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Abstract

Annual influenza outbreaks incur great expenses in both human and monetary terms, and billions of
dollars are being allocated for influenza pandemic preparedness in an attempt to avert even greater potential
losses. Vaccination is a primary weapon for fighting influenza outbreaks. The influenza vaccine supply
chain has characteristics that resemble the Newsvendor problem, but possesses several characteristics that
distinguish it from typical supply chains. Differences include a nonlinear value of sales (caused by the
nonlinear health benefits of vaccination that are due to infection dynamics) and vaccine production yield
issues. We show that production risks, taken currently by the vaccine manufacturer, lead to an insufficient
supply of vaccine. Unfortunately, several supply contracts that coordinate buyer (governmental public
health service) and supplier (vaccine manufacturer) incentives in many other industrial supply chains can
not fully coordinate the influenza vaccine supply chain. We design a variant of the cost sharing contract
and show that it provides incentives to both parties so that the supply chain achieves global optimization
and hence improve the supply of vaccines.
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1 Influenza: Overview, Control and Operational Challenges

Influenza is an acute respiratory illness that spreads rapidly in seasonal epidemics. Globally, annual influenza
outbreaks result in 250,000 to 500,000 deaths. The World Health Organization reports that costs in terms of
health care, lost days of work and education, and social disruption have been estimated to vary between $1
million and $6 million per 100,000 inhabitants yearly in industrialized countries. A moderate, new influenza
pandemic could increase those losses by an order of magnitude (WHO, 2005).

This paper provides background about influenza and vaccination, a key tool for controlling influenza
outbreaks, then highlights some operational challenges for delivering those vaccines. One challenge is the
design of contracts to coordinate the incentives of actors in a supply chain that crosses the boundary between

the public sector (health care service systems) and private sector (vaccine manufacturers).

Some experts suggest the U.S. government should promise to purchase a fixed amount of flu
vaccine—despite the cost and the likelihood that some of the money would end up being wasted.
Canada, for instance, has contracts with vaccine makers to cover most of its population. ...That
takes much of the risk out of the company’s business, but still lets it manufacture additional
doses for the private market...(Wysocki and Lueck, 2006)

I recently met with leaders of the vaccine industry. They assured me that they will work with
the federal government to expand the vaccine industry, so that our country is better prepared for
any pandemic. ... I'm requesting a total of $7.1 billion in emergency funding from the United
States Congress...(George W. Bush, 2005)

We then present a model of a government’s decision of purchase quantities of vaccines, which balances
the public health benefits of vaccination and the cost of procuring and administering those vaccines, and a
manufacturer’s choice of production volume. We characterize the optimal decisions of each in both selfish
and system-oriented play, then assess whether several contracts can align their incentives. Due to special
features of the influenza value chain, wholesale price and pay back contracts are shown to be unable to
fully coordinate decisions. We conclude by demonstrating a variation of a cost sharing contract that can
coordinate incentives, improve public health cost-benefit outcomes, increase manufacturer revenues, and
increase vaccine production volumes. The Appendices in an Online Companion provide mathematical

proofs for the analytical results that are given below.
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1.1 Influenza and Influenza Transmission

Influenza is characterized by fever, chills, cough, sore throat, headache, muscle aches and loss of appetite.
It is most often a mild viral infection transmitted by respiratory secretions through sneezing or coughing.
Complications of influenza include pneumonia due to secondary bacterial infection, which is more common
in children and the elderly (e.g., see http://www.cdc.gov/f1lu, or Janeway et al. 2001).

The various strains of influenza experience slight mutations in their genome through time (antigenic
drift). This allows for annual outbreaks, as previously acquired adaptive immunity may not cover emerging
strains. Every few decades, a highly virulent strain may emerge that causes a global pandemic with high
mortality rates. This may be caused by a larger genomic mutation (antigenic shift).

The three pandemics that occurred in the twentieth century came from strains of avian flu. The “Spanish
flu” (HIN1) of 1918 killed 20—40 million people worldwide (WHO, 2005)), far more than died in World
War 1. Milder pandemics occurred in 1957 (H2N2) and 1968 (H3N2). The H5N1 virus is the most likely

potential culprit for a future pandemic (http://www.who.int/csr/disease/influenza/).

1.2 Vaccination as a Control Tool
Vaccines can reduce the risk of infection to exposed individuals that are susceptible to infection, and can
reduce the probability of transmission from a vaccinated individual that is infected with influenza (Longini
etal., 1978; Smith et al.,|1984; Longini et al., 2000). Vaccines therefore act on the basic reproduction number,
Ry, the mean number of new infections from a single infected in an otherwise susceptible population (Dietz,
1993). Colloquially, if Ry can be reduced below 1, then the dynamics of a large outbreak can be averted.
Let £V be the so-called critical vaccination fraction, the minimum fraction of the population to vaccinate
to reduce the reproduction number to 1 when a single infected is introduced to an otherwise susceptible
population. Appendix Al of the Online Companion provides precise definitions for these terms.

Vaccination is seen as a principal means of preventing influenza. Although vaccination policies may vary

from country to country, particular attention is typically paid to those aged 65 or more, health care workers,
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and those that may have certain risk factors (WHO, 2005). Vaccination can be complemented with antiviral
therapy.

Vaccination is cost effective. Nichol et al. (1994) found that immunization in the elderly saved $117 per
person in medical costs. Weycker et al. (2005) argue for the systematic vaccination of children, not only the

elderly, as a means to obtain a significant population-wide benefit for vaccination.

1.3 Operational Challenges in the Influenza Vaccine Supply Chain

Gerdil (2003) overviews the highly challenging and time-constrained vaccine production and delivery process.
We focus on the predominant method, inactivated virus vaccine production. For the northern hemisphere,
the WHO analyzes global surveillance data and in February announces the selection of three virus strains for
the fall vaccination program. Samples of the strains are provided to manufacturers. High-volume production
of vaccine for each of the three strains then proceeds separately. Production takes place in eleven day old
embryonated eggs, so the number of eggs needed must be anticipated well in advance of the production
cycle. Blending and clinical trials begin in May-June. Filling and packaging occur in July and August.
Governmental certification may be required at various steps for different countries. Shipping occurs in
September for vaccination in October-November. Immunity is conferred two weeks after vaccination. The
southern hemisphere uses a separate 6-month cycle. Within two 6-month production cycles, almost 250
million doses are delivered to over 100 countries per year.

There are several key operational challenges that are presented by the influenza vaccine value chain.

A challenge at the start of the value chain is antigenic drift, which requires that influenza vaccines be
reformulated each year. Influenza vaccines are one-time Newsvendor products, as opposed to all other
vaccines, which closely resemble (perishable) EOQ-type products. Not only are production volumes hard to
predict, but the selection of the target strains is a challenge. [Wu et al. (2005) develop an optimization model
of antigenic changes. Their results suggest that the current selection policy is reasonably effective. They

also identify heuristic policies that may improve the selection process.
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Another challenge occurs toward the end of the value chain, after vaccines are produced. That involves
the allocation of vaccines to various subpopulations, and the logistics of transhipment to insure appropriate
delivery. Hill and Longini (2003) describe a mathematical model to optimally allocate vaccines to several
subpopulations with potentially heterogeneously mixing individuals. Weycker et al. (2005) use a different,
stochastic simulation model to illustrate the benefits of vaccinating certain subpopulations (children). Those
articles do not discuss the logistics of delivery. [Yadav and Williams| (2005) propose an information clear-
inghouse for vaccine supply and demand to provide a market overview and to help to eliminate the gaming
of orders and price gouging. They also propose the use of demand forecasting tools, and regional vaccine
redistribution pools to shift supplies from areas with surpluses to areas experiencing shortages.

This paper is concerned with a challenge in the middle of the value chain: the design of contracts that
align manufacturer choices for production volume and the need for profitability, and governmental choices
that balance the costs and public health benefits of vaccination programs. Special characteristics of the
influenza vaccine supply chain that differentiate it from many other supply chains include a nonlinear value
of a sale (the value of averting an infection by vaccination depends upon nonlinear infection dynamics), and
a dependence of production yields on the virus strains taht are selected for the vaccine.

Current production technology for inactivated virus vaccines, market forces, and business practices also
combine to limit the ability to stockpile vaccines, limit production capacity, and slow the ability to respond to
outbreaks. Governmental and industry partnerships may help to improve responsiveness (U.S. GAO, 2001
Pien, 2004; Bush, 2005; Wysocki and Lueck, 2006). The ideal way to structure those partnerships is an open

question. This paper addresses one dimension of that multi-faceted question.

1.4 Relation to Operations Management Literature and Overview of Paper
This work relates to the operations management literature in three ways. First, this paper considers the
random production yield of influenza vaccine production, a Newsvendor setting. Silver (1976) considers

random production yields in an EOQ setting, and shows that the optimal lot size is a slight modification of
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usual EOQ. Yano and Lee (1995) review approaches to lot sizing in the presence of five different types of
yield randomness. We assume perfect correlation, which is what they call stochastically proportional yield,
and which has been studied by Shih/ (1980) and Henig and Gerchak (1990).

Second, this paper relates to the supply contract literature (Lariviere, |1999;|Cachon, 2003). One stream
in that literature focuses on optimizing the terms of a contract so as to improve supply chain coordination.
Examples include buy-back contracts (Pasternackl, 1985), revenue sharing contracts (Cachon and Lariviere,
2005) and option contracts (Barnes-Schuster et al., 2002). The objective is to characterize contracts that
allow each party to optimize its own profit but lead to a globally optimized supply chain.

