[OC] can
be minimized when the simulations are finished. In addition to presenting a new
efficient simulation budget allocation, this paper i) compares several different budget
alocation procedures through a series of numerical experiments; ii) demonstrates that
our budget alocation approaches are much more efficient than procedures that
alocate samples evenly between systems or proportiona to the variance of each
system; and iii) shows that our approach is robust in different settings. Section 11
formulates the alocation problem. Since our approach is based on a Bayesian model,
a brief discussion of that model is included. Sections Ill and 1V present a greedy
heurigtic allocation rule for improving E[OC] using the OCBA approach. The
performance of the technique is illustrated with a series of numerical examples in
Section V. Section VI summarizes the conclusions of the paper — the new
OCBA-EOC procedure compares quite favorably with severa other procedures

[1. Problem Statement

This section recall s a formal description of the selection problem from a Bayesian
perspective, and then discusses the expected opportunity cost, (E[OC]). The goal of
the selection procedure is to identify the best of k simulated aternatives, where best is
defined as the system with the smallest mean (the largest mean would be handled
similarly), which is unknown and to be inferred from simulation. The selection
procedure is developed with the assumption that the output is normally distributed
with an unknown mean and a known variance. The normality assumption is generaly
not a problem, because typica simulation output is obtained from an average
performance or batch means, so that Central Limit Theorem effects usually hold.
Numerical experiments show that the new procedure works well even when the
variance is estimated, and cases tested where the distribution is not normally
distributed. The output of each system (design) is presumed to be independent in
this paper. Common random numbers are not allowed in this paper. Denote by

m : the unknownmean of design i,



s? : the known variance of design i. In practice, s? is unknown beforehand

and 0o it is approximated by the sample variance.
Xi :the sample mean of design i,

§?* :thesample variance of designi,

: the number of simulation replications (so far) for design i.

The sample statistics are updated continually as simulations are run. We assume
a noninformative prior distribution for the unknown mean, so that the posterior
distribution for the unknown mean of system i, given N; simulation replications so far,
is([4], [10], [14]):
— 5.2 .
m ~N(Xi'WI.)’ i=1,...k (@)

After the simulation is performed, X; can be calculated according to the system

outputs,and s ? isapproximated by the corresponding sample variance.

A. Opportunity Cost (OC)

The opportunity cost is “the cost of any activity measured in terms of the best
alternative forgone.” [21] . For the simulation selection problem, the opportunity cost
is the difference between the unknown mean of the selected system b (defined below)
and the unknown mean of the actual best system. Set

Becauseboth m and m; have anormal posterior distribution, the random variable

Ji.; isnormally distributedwhen i1 j,

Denote by

b :the design with the smallest sample mean so far, so b = argmin { X1, X200,
X} isthe design wewould selectif no more replications were run,
i :thetruebest design, i"=argmin{m,nm,....m},

f;(X) : the probability density function (PDF) of the normally distributed

random variable, J.

ij?

evaluatedat x,for it j.



The opportunity cost is therefore

_ {=0 ifb=i"

J. = m-m
I ST

b,i

If the best system is correctly selected, then the opportunity cost is zero.

B. The Expected Opportunity Cost E[OC]
The expected opportunity cost (E[OC]) is defined as follow s

E[OC] =E[J,;1=E[m-m]=§ P(=0)E[m-mli=i].
i=1itb

The expectation is taken with respect to the posterior distribution of the m,, m,,..., m,

given al simulation seen so far. According to the definition of the conditiona
expectation [23],
E[XxI(A)] _ E[XxI(A]

HI(A)] P(A)
where X is a random variable, and for an event A we define the indicator function to
bel (A)= ‘:,1 if A doesoccur. . Therefore,

70 if Adoesnotoccur.

E(X|A)=

E[OCI= & ElG(=i")" (m-m)l

i=1ith

A convenient closed-form expression for E[OC] is unknown for al but a few
specia cases. We therefore present an approximation of E[OC] that is key for the new

selection procedure. Denote the vector of means byp={ m, m,,...,m}, denote the set
of configurations where i is best by w, ° {p: i"=i}={p|m <m fordl j*i}, and
denote the set of configurations where the true mean of system i is better than the true

mean of the system whose sample mean is currently best by w. © {{ : m<m,}.

Since w, I W,
P(i =i") = P(m<m)*P(m<m fordlji{i,b}m<m) £ P(m<m,).
We establish an upper bound,

E[IGi=1)«(m-m)] £ E[I(m<m)(m-m)].

Thus,

E[OC] £ & ElN(m<m)(m-m)]

i=Litb



k
=& P(m<m)E[m-mIm<m] = EEOC,

i=litb

and werefer to this upper bound of the expected opportunity cost as the Estimated
Expected Opportunity Cost (EEOC). Since system b has the best (smallest) sample

mean o far, (X, <X; forall i), the conditional probability, P(m<m, for al jI {i,b}
|m<m,), will often be close to1, so that P(m<m,) is often a good approximation to
P(i = i). Similaly we hope E[l( m < m )<«(m -m)] would be a reasonable

approximation to E[I(i = i')«( m -m)]. Numerical tests below show that using EEOC

to approximate E[OC] leads to a highly efficient procedure. According to the
definition of EEOC and definitionof J;; inSection|l.A,

k
EEOC =3 P(@, >0)E[J, |3, >0

i=Litb

k
o ¥

= Xf,, (X) dx,
i:?ilb Q b,
2

~ 2
where f,,(X)isthe PDFof J,,. Define sm=5vi+5_b and d,;= Xo-X,and let
i b

z,;= -dy,; /sp,; be the standardized statistic for the difference in means for systems b
andi. Using integration by parts, ane can show that

é¥xfb,i () & = s f(2)+ dpi™F(-25)

where f (X) and F (x) are the PDF and CDF of standard normal distribution

respectively.
Then we get
k +
EEOC = § () Xy (9

i=litb '

&
=a { spf(zy)* dyi*F(-2,)} --(2
i=litb

This is easily and stably computable by many mathematical packages. We therefore
use EEOC in the above equation to approximate E[OC] in our selection procedure.



The term EEOC can be interpreted as the sum of expected opportunity costs for
each of the k-1 pairwise comparisons between the best and each aternative, given al
of the sampling information that is available. This term therefore resembles the
well-known Bonferroni bound for probabilities, which states that the probability that
the best system is not correctly selected, is less than the sum of the probabilities that
the best is not correctly selected in thek-1 pairwise comparisons of the best with each
aternative. The Bonferroni bound is tight when k=2, and is known to become less
tight as k increases. If only afew competing alternatives have a similar performance,
then the bound can be relatively tight. Plotting afew numerical examples shows that
the same is true for the EEOC bound

[11. Approximation to the Estimated Expected Opportunity Cost (EEOC)

Ideally we would choose N1, Ng, ..., Ng to minimize E[OC], given a limited
computing budget. Since it can be very expensive to compute E[OC], this paper
sequentially minimizes EEOC by using (2). Using the basic ideas of the OCBA
approach, as they were applied for P{CS}, we now allocate afew replications at each
stage of a sequential procedure toreduce EEOC iteratively.

A critical component in the proposed procedure is to estimate how EEOC changes
as Ni changes Let D be a nonnegative integer denoting the number of additional
simulation replications allocated to design i in the next stage of sampling. We are
interested in assessing how EEOC would be affected if design i were simulated for D
additional replications. In other words, we are interested in assessing how promising it
is to simulate design i. This assessment must be made before actually conducting Dy
simulation replications. According to (1) in Section 2, f we conduct D additional
replications of design i, given a finite Ni, the posterior distribution for the unknown
mean of design i isapproximately

N(

N; +D,

where Xjj is the j-th sample of design i. When D is relatively small compared to Ni, the

N, N, +D;
differencebetween - § x, and 5 1D & x,; will be small. A heuristic approach
) +D.
i =1 i i j=

to the approximation of the predictive posterior distribution yields
N; 2
1 o S i : . o

i j=1 i i

We therefore approximate the distribution of the unknown mean, given that D; is

19 s? o
small, by aN(Wa X;; , ——— ) distribution.