The model that we propose below is similar to the Newsvendor situation with an exchange of demand
uncertainty by production uncertainty. Since the buyback contract coordinates the supply chain for the
Newsvendor (Pasternackl, [1985), one could expect that the corresponding contract with uncertain yield (i.e.,
a payback contract) should be able to achieve the same. Unfortunately, we will show that this is not the case
for our model. On the other hand, we show that a cost sharing contract, where the manufacturer effort is taken
into account, can coordinate a supply chain in the presence of yield uncertainty. That is, while contracts like
payback, which only depend on the production output, do not align the manufacturer’s incentive, contracts
that take into account the production effort are able to do so by shifting enough production risk from the
supplier to the buyer.

The third way in which our work relates to the operations management literature is the increasing interest
in modeling the intersection of operations management and epidemic or disease modeling. In addition to
articles that are cited below, Kaplan et al. (2002) assesses operational decisions for vaccination policy, with
capacity constraints, to respond to smallpox bioterrorism attacks. Su and Zenios (2004) examine the role
of queueing and patient choice in kidney allocation. Zaric et al.l (2006) merge an inventory model with an
anthrax outbreak model to assess inventory management decisions for bio-terror preparedness. See also

Brandeau et al. (2004) and references therein. As far as we are aware of, the current paper appears to be the
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first to link supply contract design with epidemic models.

Section 2 presents a model to assess contractual mechanisms that align manufacturer risks and incentives
with governmental health care policy objectives for influenza vaccination. Section|3/and Section 4 analyze
the model. A variant of the cost sharing contract, which we show can align incentives for public health
benefits and production costs, also increases production volumes. Increased production volumes for annual
vaccination are consistent with the recommendations of the Pandemic Influenza Plan of the U.S. Dept. of
Health and Human Services (2005). The contract achieves this improvement by carefully balancing payment
for output with some payment for effort. Section S/discusses implications and limitations of the analysis.

2 Joint Epidemic and Supply Chain Model

This section links two distinct streams of literature. The epidemic literature provides epidemic models and
cost benefit analysis for interventions such as vaccination (Murray, [1993; Hill and Longini, 2003), but does
not address logistical and manufacturing concerns. The supply chain literature addresses logistical and
manufacturing concerns in general, but does not address the special characteristics of the influenza vaccine
supply chain that are highlighted above.

We use simplified epidemic and supply chain models to focus on contractual issues between a single
government and a single manufacturer. The single government is intended to represent centralized aggregate
planning decisions for vaccination policy. The government initially announces a fraction f of a population
of N individuals to vaccinate. Given the demand by the government, the manufacturer then decides how
much to produce. Production volume decisions are indexed by the number of eggs, ng, a critical factor
in influenza vaccine production. Production costs are ¢ per egg. The actual amount produced, ngU, is a
random variable that is indexed by a yield, U. The [U.S. GAO (2081) reports that the strain can strongly
influence the production yield. In this paper, we assume that the yield U has a continuous probability density
function g;7(u) with mean . and variance o2, independent of nx. This assumption means that the yield is

affected by the specific strain of the virus, and may vary from year to year, more so than from one statistically
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independent batch to the next within a given production campaign.

The manufacturer then sells whatever vaccine is produced, up to the amount initially requested by the
government (a maximum of NV fd doses, where IV is the population size, and d is the number of doses per
individual). Unmet demand is lost, and excess vaccines are discarded (due to antigenic drift or shift).

When acting separately, the government seeks to minimize the variable cost of procuring, p,., and admin-
istering, p,, each dose, plus the total social cost due to infection, bT'(f), where T'(f) is the total expected
number of infected individuals by the end of the influenza season, and b is the average direct and indirect
cost of an influenza infection (Weycker et al., 2005, provide estimates of such costs). Define f to be the
maximum fraction of the population for which the net benefit of administering more vaccine is positive, and

define f similarly with respect to both vaccine procurement and administration costs,

f = sup{f:bT'(f) +paNd < 0, for f such that T"(f) exists} (1)

sup{f : bT'(f) + (pa + pr)Nd < 0, for f such that T"(f) exists}. (2)

k|
Il

The epidemic model determines the number of individuals, 7(f), that are infected by the end of the
influenza season. While vaccine effects and health outcomes may vary by subpopulation, and vaccination
programs can take advantage of that fact (Weycker et al., 2005), we simplify the model in order to focus
on contract issues for production volume, rather than including details about optimal allocation of a given
volume. We use a deterministic compartmental model of N homogeneous and randomly mixing individuals
that start out Susceptible to infection, but may also be infected and Infectious, or Removed upon recovery
from infection, a standard SIR compartmental model that is a reasonable model for the natural history of
infection of influenza (Murray, 1993). The fraction of susceptible, infectious and removed individuals (S(t),
I(t), and R(t), respectively) in the population varies as a function of time ¢ according to a deterministic
differential equation (see Appendix Al of the Online Companion).

We assume that a fraction f of the population is vaccinated, and that a fraction ¢ of those vaccinated

are are immune to infection (so R(t) = f¢ for t < 0). At the start of the influenza season, at time ¢ = 0,

p.-7



Table 1: Summary of Notation.
Supply Chain
ng  Number of eggs input into vaccine production by the manufacturer
U  Random variable for the yield per egg, with pdf of gy (u), mean yu, and variance o
d Doses of vaccine needed per person
c Unit cost of production for manufacturer, per egg input
pr  Revenue to the manufacturer from government, per dose of vaccine
po  Cost per dose for government to administer vaccine
b Average total social cost per infected individual
Z  Number of doses sold from manufacturer to government
W Number of doses administered by government to susceptible population
Infection Transmission
N Total number of people in the population
Ry  Basic reproduction number, or expected number of secondary infections caused by one
infected in an otherwise susceptible, unvaccinated population

2

f fraction of the population to vaccinate announced by government to manufacturer

T(f) Total expected number infected during the infection season, a function of the fraction vaccinated
X The fraction of susceptibles that are initially infected due to exogenous exposure

I(0) The initial fraction of infected people introduced to the population

S(0) The initial fraction of susceptible people in the population
0] Vaccine effects on transmission, including susceptibility and infectiousness effects
) Linear approximation to number of direct and indirect infections averted by a vaccination
f°  The critical vaccination fraction (fraction of population to vaccinate to halt outbreak)
f The maximum fraction for which (free) vaccine can be cost-effectively administered
f The maximum fraction for which vaccine can be cost-effectively procured and administered
k Relates vaccination fractions and vaccine production inputs, k = %;d

a fraction y of the remaining susceptible population that becomes infected due to exposure from exogenous
sources, so that S(0) = (1 — f¢)(1 — x) and I(0) = (1 — f¢)x. The total number that become infected
during the influenza season is T'(f) = Np, where the so-called attack rate p (see the Online Companion or
Longini et al.|1978) satisfies

p=5(0)(1+ fq((g)) — ¢~ Tlory, 3)

The critical vaccination fraction is f* = (Ry — 1)/(Ro¢) when Ry > 1 (Hill and Longini, 2003).

Rather than deriving results via such an implicit characterization from the epidemic model, we derive
results for a nonincreasing 7'(f) > 0 with specific general characteristics. When the values of all of
the epidemic and vaccine parameters are known, Appendix (C| describes why it is reasonable to consider
two functional forms: a piecewise linear 7'(f) when x is close to 0, or a strictly convex 7'(f) when x is
sufficiently large. This removes the details of an implicit solution for an epidemic model from the supply

chain analysis. Section 3 handles the piecewise linear case. Section 4/handles the convex case.
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This generic approach to modeling 7°(f) is also important because it allows for an analysis when the
values of the epidemic and vaccine parameters are not known. In practice, the basic reproduction number
Ry, the initial fraction of susceptibles that become infected due to exogenous exposure X, and the vaccine
efficacy ¢ are unknown at the time that the order quantities are decided. It is hard to predict each of these
for pandemic influenza, due to the newness and evolutive nature of the strains. Even for annual influenza
strains, such as H3N2, a new “cluster” of drift variants tends to appear every 3-5 years (Plotkin et al., 2002;
Smith et al., 2004). A prior distribution can be used to describe these types of uncertainty about the epidemic
and vaccine parameters parameters, based upon past experience with strains that are similar to those that are
selected for the current year’s formulation. When parameters are uncertain, let 7'( f) = E[T'(f; Ro, x, ¢)] be
the total expected number of infected individuals, averaged over all uncertainty in those parameters, where
T(f; Ro, x, ¢) makes the parameter values for (3) explicit. For example, when x is close to 0, T'( f; Ry, x, ¢)
will be shown to approximately a piecewise linear function that is, and an expectation of convex functions
makes 7'(f) = E[T(f; Ro, X, ¢)] a convex function. Results for a piecewise linear and for a strictly convex
T'(f), then, are also useful when parameters are uncertain.

Before deriving those results, we first complete the statement of the supply chain optimization problems.

2.1 Game setting

The epidemic and supply chain models above define a sequential game. The government announces a fraction
f of the population for which it will purchase vaccines. The manufacturer then decides on a production
quantity, indexed by n g, in order to maximize expected profits (minimize expected costs), subject to potential

yield losses and market capacity constraints. The manufacturer problem is:

min MF =E[eng — p,Z] (net manufacturer costs)
ng

s.t. Z =min{ngU, fNd} (doses sold < yield and demand) “

ng >0 (nonnegative production volume).

So that the optimal production level is not zero, ny, > 0, we assume:
Assumption 1 The expected revenue exceeds the cost per egg, prit > ¢, so vaccines can be profitable.

p.-9



Given that assumption, we characterize the optimal production quantity.

Proposition 1 For any random egg yield, U, with pdf gu(u), and given the order quantity D = fNd by

government, the optimal production level ny, for the manufacturer is determined by

/On}i; ugy (u)du = i. 5)

Proofs of all claims in the main text are provided in Appendix Bl of the Online Companion.

A useful corollary follows directly.

Corollary 1.1 Ifc, p,, gu(u), N and d are held constant, then the relationship between the fraction of people
to be vaccinated, f, and optimum production level, Ny, is linear. That is, there is a fixed constant, kG, such

that an*E = fNd.

The government problem is to select a fraction f that indexes demand, knowing that the manufacturer
will behave optimally, as in (5), and may deliver less, in expectation, than what is ordered due to yield losses.
The government may order some excess (even f > f), in order to account for potential yield losses. In this
base model, we assume that the government purchases up to the amount it announced, but will administer

only those doses that have a nonnegative cost-health benefit.

m}n GF =E [ bT(de) + p W +p.Z ] (net government costs)

s.t. Z =min{ngU, fNd} (doses bought < yield and demand)
W = min{ngU, fNd, fN d} (doses given < doses bought, cost effective level)
INd (6)
" ugy (u)du = ° (manufacturer acts optimally)
0 Dr
0<f<1 (fraction of population)
ng >0 (nonnegative production volume)

Such a two-actor game has a Nash equilibrium (Nash, 1951), which we will identify below.

2.2 System setting
The system setting assesses whether the manufacturer and government can collaborate via procurement

contracts to reduce the sum of their expected financial and health costs, to a level that is below the sum of
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those costs if each player acts individually as in Section2.1. System costs do not include monetary transfers
from government to manufacturer. Formally, the system problem is

min SF =E [bT(%) + pW + an} (total system costs)

f7nE
st. W =min{ngU, fNd, fNd} (doses given < yield, demand, cost effective level) 7
0<f<1 (fraction of population)
ng >0 (nonnegative production volume).

This formulation does not explicitly link f and ng together, since we seek system optimal behavior rather

than local profit-maximizing behavior.

3 Piecewise Linear Number of Infected

Figured:plots the attack rate, p, which is directly proportional to the total number infected, 7'( f), as a function
of the initial fraction of susceptibles that become infected due to exogenous exposure, X, and reasonable
values of Ry for influenza transmission (Gani et al., 2005). If there are few that are initially infected due to
exogenous exposure (small y, or small 7(0)/5(0)), then Appendix C in the Online Companion justifies the
following piecewise linear approximation for 7°( f).

T(f):{M—wa, 0< f<f )

0, frsrsn,
where 1) is interpreted here as the marginal number of infections averted per additional vaccination.
We seek structural results to compare the values of the game equilibrium and system optimum. With this
approximation for 7'( f), the maximum cost-effective number of individuals to vaccinate equals the critical

vaccination fraction, f = f9. The government’s objective function from Problem (6) is
w
GF =E bmax{M—wj,O}—i—paW%—prZ . (©)]

The manufacturer problem is the same.

The system’s objective function from Problem (7) is
w
SF:E[bmaX{M—wF,0}+paW+an]. (10)
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Figure 1: Attack rate (p) as a function of the fraction vaccinated (f), for different values of the fraction of
susceptibles that are initially infected () and the basic reproduction number (Rjy).

3.1 Optimal solutions for game and system settings

This section describes the equilibria of the game setting and the optimal system solution for the manufacturer
and government. It assumes that the parameters of the model in Section 2 are given. A series of assumptions
and results are developed to show that the optional system solution requires a higher vaccine production level
than in the game setting. Section |3.2/uses those results to design contracts that create a new game, to get the
individual actors to behave in a system optimal way.

If the following assumption were not valid, then even free vaccines would not be cost effective.

Assumption 2 The expected health benefit of vaccination exceeds the administration cost, b — p,d > 0.

Proposition 2 Let f5, n% be optima for the system setting with objective function in ({0). If Assumption 2

holds, then (1) all values of f° that are between f° and 1 are optimal; and (2) n% satisfies

fONd
5

ng du = _ 11
/0 u.gU(u) U b (11)

The next assumption implies that vaccination is cost effective from the government’s point of view.

Assumption 3 The expected health benefit of vaccination exceeds the cost of administering and procuring

the doses, b — (p, + pr)d > 0.
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Observe that if Assumption 3/does not hold, then vaccines at market costs are not cost effective. To see

this, set f = min{f, fO}. Then forall 0 < f < 1,

fNd

GF(fng) = b /0 M = TR gy (w)du + H(M — N ) /fN gu (u)du
ing e
+u s | " ugp(udu+ (u+p)(ENG) [, vl
1 & -
— Mt (ot p)d = 08) [ gy (u)duct PN ((a+p)d = wt) [ quwdn
0 )

If b — (pg + pr)d < 0, then GF(f,ng) > bM forall f,ng > 0,and f¢ = n& = 0 would be optimal.

Given Assumption 3/and Proposition .2, we can compare the values of (5) and (1) to obtain Corollary 2.1l

Corollary 2.1 Ler f5, n% be optimal values of the system problem and define k° = %. Let fC, n%
E

denote optimal values of the game setting and define kC = %. If Assumption 3 holds, then kS < kC.
E

_ fNd
=

The concept k that relates vaccination fractions to vaccine production volumes is useful below.
Proposition 2. characterized the optimal vaccine fraction and production level for the system setting. We

now assess optimal behavior in the game setting. (5) indicates that it suffices to characterize the optimal

vaccine fraction, which then determines the optimal production level in the game setting.

fENd

Proposition 3 Ler f©, n% be optimal solutions for the game setting, and set k& = —— If Assumption 3
E
holds, then f& > fO. Furthermore, f¢ = 9 if and only if
wb kG 00
(== +Pa +pq~)/ ugy (u)du + prk© /G gu(u)du > 0. (12)
0 k

Although it may seem, at first glance, that Condition (12) depends on f© through k€, this is not true. Given
the problem data, the value of k£ is determined by (5), independently of the values of f& and ng The
condition in this claim is therefore verifiable by having the initial data of the problem.

Intuitively, the inequality in the second part of Proposition|3, Condition (12), shows that if b is sufficiently
higher than the other costs, then the game pushes the government to order a higher amount of vaccine than

the amount specified by the critical vaccine fraction, f°.
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Theorem 4 uses our results on the optimal production level in the system setting, Proposition 2, and the
game setting, Proposition 3, to prove the main result of this section: optimal production volumes are higher

in the system setting than in the game setting.
Theorem 4 Given Assumption3 and the setup above, n% > n%

The intuition behind Theorem 4 is that the manufacturer bears all the risk of uncertain production yields

in the game setting and hence is not willing to produce enough.

3.2 Coordinating Contracts

The objective of this section is to design contracts that will align governmental and manufacturer incentives.
There are a variety of contracts in use, include wholesale pricing (CDC, 2005). Recent support by the [U.S.
Dept. of Health and Human Services| (2004) to a major manufacturer for the development of a stable egg
supply resembles a payment that is proportional to effort, a characteristic that is shared with the cost sharing
contract below. We show that wholesale or pay back contracts can not coordinate this supply chain. We then

demonstrate a cost sharing contract that is able to do so.

3.2.1 Wholesale price contracts
In wholesale price contract, the supplier and government negotiate a price p,. Unfortunately, the system

optimum can not be fully achieved just by adjusting the value of p,.

Proposition 5 There does not exist a wholesale price contract which satisfies the condition in Assumption 3

and coordinates the supply chain.

3.2.2 Pay back contracts
In a pay back contract, the government agrees to buy any excess production, beyond the desired volume, for
a discounted price p. (with 0 < p. < p;,-) from the manufacturer. This shifts some risk of excess production

from the manufacturer to the government, and would typically increase production.
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We show that the pay back contract does not provide sufficient incentive to coordinate the influenza supply
chain, unlike typical supply chains, for any reasonable value of p.. The combination of yield uncertainty and
maximal purchase quantities will be shown to prevent full coordination. Assumption 4/defines a reasonable

D as one that precludes the manufacturer from producing an infinite volume for an infinite profit.
Assumption 4 The average revenue per egg at the discounted price is less than its cost, p.p < C.

The pay back contract increases the manufacturer’s profit by adding the revenue associated with ngU —

min{ngU, f Nd} doses of excess production. This changes the manufacturer problem from Problem (4) to
n%n MF = E[an —prZ —pe(npU — Z)
s.t. Z =min{ngU, fNd}
ng > 0.

By adapting the argument of Proposition 1, the optimal production level n7, can be shown to satisfy

fNd

/nE ugy (u)du = € Pt (13)
0 Pr — Pc

The effect of this contract on the government problem in Problem (6) is to change the objective to
w
GF=E [bmax{M — 0,0+ paW o+ prZ + pe(npU — Z)] ,

and to change the “manufacturer acts optimally” constraint, which determines the optimal production input

quantity ng as a function of f, from (5) to (13).