i j=1 i +Dy

The EEOC can then be calculated by plugging (3) into the EEOC formula in (2).
In particular, if we allocate DN; additional samples for system i (for any i, including



system b), then the corresponding estimated expected opportunity cost, denoted as
EEQOC; , is determined by using the origina distributions for the unknown means of
systems other than i, and using the modified distribution immediately above for
system i, to obtain

k +:
EEOCi= § () xfu, (9 dx fori=1,.,k;

i=1j*b

where ft: ;i(¥) isthe PDF of the difference between system b and system j, given that
DN; more replications are given to system i, and none is allocated to the others for
si s}

+—+)
N, +DN, N,

any iand j1b. If i=b, then f_, (x) isthe PDF of a N(X5- X,

2 2
random variable. If i=j, then f,  (x) isthe PDF of a N(Xy-X,>b+_Si )
o N, N, +DN,

random variable. If i is neither j nor b, then no new information is available to
distinguishsystemsjandb,and f,;; (X)) = f,;(x).

EEOC; is the estimated expected opportunity cost before an additional DN;
replications are applied for system i, for any i,and EEOC; can be computed easly.

V. A Selection Procedure

Our goal is to minimize the E[OC] of a potentialy incorrect selection. Doing so
optimally and in full generality is a challenging optimization problem with an
unknown solution. Inspired by the OCBA approach (which provides a heuristic that
seeks to minimize a bound on the probability of correct selection, and where that
bound is defined in a manner that is similar in spirit to the bounds and approximations
in Section |11 above), we reduce E[OC] by sequentially minimizing the upper bound
in Equation (2) , EEOC, for E[OC]. At each stage, we allocate additional samplesin
amanner that greedily reduces the EEOC as much as possible. That improvement is
based upon a heuristic measure of the improvement in EEOC at each step that is
justified by the development in Section Ill.  The effect of running an additional few
replications on the expected opportunity cost, EEOC, is estimated by:

D; = EEOC; —EEOC
¥ N ¥
=Q X (X) dx- Q Xfp;(Qdx £0,i1h,
Db = EEOCb—EEOC
Ok \+¥ * \+¥
= a {Q X fyip (X) dX- Q X fp;(¥) d¥ £ 0,

i=1itb

where D; and Dy, represent the reduction of EEOC; and EEOC,, respectively at each



step. These inequalities can be verified with a bit of algebra.  They imply that more
information leads to smaller losses, on average.

Note that before conducting the simulation, neither the APCS nor a good way to
alocate the simuation budget is known. Therefore, all designs are initially simulated
with ng replications in the first stage. We then sequentially allocate replications to the
systems that provide the greatest reduction in the EEOC. Notethe D; and Dy, are less
than zera This is consistent with our intuition that the expected opportunity cost will
decrease as more samples are observed. With this approximation, the DN;, i = 1,..., k,
should not be too large. In summary, we have the following new selection procedure.

OCBA-EOC Allocation Procedure

Step 0. Choose a number of systems per stage to simulate, m, and a (small) total
number of simulation replications per stage, D such that t =D/ mis an
integer, and a total number of replications T to run (assuming T-kng is a

multiple of D, wherek is the total number of designs and ng is number of

simulation replications for each designthat are run in an initial stage).
Step 1. Performngsimulation replications for each of the k designs.

Step 2. Select system b =argmin { X1, X2,..., Xk} asthebest sofar.

Step 3. For i=1,...k, approximate the improvement in EEOC by:
D; °© EEOC; — EEOC.

Step 4. Findtheset S(m)° {i:D; isamong the mlowest vaues}.

Step 5. DN; =t , foral i1 S(m); otherwise, DN; =O0.

Step 6. Update all statistics and repeat Steps 26 until atotal of T replications are
observed.