Denote the optimal values of this pay back contract problem by fV, ng . Set kN = %.
E
Proposition 6 If Assumptions , 2 and 4 hold, then there does not exist a pay back contract which could

coordinate this supply chain. In fact, under any pay back contract, the resulting production level is less than

the optimal system production level, ng < n%

Proposition 6/ suggests that compensating the manufacturer for having excess inventory is not enough to
achieve global optimization. Indeed, a pay back contract does not compensate the manufacturer when the
production volume, ng, is high while the yield, ngU is low. The cost sharing agreement described below is

designed to address this issue.
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3.2.3 Cost sharing contracts
In a cost sharing contract, the government pays proportional to the production volume np at a rate of p.
per each egg. Such an agreement decreases the manufacturer’s risk of excess production, and provides
an incentive to increase production. Here, we describe a contract that increases production to the system
optimum, f°,n3,.

With the cost sharing contract, the manufacturer problem is:

min MF = E[(c — De)NE —pTZ]
ng
s.t. Z =min{ngU, fNd}

ng > 0.

The optimality condition for ng given f follows immediately, as for the original problem,

/H*E ugy (u)du = €= Pe (14)
0 br

Cost sharing increases the governments costs, changing its objective function to:
w
GF =E [bmaX{M—¢j,0}+paW+prZ+penE], (15)

and resulting in the following optimization problem:

min GF =E [bmax{M — W 0} + paWV + o Z +penE}

s.t.  Z =min{ngU, fNd}
W = min{ngU, fNd, f°'Nd}

INd
n C —
" ugy (u)du = Pe
0 br
0<f<1
nge 2 0.
Denote the optimal solutions of this problem by f¢,n%, and set k¢ = f%gd.
For any given p,, choose p. > 0 so that % = %C_pa. Such a p, exists since p, < % — pa. If pe is

chosen this way, then k¢ = k5. Further, if p, satisfies Assumption 3, such a p, not only moves k¢ to kS, but

it aligns the vaccination fractions and production volumes, as in Theorem (7.
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, then the optimal values (f¢,n%;)

Pa

Theorem 7 If Assumption 3 holds and p. is chosen so that % = <

for Problem (15) equal (f°, n%), so this cost sharing contract will coordinate the supply chain.

The cost sharing contract can coordinate incentives, unlike the pay back contract, because the manufac-
turer’s risk of both excess and insufficient yield can be handled by the contract’s balance between paying for
outputs (via p,) and for effort (via pe).

4 Strictly Convex Number of Infected

This section presumes that 7'(f) is strictly convex. While 7'(f) may not be convex for all choices of the
parameters of the infection model, it is strictly convex for sufficiently large x and values of Ry that are
representative of influenza (see Appendix |C). This corresponds to a larger initial exposure to members of the
population, such as may occur in an initial pandemic wave.

Below we explore the game equilibrium and the optimal system solution. We then show that a variation

of the cost sharing contract can coordinate the supply chain.

4.1 Optimal solutions for game and system settings

The solution to the manufacturer problem in Problem (4) with convex 7'(f) remains the same as above, as
the manufacturer’s objective function does not depend upon 7'(f). The analysis of the government problem
in Problem (6) and the system problem in Problem (7) is somewhat more complicated when T'( f) is strictly
convex, but the general ideas are similar to those in the linear model.

For the system setting, the following analog of Proposition 22 holds.

Proposition 8 If T'(f) is strictly convex, f is the solution of (), and the optimum values of the system

problem in Problem (7) are denoted by f*, n% then (a) f° can be picked to be any value between f and 1;
FNd
S rb S

and (b) n}% is the solution of the following equation: / e [ T M) + pa} ugy (u)du + ¢ = 0.

7’(
o LNd “Nd

The following analog of Proposition 3/for convex T'(f) characterizes the set of the game equilibria.
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Proposition 9 Let fG denote the game solution, let k& = f 4 and set i = f N d. IfT(f) is strictly

convex, then (a)/ ugy (u)du = p£ and (b) f¢ < f ifand only if

T

kG 00
b ., ngu a
> 0.
/0 [NdT( 7 ) —i—pa}ugy(u)du—i— c+prk /kG gu(u)du >0 (16)

The inequality in Condition (16) shows that if b is not sufficiently higher than the other costs, such that
the marginal health benefit obtained by vaccination do not cover the vaccine costs, then the game pushes the
government to order less vaccine than is required to vaccinate a fraction f of the population.

Theorem 190, the main result of this section, shows that, as in the linear case, the system optimal production

level exceeds that of the game equilibrium.

Theorem 10 Let n% and ng denote the production level under the system optimum and game equilibrium,

respectively. For all nonincreasing strictly convex T(f), we have n% > n%

The theorem says that the production level that is set by the manufacturer, n g, is below the amount that

is optimal for the system. Hence, there is an opportunity for an effective contract to align incentives.

4.2 Coordinating Contracts
This section constructs a contract which can coordinate this supply chain. Unfortunately, the cost sharing
contract of Section 3.2.3, defined by the pair p,, p., does not coordinate the supply chain. Observe that in the
piecewise linear case, the government orders enough, i.e., fG > fo, even without a coordinating contract.
This may not be true for the convex case, where without the contract, f& maybe smaller than f < £, as
shown by Proposition |8 and Proposition 9.

Thus, a coordinating contract should provide an incentive for the government to vaccinate a higher fraction
of the population, and provide a manufacturer with an incentive to produce enough. Section 4.2.1/ shows
that this goal can be achieved using a whole-unit discount for the vaccine purchased by the government. In

return, the government will pay the manufacturer a portion of the production cost. The relation between
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the whole-unit discount and the cost sharing portion is such that the more people the government plans to

vaccinate, the greater the discount they get and the higher its participation in the production cost.

4.2.1 Whole-unit discount/cost sharing contract
Consider a contract where the vaccine price depends on the fraction of the population the government plans
to vaccinate, that is, the government pays the manufacturer p,-(f) per dose. The cost sharing component of
the contract is such that the government pays proportional to the production level, ng. The per unit price
paid by the government, p.(f) depends on f.

This section first constructs a specific class of pricing policies. It then shows how the original game is
modified by the pricing policy, and that the given pricing policies indeed align incentives.

The following two assumptions constrain the set of pricing policies of interest.
Assumption 5 The price p,(f) > 0 has the following characteristics:

1. There is a whole-unit discount, i.e., p.(f) < 0.

2. The total vaccine cost (p;(f)fNd) is nondecreasing in f,

(@) (pr(f)fNA) = p.(f)fNd+p.(f)Nd > 0forall0 < f < f.

(b) p(f)FNd+p.(f)Nd = 0.
3. The total cost to the government, excluding the cost sharing component, is convex in f,
(a) bT"(f) + P} (f)fNd + 2p,(f)Nd = 0 forall 0 < f < f.
4. There are no further volume discounts beyond a certain threshold, p,(f) = p,(f) forall f < f < 1.

If the derivative p/.(f) does not exist at f = f, then use the left derivative in Assumption 5.
The first two characteristics in Assumption 5 allow for many pricing policies. The third characteristic

restricts pricing policies to ones for which the total cost of vaccine procurement and social costs are convex.
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k‘S
Assumption 6 Given p,(f), let p.(f) > 0 satisfy % = / ugy (w)du for all f € [0, 1].
pr(f) 0

_ de
g

In Assumption 6, k5 = is the same as before, where f,n? ‘2> are the solutions for the system setting.
Before proceeding, we show first that the set of the conditions in Assumptions|5and 6/results in a feasible

set. We give an example that satisfies the conditions in Assumption |5, then modify it to obtain functions that

satisfy all of the conditions in both assumptions. Consider the following pricing strategy,

k——— [ =T +T(H)f +T0)], 0<f<f
) g L TN+ T DI +T0)] f<7f .

pr(f), f<f<i

Claim 11 If0 < k < 1, then the pricing strategy introduced in (17) gives a nonnegative price for any f and

satisfies all the conditions in Assumption 5.

Now we show that for some x, (17) satisfies Assumption 6. If we set p.(f) = ¢ — p,(f) foks ugy (u)du,
then it suffices to show that p.(f) > 0 for all f. Since p,(f) is nonincreasing in f, we only need to show

that p,.(0) foks ugy (u)du < c. For any p,(f) that satisfies (17),

pr(0) = Tim pr(f) = lim ko [ T(f) + T'(F)f + T(0)]

HJ =y I T(f) - 7(0)
e[ 7) - iy (LT

b
ZﬁﬁﬂT()— '(0)]

Observe that foks ugy (u)du < p. We therefore satisfy Assumption 6/if k-2 [ 7'(f) — T"(0)] p < c. This

justifies Claim 12: pricing strategies exist that satisfy both assumptions.

Claim 12 If0 < k < min{1, 7]} then the pricing strategy p,(f) in (17) satisfies Assumptions'5

and 6.

All the ingredients are in place to build a coordinating contract. The key idea is to keep the relationship

between the optimal production level and order quantity linear. Assumption 6/accomplishes this. To see this,

p.- 20



observe that this contract changes the manufacturer objective, for a given f, to:

[Nd o
MF(n) = (= pel g = (s | ™ wgu(wdu = po(OFNG [ qu(w)du,
0 INd
nE
By taking the derivatives, we have:
fNd
OMF(n ng
0 e =) [ g
ng 0
O?’MF (ng) fNd fNd fNd
—_— pu— r > O~
52 e e
e
Therefore, this M F' is convex in ng, and the optimal ng satisfies fonE ugy (u)du = C;f’ (FJE{ ), Together

fNd

e S . .
with Assumption 6, this implies that [, 7 ugy(u)du = fok ugy (u)du. So for any given f, the optimal

production level for the manufacturer is linear in f, with

N Nd
Therefore this contract changes the government objective to
min GF = E[T(33) +paW +p:(£)Z + pe(f)nz ], (19)

= k°. This restatement of the game setting for the

and changes the manufacturing constraint to ];—]\I;d

whole-unit discout/cost sharing contract permits the statement of the main result of this section.

Theorem 13 For any p.(f), p,(f) that satisfy Assumptions 5 and |6, the optimal values of Problem (19),

denoted by (f¢,n$,), are equal to (f,n%,). That is, this cost sharing contract coordinates the supply chain.

4.2.2 Coordinating Contract: Numerical Application
This section uses the idea behind Theorem (13, together with estimates of parameters from the influenza
literature, in order to develop a contract that can coordinate the supply chain empirically, even though the
actual 7'(f) may slightly deviate from strict convexity.

Longini et al. (2004) estimate Ry = 1.68 and Weycker et al. (2005) argue that ¢ = 0.90 is a reasonable

value for vaccine effects, so we chose ¢ to vary between [0.85,0.95] and Ry between [1.5,2]. Weycker
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et al. (2005) estimate the direct costs (not indirect) of each infected individual with b = $95 on average over
the different groups. In our experiments, b takes values between 70 and 120. The vaccine price is set to
pr = $12 (CDC, 2005). For vaccine administration costs, we tested each of p, = $20, approximately the
value inPisanol (2006) for Medicare reimbursement; p, = $40, the value that Weniger et al. (1998) estimated
for pediatric vaccines, based on the cost of a doctor visit; and p, = $60, which accounts for inflation and
provides a sensitivity analysis. We used d = 1 dose of vaccine, the usual value, per adult vaccinated. We are
not aware of published estimates of the variance of vaccine production yields, although it is clear that variable
vaccine yields are significant enough to cause noticeable fluctuations in the quantity of vaccine delivered
(U.S. GAO, 2661). We assumed that U has a gamma distribution with mean . = 1 (Palese, 2006) and tested
different values for the variance, o = 0.025,0.05,0.06, 0.1, 0.2. We assumed a population of N = 3 x 108
individuals and a production cost of ¢ = $6 (not necessarily the actual value).

We implemented the whole-unit discount/cost sharing contract in Section 4.2.1/ for cases of T'( f) that
are based upon the above parameters and using x = 0.01. For example, Figure 2 depicts the contract prices,
government costs, and manufacturer profit when b = $95, p, = $60, 02 = 0.2 and x = 0.145. While T'(f)
in this case is not precisely convex, a strict application of the prices implied by (17) and Assumption|6 leads to
a whole-unit discount price, p,(f) and cost sharing price p.(f) that coordinates incentives. Figure 2(a) shows
that the wholesale price obtained by (17) is not monotone in this case. We can show that a modification of the
wholesale price in which the increasing part of the price is replaces by a constant value equal to the maximum
wholesale price, as in Figure 2(b), is still coordinating. This makes our proposed contract coordinating even
for a larger class of attack rates in which T'(f) is first concave and after a point becomes convex. The
appendix shows that 7°(f) has this behavior for almost all of the parameters which are valid for influenza.
In this case, our assumption of having a convex T'(f) reduces to the assumption 67" (0) + p,Nd < 0.

In this example, the manufacturer’s effort is increased from 194M eggs to 213M eggs (~ 10% increase),

and its profit increases from $8.74 x 108 to $9.33 x 108 (by $59M, or 6.75%). The government’s order
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changes from 0.73 to 0.47, and its vaccine and social costs increase from $9.847 x 10° to $1.016 x 10'°

(3.21% increase) and $3.20 x 10? to $2.856 x 10° (10.75% decrease), respectively. The total governmental

outlay decreases from $1.304 x 10'% to $1.301 x 109 (by $30M, or 0.3%).
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(a) Contract prices before modification (left vertical axis has
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Figure 2: Cost sharing/whole-unit discount contract.

Table 2, provides a sensitivity analysis with respect to the model’s parameters. The particular choice

of x in the fourth column of Table 2 insures that both government and manufacturer are better off under

the contract. The following three columns show the increase in the manufacturer cost and decrease in the
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Table 2: Sensitivity analysis for contract outcomes, with iy = 1.68 and ¢ = 0.9

2

b Pa o K manufacturer | gov. vaccine gov. social before contract after contract

profit increase | costincrease | cost decrease Ji ng Ji ng
95 | 20| 0.2 | 0.097 6.91% 5.28% 15.42% 0.87 | 2.32 x 10% | 0.55 | 2.58 x 10°
95 | 60| 0.2 | 0.145 6.75% 3.35% 10.33% | 0.73 [ 1.94 x 10% | 0.47 | 2.13 x 10°
120 | 20 | 0.2 | 0.077 6.51% 4.88% 14.57% 0.95 [ 2.53 x 10% | 0.56 | 2.79 x 10°
120 | 40 | 0.2 | 0.087 5.31% 2.69% 8.82% 0.91 [ 2.42 x 10% | 0.51 | 2.46 x 10°
70 [40] 02 | 0.18 7.42% 4.5% 12.64% | 0.68 | 1.82 x 10° | 0.47 | 2.01 x 10®
95 |20 | 0.1 | 0.091 4.18% 2.74% 10.03% 0.74 [ 2.09 x 10% | 0.55 | 2.21 x 10°
120 | 20 | 0.1 | 0.071 391% 2.52% 9.29% 0.79 | 2.23 x 10% | 0.56 | 2.35 x 10°
120 | 60 | 0.06 | 0.086 4.55% 2.43% 10.16% 0.62 | 1.78 x 10% | 0.48 | 1.93 x 10°
95 | 40 | 0.06 | 0.102 1.5% 1.46% 6.46% 0.63 | 1.83 x 10° | 0.50 | 1.91 x 10°

government social (cost of the infected population) and vaccine costs (procurement, administration, and cost
sharing costs), respectively, when the contract is implemented. Notice that the government vaccine cost
denotes all the vaccine procurement, administration and cost sharing costs (i.e. terms related to p,, pg, Pe)
and the government social costs represents only the social costs of the disease (i.e. the term related to b).
Although the government is better off after the contract in each row of the table, this benefit is primarily

through a reduction in social costs due to increased vaccination expenditures. In our tests, we observed:

* There are always choices for « so that with the contract, (a) the manufacturer’s profit increases, (b) the

government’s social cost decreases, (c) the government’s vaccination cost increases.

* Higher variability in yield leads to greater manufacturer profit and higher government vaccine costs,

but also to lower government social costs

 For a given set of parameters, a larger x increases the manufacturer’s profit and governmental vaccine

costs, but the governmental social costs do not fluctuate that much.

5 Discussion and Model Limitations

This work derived the equilibrium state of an interaction between a government and a manufacturer, with the
realistic feature that a manufacturer bears the risk of uncertain production yields. The model shows that a
rational manufacturer will always underproduce influenza vaccines in that setting, relative to the levels that

provide an optimal system-wide cost-benefit tradeoff.
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When the levels of exogenous introduction of influenza into a population are small, and good estimates for
the infection transmission parameters are available, the piecewise linear approximation for 7°( f) in Section/3
is appropriate. A relatively simple cost sharing contract can coordinate the incentives of the actors to obtain
a system optimal solution.

When the levels of exogenous introduction of influenza into a population are somewhat large, as in a
large-wave pandemic situation, or when the function 7'(f) is estimated by averaging over prior distributions
for unknown parameter values, the analysis of Section 4 is more appropriate. The simple cost sharing
contract must be modified to account for the nonlinear population-level health benefits that are provided
by influenza vaccination programs. It is therefore not surprising that the whole-unit discount/cost sharing
contracts that can align incentives depend on the expected number of infections averted by a given magnitude
of the vaccination program effort.

There are several limitations of this model. Some of the limitations can be handled with existing methods.
Other limitations could lead to interesting future work, but do not limit the value of insights above regarding
contract design for governmental/industry collaboration for influenza outbreak preparedness.

One, an epidemic model with homogeneous and homogeneously mixing populations ignores the potential
to target specific critical subpopulations, such as children or the elderly. In the short run, the contractual
designs here that determine production volumes could be accompanied in a second stage analysis with other
work (e.g., Hill and Longini, 2003) that can optimally allocate vaccines to different subpopulations. The
generality of the analysis for piecewise linear or convex 7'( f) allows some flexibility in adapting the incentive
alignment results above to more complex epidemic models that prioritize certain subgroups.

Two, the coupling of drift variants and residual immunity from previous vaccination or past infection
can complicate the multi-year dynamics of influenza vaccination (Plotkin et al., 2002; Smith et al., 2004;
Duschoff et al., 2004). In a given year, information about previous strains can in principle be used to update

prior information about the parameters of the next outbreak. The current formulation does not examine any
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multiyear benefits from vaccination that may accrue from projecting vaccine strains for multiple years. This
paper presents a positive first step for approaching the first-order effects of the current year’s outbreak.

Three, the analysis above assumes that the per person benefit b and the cost to administer p, are constant.
A conjecture is that the results generalize nicely to the case of variable marginal benefits of vaccination, b( f),
as long as b(f)T(f) is convex and decreasing. Terms like b7”(f) in the definition of f would be replaced
with (b(/)T(f)) = (f)T(f) +b(f)T'(f). A convex increasing administration cost, p,(f), may also be
appropriate. The net effect of these two changes is expected to decrease the optimal vaccination fraction.