Since this selection procedure is derived using the framework presented in[4] , we
named it OCBA-EOC to be consistent with the previous allocation procedure
‘Optimal Computing Budget Allocation (OCBA)'. The original OCBA is P{CS}
oriented, whereas our new procedure in this paper is focused on reducing E[OC] by
sequentially minimizing the approximation to EEOC, from Section Il above, in a
greedy manner at each iteration To distinguish these two procedures, we denote the
original OCBA by the name OCBA PCS in later sections.

V. Numerical Experiments

A. Summary of procedures

We compared the new OCBA-EOC procedure with five other procedures to
compare their relative effectiveness at identifying the best system. They are
measured with respect to two measures of the quality of a correct selection: (i) the
empirical probability of correct selection, P{CS}iz, and (ii) expected opportunity cost
of a potentialy incorrect selection, HOC]iz, as a function of the tota number of



replications taken during the ssmulation. Both P{CS}iz and HOC]iz are frequentist
measures, and are estimated by averaging over many applications of a procedure to a
given selection problem.

Equal Allocation

This is the simplest way to conduct simulation experiments and has been widely
gpplied. The simulation budget is equally alocated to all designs, so that all designs
are ssimulated equally often. Such a procedure is equivalent to the sole use of ordina
optimization. The ordina optimization can ensure that P{CS}iz converges to 1.0

exponentially fast, even with equal allocation. The performance of equa alocation
will serve as a benchmark for comparison.

Proportional to Variance (PTV) Allocation
The twaostage procedure of Rinott [20] has been widely applied in the smulation

literature. In the first stage, all designs are ssmulated for ny samples. The number of
additional smulation samples for each design in the second stage is proportiona to

the sample variance ( S*) from the first stage of sampling,

DNj = max(0, & S2h% d° - ng), for i = 1, 24 K, - (4)

whereé uis the integer "round-up" function, d is minimum difference worth detecting,
h is a congtant that solves Rinott's integra (see [1], [24]). To get a sequential
procedure, we modify Rinott’s procedure to allocate samples so that the total number
of replications grows in proportion to the sample variance. While we do not claim
that the indifference-zone P{CS}iz guarantee is maintained, this maintains the spirit
of alocating replications proportional to the sample variance.

LL(S)and 0-1(S) Allocation
The LL(S) and 0-1(S) procedures [5] are sequential versions of two-stage

procedures that were developed to improve the expected value of information of
additional samples for the opportunity cost (L stands for linear loss, another name
for opportunity cost) and 01 loss functions (probability of incorrect selection). Both

procedures function well in numerical experiments, although 0-1(S) performs less
well than LL(S) due to an extra asymptotic approximation in its derivation [15].

OCBA-PCS by Chen € al. (2000)
The OCBA-PCS procedure is derived with asymptotic approximations, together

with an approximation of the posterior probability of correct selection. There are
severa variations on the OCBA-PCS that are based upon various approximations.
Numerical testing demonstrates that the following variation of the OCBA-PCS s very
efficient and can dramatically reduce the number of simulation replications.

10
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. &s;/d,; O -
N - §Jij,i,j| {1,2 .. K,andi®jtb, —(5)

[}
Ny &/d;5

~(6)

This dlocation is a function with respect to the difference of sample means and the
variances The variances are approximated by sample variances in practice

QCBA-EQC Procedure.
The OCBA -EOC procedure is introduced in this paper. The details of the
procedure are described in Section V.

In summary, the key structural feature of the OCBA-EOC and LL procedures is
that their greedy optimization steps focus on reducing the probability of particularly
bad errors. That is, they weight each potential error by the amount worse that a
potentialy incorrect selection is worse than the true best. The OCBA-PCSand 0-1
procedures focus on reducing errors, but equally weight all potential errors, rather
than treating potentially large errors differently than small errors. The PTV and
Equal allocations are easy to describe and to implement, but do not appear to have any
easy-to-describe weighting scheme for the relative size of errors.

B. Numerical Results
In order to compare the performance of the six proceduresin previous subsection,

we tested them empirically for severa typical selection problems. In all of the
following figures, T representsthe total computing budget. For all experimentsin this
paper, m=1. A summary is presented after presenting the results of each example.