Four, the model assumes that health consequences can be quantified by direct and indirect monetary
costs, but a multi-attribute approach might be desired to more fully examine issues like the number of deaths
or hospitalizations. These features can be modeled indirectly with our proposed model by assessing the
number infected and applying the relevant morbidity and mortality rates.

Five, the analysis assumes that the government is risk neutral, but in fact a government may wish to
specify a higher level of vaccines in order to prepare for a worst case scenarios. One approach to account
for that would be to perform the above optimization with the added constraint that the fraction to vaccinate
that is announced by the government be at least as large as some threshold. Another would be to inflate the
value of the parameter b that is used to model the cost per infection, to reflect a penalty for having too many
infections.

Six, the model assumes that the government can precisely specify the number of individuals to vaccinate.
This is potential drawback of the other epidemic models mentioned in this paper, too. The inclusion of
individual’s choice to become vaccinated would also require much additional complexity.

Seven, the model currently examines a single manufacturer and a single government, and assumes that
all parameters are known to all parties. The cost per dose and yield distributions are not likely to be public
information, and there are several providers and many purchasers. Nevertheless the equilibrium might still

be modeled as an outcome of interactions between two rational actors of the model. Multiple buyers and
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suppliers would be an interesting extension. Contracts in the presence of multiple manufacturers and/or
suppliers could be complicated, to avoid collusion on the part of a subset of the players.

6 Conclusion

This work developed the first integrated supply-chain/health economics model of two key players in the
influenza vaccine supply chain: a government that purchases and administers vaccines in order to achieve
an efficient cost-benefit tradeoff, and a manufacturer that optimizes production input levels to achieve a
cost-effective delivery of vaccines in the presence of yield uncertainty. The model indicates that a lack of
coordination leaves the manufacturer with production yield risks. That lack of coordination results in vaccine
production shortfalls if the players in the model act rationally.

We show that a global social optimum cannot be fully attained by changing the vaccine price alone, or by
reducing the risk of production yields by having the government contractually pay a reduced rate for doses
that are produced in excess of the original demand. A variation of the cost sharing contract is one option
that can align incentives to achieve a social optimum. That contract shares production yield risks, which
are initially carried by the manufacturer, with the public payor, by carefully balancing the price per dose of

vaccine delivered with a small charge for production effort by the manufacturer.
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Appendix Al provides background on the specific epidemic model that was used to determine results for
the paper, “Supply Chain Coordination and Influenza Vaccination”. Appendix Bl provides the mathematical
proofs for the propositions, theorems, and lemmas that were presented in the paper. Appendix C justifies why
the paper considers piecewise-linear and convex functions for the number of individuals that are ultimately
infected in an influenza outbreak, 7'(f), as a function of the fraction of individuals that are vaccinated.

A Epidemic Model

At a high level, the epidemic model drives the analysis for supply chain behavior through the function 7'( f),
which models the expected number of infected individuals in the population, as a function of the fraction
of the population that is vaccinated. The details of the underlying epidemic model are decoupled from the
analysis.

This section recalls one specific epidemic model in detail, the closed-population SIR model, and an
analysis of that model which is not an advance to the literature per se, but that fixes ideas for the paper. It
also provides some structural results for the SIR model with an initial vaccination (a nonzero R(0)) that are
not readily accessible in standard texts. That model gives rise to the formula for the attack rate p in (3).

A standard formulation for the SIR epidemic model in a closed population of /V individuals is:

dsS

= = —eBSI/N (20)
% = +¢BSI/N —1/d 1)
R g (22)

dt
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where ¢ > 0 is the number of contacts per unit time, 3 € [0, 1] is the probability of infection per contact,
d > 0 is the duration of infection, and I /N is the probability that a contact is infectious. Timely vaccination
followed by the onset of (instantaneous) infections from exogenous sources results in initial conditions
R(0) = Nf¢,5(0) = N(1— f¢)(1 - x), 1(0) = N(1 - fé)x.

If S(0), I(0), R(0) are given initial conditions, then Murray|(1993) defines an outbreak by dI(0)/dt > 0,
which happens if and only if ¢3d.S(0)/N > 1 (in the notation here). Once the derivative is negative, it stays
negative. Murray|(1993) calls ¢3d.S(0)/N the basic reproductive number. With the stated initial conditions,
an outbreak occurs if and only if

cBd — -

1-x
cBdd > f. 23)

In the main paper, an outbreak refers to the transmission of influenza during a single season, following its
introduction at time ¢t = 0, whether d(0)/dt > 0 or not. This allows for a seasonal influenza outbreak to be
stunted by a successful vaccination program. A large outbreak refers to an outbreak with d1(0)/dt > 0.

What we have defined as the basic reproduction number, Ry = ¢3d, corresponds to the common epidemi-
ological interpretation of Ry as the expected number of individuals that are infected by a single infectious
individual in an otherwise susceptible population (Anderson and May, [1991). This definition of Ry is also
consistent with the definition of Murray (1993) in the limit as S(0)/N — 1 (a single infected in a large
population).

Our definition of the critical vaccine fraction,

Rop
corresponds to setting f to the left hand side of (23)), and letting Y — 0. Operationally, this f* corresponds to

the (limiting) fraction of the population that must be vaccinated in order to halt an outbreak for any nonzero

level for the fraction of individuals that are infected from exogenous sources.
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We now analyze that formulation. From (20) and (22),

as B S Ro
drR —  I/d DA A A
B Ry Ry
= S= S(O)exp(—NR(O)) exp(———R). (24)

The constant S(0) exp(%R(O)) comes from solving for initial conditions. Using (22), the conservation of
the total population size (N = S + I + R is constant, from adding equations (20) through (22)), and (24),

we get an equation for dR/dt that only involves R and constants:

dR I 1
7 R IS
1 R
Z(N =R — 5(0) exp(——2 (R — R(0))) (25)

At the end of the epidemic, the number that are ultimately infected is R(co) and the derivative in (25)

converges to 0. Set (25) to 0 and multiply by d to get:

R(oo) = N —8(0) exp(——=(R(o0) — R(0))). (26)
Rescaling to /N = 1, to obtain fractions of the population, the above formula is:

R(oo) = 1-5(0)exp(—Ro(R(c0) — R(0))). 27

We now subtract out the fraction of those that were vaccinated, R(0) = 1 —.5(0) — 1(0), to obtain the attack

rate p = R(00) — R(0), the fraction infected during the outbreak.
p = R(o0) = R(0) = 5(0) + I(0) — 5(0) exp(—Fop) (28)

That justifies (3) from the main paper.
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B Proofs of Mathematical Results

Proposition 1. Proof: The expected cost function for the manufacturer is

MF(ng) = cng—pE[min{ngU, fNd}]
FNd

= cng —prnEE[min{U, — ]
ng
INd ~ fNd
ng
= cng— prnE(/O ugy (u)du + Na EQU(U)CZU)
N4 ! -
= cng —prnE/ e ugy (u)du —prNd/ gu (u)du
0 FNd
"LE
So to get the minimum of M F' we need to see the behavior of its derivative:
fNd
OMF oy FNd.  fNd. fNd fNd. fNd
3 = c—pr/ " ugy(u)du — pyng [( Jgu () (=" )} —prde[ —gu(T—) (="
ng 0 ng ng ng ng ng
o (fNd)?  fNd (fNd)?  fNd
= c—pr ugy (u)du + pr~—5"—gu( ) = pr~—5—gu( )
nE ng nE ng
£Nd
= c—pr " ugy (u)du

0

Note that ‘9;%F = pr[((fi\fi;l)?) gU(%)] > 0 so the first order optimality condition is sufficient. Hence the
E E
fNd

optimum production quantity n’, is solution of the following equation: | "F ugy (u)du = p%. O

Corollary 1.1. Proof: Immediate upon inspection of the values of the parameters. [

Proposition 2. Proof: To show these results, we analyze SF in two different regions, f < fCand f > fY.
Let SFy(f,ng) denotes the value of SF when f < f°, and likewise SFy(f, ng) is the value of SF where

f > f°. Note thatif f < f¥then W = Z = min{ngU, f Nd}, and the value of SFy is

fNd

SFy (o) = [ (M = 0 E gy (w)du-+ O = No) [, vl
1na . (29)
+panE/ " ugy (u)du + po(fNd) /de gu(u)du+ cng (f < f%.
’ 3

For f > f©, given that M — Nof = M — N f0 = 0, the value of SF is

£ONd ONd
SEy(f,ng) =b / "E (M_wn%d“)g(]m)dw Pani / " ugy (u)du
0 0
o (30)
FplfONa) [, aodutens (£ 1),

"E

)
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The limits of integration in the right hand side of (30) use f°, not f. In order to get the overall optimal values

for f9, n%, we solve the following two subproblems.

SF1= min SF| SF2= min SF,
st. 0< fF<f0 st. f0<f<1
ng >0 ng >0

Optimality conditions for subproblem SF1: The KKT conditions, if f < f°, are,

o0 o0
Vb [ gudutpaNd [ gutu)du ¢~ 0= 0
ngE ng
oh [ iNd
- e ugU(u)du+pa/nE ugy(u)du+c— @ =0
0 0

Ef—f0)=6f=png=0 ; &6,¢>0,

where the first equation is obtained by taking the derivative with respect to f and the second equation is
obtained by taking the derivative with respect to the n . Moreover &, 6y, ¢ are KKT multipliers of constraints
f<f9 f>0, ng > 0, respectively. Note that if Assumption 2 were not valid, then the second equation
of KKT conditions would require ¢ > 0, and the third equation would imply that ny, = 0.