= Examplel: Monotore means and constant variances

The first example assumed that there are 10 systems, and that the alternatives have
N(i , &) distribution, for systemi = 1, 2, ..., 10. We implemented no = 10 first-stage
replications per system, and D = 10 replications per stage until a total of T = 5000
replications are run per application of each procedure. Estimates of P{CS}iz and
E[OCliz are based on 100,000 applications of each procedure to the problem.

The LL, OCBA-EOC, and OCBA-PCS procedures each do best for both the
P{CS}iz and the E[OC]iz criteriaa. The Equal allocation is relatively much less
effective.

11
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Figure 1a. Performance comparison of P{CS}iz in Example 1
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Table 1a. Computation costs in order to attain P{CS}iz =99% for Example 1
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Figure 1b Performance comparison of E[OC]iz in Example 1
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Equal PTV OCBA-PCS| OCBA-EOC| LL 01

T 3420 2500 990 930 910 1180

Table 1b. Computation costs in order to attain E[OC]iz = 0.015for Example 1L

= Example2: Monotone means and increasing variances

The second example is a variant of example 1with increasing variances. This
example assumed that there are 10 systems, and that the alternatives have N(i , i
distribution, for system i = 1, 2, ..., 10. We implemented no = 10 first stage
replications per system, and D = 10 replications per stage until a total of T = 5000
replications are run per application of each procedure. Estimates of P{CS}iz and
E[OCliz are based on 100,000 applications of each procedure to the problem.

The G1 procedure does best for low levels of evidence for correct selection, but
becomes worse as higher probabilities of correct selection are desired. The
OCBA-PCS and OCBA-EOC, with the LL pocedure, are best as more samples are
taken.
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Figure 2a Performance comparison of P{CS}iz in Example 2

Equal

PTV

OCBA-PCS
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LL

0-1

T

>5000

4860
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1920
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4120

Table 2a. Computation costs in order to attain P{CS}iz =99% for Example 2
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Figure 2b Performance comparison of E[OC]iz in Example 2

4600
4780
4960

Equal PTV OCBA-PCS| OCBA-EOC | LL 0-1

T >5000 4310 2300 1920 1900 4210

Table 2b. Computation costs in order to attain E[OC]iz = 0.065 for Example 2.

= Example3: Monotone means and decr easing variances

The third example assumed that there are 10 systems, and that the aternatives
have N(i, (11-1) % distribution, for system i = 1, 2, ..., 10. We implemented no =500
first stage replications per system, and D = 10 replications per stage until atotal of T
= 5000 replications are run. Estimates of P{CS}iz and HOC]Jiz are based on
100,000 applications of each procedure, except LL and 0-1 procedures Since we ran
LL and O-1 under Matlab, 100,000 applications would take long time to run, so we
reduced the number of applications of LL and 0-1 to 5000. The Matlab
implementations run about the same speed for al procedures (OCBA-PCS,
OCBA-EOC, LL(S), 0-1(9), etc.).

Because of the structure of the problem, including a larger variance than for the
previous examples, many more samples are required to achieve a similar level of
evidence for correct selection. PTV performs as well as the better procedures, unlike
in other experiments, apparently due to the special relationship of the means and
variances that are specific to this problem.

14
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Figure 3a Performance comparison of P{CS}iz in Example 3

Equal PTV OCBA-PCS | OCBA-EOC | LL 0-1

T >50000 | 41450 38350 37040 39120 >50000

Table 3a. Computation costs in order to attain P{CS}iz =80% for Example 3
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Figure 3b Performance comparison of E[OC]iz in Example 3
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Equal PTV OCBA-PCS| OCBA-EOC| LL 01

T >50000 | 41520 38310 36840 38330 >50000

Table 3b. Computation costs in order to attain E[OC]iz = 0.22for Example 3

= Example4: Slippage Configuration Problem with constant variances
The dlippage configuration (SC) assumed that there are 10 systems, and that the

aternatives have N(m, 52) distribution, where m, =0and m =1wheni =2,...,10.