We are interested in the case where ng > 0, f > 0 which is a conclusion of Assumption 2. This implies

that 6y = ¢ = 0, and the KKT conditions simplify:

o0

[ — Ntpb + paNd] /de gu(u)du+€=0

b vd?
[—d+pa]/ o ugy(u)du +c=0
0

Ef-1=0; €20
In the first equation above, Assumption 2 suggests that £ > 0. If ¢ > 0, the last of the KKT conditions would

give rise to f* = fY. So SF; will always get its minimum at the extreme f°. The optimal n in this case

can be obtained from the second equation of the KKT conditions and using the fact that f* = f°, and

fONd
: c
e ugy (u)du = ———.
0 a ~ Pa

€29
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Optimality conditions for the problem SF2: If f > f9, then SF, does not depend on f (the vaccine
fraction declared by the government does not change the value of objective function). It follows that all
values ¥ < f < 1 are optimum and so the first part of the claim is proved.

Now SF5 is a function of ng only and the derivative of GF' with respect to ng is

dSF. Wb £
an]; = (—E +pa)/0 o ugy (u)du + c.
Note that 8;312}7 2 = (% — pa) (L 701]2\[ 4y (L i];[ Y gur (L SL]; 4), which is nonnegative by Assumption 2, hence
E E

SF>(ng) is a convex function on ng and the first order optimality condition is sufficient. By getting
the root of the derivative of S F5 above, we can see that the optimum ng for SF5 is the same as the solution

of (31). So the optimum value for n% satisfies the same equation in both cases. [l

Proposition 3. Proof: We break this into two subproblems, as with SF'1 and SF'2 above. Define GF to

be the objective function for subproblem G F'1, which handles the case where f < f°. Then

kG o)
GR(fme) = b [ (M =" g widu-+ WM = Nof) [ gy

o0

k
atpone [ ugwl)dus (a+ o) (NG [ ot

kG 00
= bM — djbnE/O ugy (u)du — Nybf /kG gu (u)du

d
k 00
+(Pa +pr)nE/O ugy (w)du + (pa + pr) fNd /kG gu(u)du (Jo° gu(w)du = 1)
b kG RS
= bM — wnE/ ugy (u)du — wbnE / gu(u)du
d 0 G d kG
k 00
+(pa —I—pr)nE/ ugy (u)du + (pq + pr)npk® /G gu (u)du (fNd = ngk®)
0 k

wb kG 00
= bM+nE(—F +pa+pr)[/ UQU(U)dqukG/G gu (u)du).
0 k
By Assumption 3, the coefficient of ng in the last equality is negative, so the optimum value for ng in GF};

lies on the upper boundary, where f = f°. This proves the first part of the claim.

For the second part, similarly define GF} to be the government objective function for the case f > f°.
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Use the fact that T'(f) = 0 for all f > f°, and the optimal manufacturing constraint, f = %, to obtain

fONd fONd
)

GEy(f.np) = b /0 (M — 0" gy () + pan /0 &

kG
ugy (u)du + prng / ugy (u)du
0

[e.9]

sl N0) [0 avtudu+ (NG [ ol

foNd fONd 00
negu n
= o [ g dut pan [ g+ pa(ONa) [ o)
0 0
kG 0o :
+prnE[/ ugy (u)du + kS /G gu (u)du]
0 k
JONd el
OGF. b n k o0
2 _ (_1&7 —|—pa)/ E ugU(u)du—&-pr/ ugU(u)du+kaG/ gu (u)du
8nE Cl 0 0 kG
G F, Wb fONd  fONd
— 5 = (5 —pa)—5—9u( )
ony, d ng ng

for f > fY. Note that f Nd < kY. By Assumption 2, aaG? > 0, so GF3y is a convex function of ng. To find
the minimum it suffices to look at the sign of its first derivative. If Condition (12) holds, then Assumption 2
implies that %GTJ‘;? > 0on f > fO so that the minimum of GF; for f € [f°,1] is obtained at f°. The
optimum for both G F; and G F» lead to the claimed optimum, namely f& = f0.

If Condition (12) does not hold (i.e. (—% + pa +pr) fOkG ugy (v)du + p k¢ [re gu(u)du < 0); then

because of the convexity of function G F5 on ng (non-decreasing derivative), there are two cases:

BGFQ _

Case 1: dng ; o

= 0. In this case clearly the optimum values for the f, ng are the following: n% =ng,
¢ =k“nG/Nd.

Case 2: If np(1) denotes the maximum 7 corresponding to f = 1 (i.e. np(1) = & d) and still BGF =F <0
then f¢ =1, n% = np(1).

Combined, the two cases complete the proof. [

Theorem 4. Proof: Proposition 2 shows that f& > f9. We consider the two cases f¢ = f0and f¢ > f0
separately, and prove that both cases lead to the relation n% > n%
Case 1: & = f9. Using the inequality in Corollary 2.1/ (i.e. k° < k) and using the definitions of

kY, k% it immediately follows that n3, > n%, as desired.
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Case 2: f¢ > fO. (Proof by contradiction.) Assume to the contrary that n% < n(E; First of all we
obtain the sign of [BGF 2] .- As in the proof of Proposition 3, there are two cases for ng If the condition
"E
ong ong

in case 1 of Proposition [3 holds, then [M} .= 0. If case 2 holds, then [@} o < 0. In either case,
ng g

the following relation is true:

OGFy
<0 32
On the other hand,
fONd G
= (——= » d , d vk
[anE Lg ( g TP )/0 ugy (u)du + p ; ugy (u)du + p y gu(u
g o 5 -
> (_E +pa)/ " ugy (u)du +pr/ ugy (uw dU+prkG/ gu(u
0 0 kG
b c 0
= (- Q’Z:l —l—pa)(w)—kc—i-prkG/ gu(u)du
d — Pa kG

= prkG/ gu(u)du >0
kG

The inequality in the second line comes from the assumption n% < n%, and with Assumption 2. The third

line is valid by (5) and Proposition 2. But the last inequality contradicts (32), so ng > n% is false. [

PropositionS. Proof: The proof of Theorem 4/shows that there does not exist a wholesale contract which

coordinate this supply chain. That proof proceeded in two cases. The first case requires n% > ng For full

S _

coordination, we require 7%, = n% for some p,. In case 2, n3, = n% for some p, implies that BGF

G>O,
E

which would not be true for the optimizer of GF'. [

Proposition'6. Proof: Note that fOkN ugy (u)du = SL<L | By rewriting the GF in terms of values of f, ng

Pr—Pc

and by replacing f = ijVVZE we have:

ONd fONd 00
GF(ng) =b / M ="y (w)du + pang / " ugy (w)du + pa(fON) [M gu (u)du

0 0 =

"E

k’N

+(pr — pe)nE / ugyr(u)du + (pr — pe) (KN ng) / gu(u)du + pepng
0 k

N
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By Assumption 2, i dGQF 2 = ( % Pa) fo]g\]ng( £ Nd) > 0, so GF is a convex function on ng. The optimal

value of G'F' can therefore be found by setting its derivative to zero:

OGF bb o
ng
g (—7 +pa)/0 ugy (u)du + pept
BN fe'e)
+(pr — pe) [ / ugy (w)du + kY / QU(u)du]
0 kN
fONd

b o >
= B [ wgutdu et (- pkY [ gutuda

0

The last inequality comes from (13). The last term indicates implicitly that ng < n% To see this, plug

n% into the last terms, use Proposition 2. and using the fact that p, > p., to obtain %gF

s :(pr_

pe)k™ [ x gu(u)du > 0. That implies that n}} < n3. O

Theorem 7.  Proof: First we show that f¢ > fY by showing that optimum value for GF} for f € [0, f9] is

knE

always obtained at fV. By replacing f = we get GF} to be only a function of ng:

k¢ e 0
GFi(ne) = b [ (M~ ") g (w)du+ b(M — Np"ES) / gv (w)du
ke

ke

o0

+(pa + pr)nE/ ugy (u)du + (pa + pr)(k°nEg) / gu(u)du + peng
0 e

Now by taking the derivative of GF} with respect to ng we obtain that:

o0GE b (¥ e [
ong d/o ugy (u)du dk ; gu(u)du

(e 9]

ke
+(pa+pr)/0 ugU(U)dqu(paerr)ke/ gu(u)du + pe
¢b kS ke
= (- +pa>/0 uyu(U)dU+pr/0 ugy (u)du (33)

b o0
+ (_% + Pa +pr)k / QU(U)du + Pe
b o
= —c+ (C - pe) + (_% + Pa + pr)ke/ gU(U)du + De (34)
b oo
— etk [ gutudu, (35)

in which (33) is obtained because k¢ = k%, and (34) is obtained using Proposition 2 and (14). On the other

hand (35) is negative by Assumption 3, so that GF} is decreasing for all eligible nz. Hence fY and the
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. . 0 0 . L .
corresponding ng (i.e. ng = fkjfd = %) are optimal in this case. So f¢ > f°. Because k¢ = kS, it

immediately follows that n%, > n?.
Now we show that the optimum of G'Fb, for f € [fY, 1], also occurs at Y, completing the proof. Note

that f > £ and k¢ = k° imply that ng > n%. Consider G Fy.