We implemented no = 200 first stage replications per system, and p = 10
replications per stage until a total of T = 7000 replications are run per application of
each procedure. Estimates of P{CS}iz and E[OC]iz are based on 100,000
applications of each procedure to the problem.

The OCBA-PCS, OCBA-EOC and LL procdures are again the best for both
figures of merit.
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Figure 4a Performance comparison of P{CS}iz in Example 4

Equal PTV OCBA-PCS | OCBA-EOC | LL 01

T 4450 3710 2890 3020 2970 3720

Table 4a. Computation costs in order to attain P{CS}iz =99% for Example 4
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Figure 4b Performance comparison of E[OC]iz in Example 4

Equal PTV OCBA-PCS| OCBA-EOC | LL 0-1

T 4450 3680 2890 3010 2970 3710

Table 4b. Computation costs in order to attain E[OC]iz = 0.01 for Example 4

= Example5: Inventory Problem.

The fifth example isan (s, S) inventory policy problem introduced by [16], and
that was later analyzed by [19]. When random demand brings the inventory of
system i on hand down to $ units on hand, inventory is reordered so that the total
inventory is §., fori = 1,2,...K. Thisexample assumed that there are 5 systems, and
that the aternative designs are defined by the parameters s = (S, S,...,.S5) =
(20,20,40,40,60) and S = (40,80,60,100,100), respectively. The second system has the
smallest mean, which means the second system has the best policy. We implemented
no = 10 first-stage replications per system, and D = 10 replications per stage until a
total of T = 300 replications are run. Estimates of P{CS}iz and E[OC]iz are based
on 10,000 applications of each procedure to the problem.

For this configuration, procedure G1 performs about as well as proceduresLL,
OCBA-PCS and OCBA-EOC.
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Figure 5a Performance comparison of P{CS}iz in Example 5
Equal PTV OCBA-PCS | OCBA-EOC | LL 01
T 160 120 100 100 100 110

Table 5a. Computation costs in order to attain P{CS}iz =99% for Example 5
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Figure 5a Performance comparison of E[OC]iz in Example 5
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Equal PTV OCBA-PCS| OCBA-EOC| LL 01

T >500 260 190 180 180 190

Table 5b. Computation costs in order to attain E[OC]iz = 0.001 for Example 5.

C. Discussion

In these five examples, the OCBA-PCS, OCBA-EOC and LL procedures
converge efficiently and these three procedures are similar in performance. While the
0-1 and PTV sdlection procedures can perform about as well as those three procedures
in some specific examples, they perform clearly worse in other examples. In the
third example, because the best design has the largest variance, PTV allocates most of
the budget to the best design and it is similar to the alocation pattern of the
OCBA-PCS, OCBA -EOC and LL procedures. The performance of PTV is therefore
closer to the performance of OCBA-PCS, OCBA-EOC and LL in the third eample,
but this is due to the special structure of the specific selection problem The ejual
alocation (which is equivalent to crude ordinal optimization) is the worst in all five
examples. The 0-1 allocation performs less well than the three best procedures, for
several experiments, due to the extra asymptotic approximation in its derivation [5].

V1. Conclusions

Traditional ordinal optimization approaches focus on the aignment probability,
or the probability of correctly selecting the best design. The use of the opportunity
cost to guide a selection procedure’ s sampling allocations has proven to be efficient in
the expected value of information context. The opportunity cost differs from
previous approaches, which tend to focus on the probability of correct selection, in
that it penalizes particularly bad choices more than dlightly incorrect selections.
This is particularly useful when the performance of each alternative is measured in
financial terms (economic value) as opposed to other engineering measures (speed,
etc.). This paper shows that the OCBA approach to sampling allocations can be
adapted to account for opportunity costs in a computationally tractable way, and that
the resulting selection procedure is consistently numerically efficient for each of the
five empirical examples in this paper. This is important because the expected
opportunity cost is often more important than the probability of correct selection when
sampling allocations reflect the economic value of each simulated aternative. Our
OCBA approach was shown to further enhance smulation efficiency over crude
ordinal optimization in this context.
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