fONd fONd

GFQ(TLE) = b/ e (M—z/JnZu)gU(u)du—i-panE/ e
0 0

o0

ugy (u)du + pafONd/ gu(u)du

fONd
7LE
o

ke
—i—prnE/ ugy (u)du +pr(k5nE)/ gu(u)du + peng
0

e

The derivative is nonnegative,

fONd

OGF, b e
ong ( d +Pa)/0

o

ke
ugy (u)du + py / ugy (u)du + ppk© / gu (u)du + pe
0

e

fONd

= F%f+pdﬂgw ww@mw+c+pM?/‘gUWMu (36)

fONd
b s >

> D) [P uguldut etk [ gutwda (37)
0 e

I / " gu(w)du > 0 (38)

e

(36) comes from (14). As before, (37) comes from Assumption 2 and the fact that ng > n% Finally, (38) is
true by Proposition 2. The last inequality shows that the optimum value for G F» occurs at f© hence f¢ = f°

and because of the fact that k¢ = k%, we obtain ng = n% O

Proposition8. Proof: The proof resembles the proof of Proposition 2, except for the change in role of f°
to f, and the definitions of SF'1, SF} and SF2, SF,. We first show that the optimum value of SF always

occurs at the border, i.e. f* = f, by examining the KKT condition for SFj:

() [, vtdu+poNd [ | guudu-+¢ =0
b - P iNa
_Nd/gnE T’(%)ugﬂu)du%—pa/ow ugy(u)du +c¢=0

Ef-F=0: €20
If f < f, then by the convexity of T'(f) and the definition in (1), we conclude that bT”"(f) + p,Nd < 0.

So the first equation forces ¢ > 0, then by the third equation we obtain f* = f. So the optimum value for
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SF occurs at the border which is f. Since SF does not change as f varies in [f, 1], we have shown the
first part of the claim. The optimum value for n7, in this case can be obtained using the second equation

of the KKT conditions and the fact that f* = f. Namely, the optimum ng solves the following equation:
iNa

nx b *
/O E [mT/(T;\J;EZ;) + pa] ugU(u)du + ¢ = 0, as claimed.

It is now enough to show that in the second case where f > f, the same relation holds for the optimum
production level. To show this, note that first of all, SF5 is a function of ng only, hence to get the optimum

it suffices to find the root of its derivative:

fNd

0SF, [ [ b _, ngu
o _/0 [NdT(Nd)+pa ugy (u)du + ¢

By setting this equation to zero we will end up by the same type of relation for n}, which we obtained before
FNd

3 s
from SF}, hence always [, * {ﬁT’(NL) —i—pa} ugy (u)du+c¢=0. 0O

Proposition 9. Proof: The first part of this claim is just the optimality condition for the manufacturer. As
above, this does not depend on the shape of T'(f) so this relation remains the same. The fraction k< is

therefore determined by the values of ¢, p, and the egg yield variability, and are assumed to be known.

b nEu

kG
To prove the second part, note that if /0 { Nd ( Nd

)+pa}uyu( )du+0+prkG/ gu (u)du < 0,
jXe’

then by replacing f = N 7> We can rewrite G'F7 just as a function of ng as follows:
G

k G 0
— neu nek
GR(ng) = b [ TEEDau(du+ T [ g
o0

kG
ot pone [ ugrldut ot o) k) [ utuda

GFi(ng) is a convex function of n g so the first derivative shows the behavior of this function completely:

oGFy /ke[ b 7 (MEY
0

kG
ong N (= N ) —i—pa} ugy (u)du —i—pr/o ugy (u)du
kG npk®

b7 Nd - d Tk:G/OO d
+Nd[ ( Nd )+ D, }/kc gu(u)du + p . gu (u)du
Nd~ ‘' Nd

k‘G
-
kG npk®

v /
+Nd[b:r( = )+paNd} /kG gu(w)du

o0 (39
|: b T(nEu) +pa:|UgU( )du+c+prkG/kG gU(u)du
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However, note that the function G'F} is a convex function so clearly for every f < f orequivalently ng < ng

F F
we have: 0GH, < [('?G ! } . On the other hand if we plug n g into (39) we have:
ong ong lInp=ng
8GF1 K b neu
= 7T a T
[8nE:|nE:ﬁE /0 [Nd (Nd)er}“gU( Jdu+ ¢+ prk€ / gu (u)du

KO T ipkG 0
+N—d[bT( = )+paNd} /kG gu(u)du

_ /kc[bT(NEu)+ } ()d +e+ kG/OO ()d
= 0 Nd Nd Pa|ugu U)o = C T Pr ngUu U

in which the last equality comes from the fact that np = L k]\éd, and recalling (1). Note that the last expression

is less than zero by assumption, so the optimum of G'F occurs at its border, f* = f. Because the inequality
is strict, optimum of GF; also is greater than f, so f¢ > f.

To show the reverse direction, we first show that the function

fNd
neu

Hing) = [ |57 GEp) + i Juaw (u)d

is a nondecreasing function on ng.

Ind FNd

0H . "E b 7, VEU 2 b y de
oH - _ /0 [Nd)zT (B g )+ [T (D) + pa) L g 20
b

ng ni

Onm gu(

INd
ng negu
— 71’!// e i| 2 d > 0
17 [ e v =
The second equation follows from the definition of f, and the last inequality is due to the convexity of T'( f)

in f. Hence we have H (ng) > H(ng) for all ng > ng. By replacing H (ng) with its definition,

fNd fNd

ne [ b _, ngu g [ b, NEu _
> ; >
|7 [ G+ vuavtidu > [ [ GED +pJugstd g =75 @0)
kG oo
b
If we assume /0 {Nd (7355) + pa} ugy (w)du + ¢ + p kY /kG gu(u)du > 0 we will show that

f¢ < £, which is the reverse direction of part 2 of the claim.
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npk®
Nd °

Because this is the game setting, f can be replaced by and

fNd G
B ng nEw ngk
GRang) = b [ " TS (u)du+ 07

FNd

o) kG
)/ gu(u )dquprnE/O ugy (u)du  (41)

e (npkC) / gu(w)du + pan / "F gy (u)du + pa(FNA) / gu (uw)du
kG 0 fNd
ngE
[Nd G
8Gfb ng [ b negu k G >
= —T o d - d rk d
onp /0 N (Nd)+p ugU(u) u+p /0 ugy (u)du + p /kG gu (u)du
fNd b 00
"E [ ) NMEU i G
= —T d K d 42
/0 Na (Nd)—i- ugy (u)du +c+p /ngU(u)u (42)
e - -
ng [ ,, MEU i G
> DBy d N du >0
> /0 Na (Nd)—l—p_ugU(u)u—l—c—i—p /ngU(u)u

The second equality for aGF 9622 comes from (5). If f > f then ng > fg, so the inequality in the third line

is justified by (40). Finally the last inequality comes by assumption, and implies that for every f > f the

function G'F5 is nondecreasing under the stated assumptions, so the optimum f* for G F3 can be obtained at

= f . Hence fG < f, completing the proof. [

The proof of Theorem 1% requires the following three lemmas.

Lemma 14 Ifn§ > n3, then f¢ < f.

Proof: To proof this lemma we show that the function G F; obtains its minimum at its border (f). We use

the function H (ng) that was defined in the proof of Proposition 9, which was shown to be nondecreasing,

and n% > n?, to conclude that

e b nGu oy b nyu
"E BT > "E BT

By plugging ng into the derivative function of GF3 in (42), and using the above relation,

fNd Iel

0 G
biiﬂwzng - /0 ' [

Nd

Nd

u [ee]
)+pa}ugU( Ydu + ¢ + pkC /G gu(u)du
k

b
Nd
Wb, npu a [~
> [T/ CED + pa|ugu(wydu + e+ pok€ [ gu(u)du
0 Nd LG
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The equality in the third line comes from (8). The last inequality shows that the derivative of the function

GF5 at the optimum point n% is strictly positive, which is not possible unless ng is at its lower extreme,

n% = ng, where ng introduced earlier. [

Lemma 15 Let fbe the solution obe’(f) + (pa + pr)Nd = 0. Then f& > f.

Proof: By the definitions of f and f , and strict convexity of 7'( f), we have f < f. Letng = f— Because

f < f, we examine the government subproblem G F'1 with objective function GF} to analyze the pair

(f,nE).

{BGFl

kG
b ngu
= T . d
8nE}nE=ﬁE /0 [Nd (Nd)+pa+p}“gU( )du
G 1 npk®
+M[bT( Nd

)+ paNd + prNd} / gu (u)dus
kG

k}G
b nEU
= T a r
| [ e + vt e Jua (w)du <o

The second equality is true because the second term in the derivative is zero, by the definition of f, ng. The
last inequality comes from the strict convexity of T'(f), so T"(f) < T'( f ); forall f < f . The derivative of
G F1 is negative at f . By the convexity of T'(f), it follows that the optimum of G'F} is attained for a point

bigger than f(since f < f),and so f¢ > f O

Lemma 16 Let k5 = {5 Then for all k > 0,
E

R n% Frob ,n%
T . du < T . du.
/0 | waT i)+ o] (@) “—/0 | WaT (i) + b uav i

b (n%
Nd Nd
at k* = k5. The derivative of I(k) is 3% = [ T’(nE ) + pa] kgu (k). Note that for k < k¥, we have

k
Proof: To prove the lemma, we show that I(k) = / [ )+ pa} ugy (u)du attains its minimum
0

S S,S — _
%—5 <t NZE = f, and so by the definition of f, the derivative of I (k) is negative. So I (k) is decreasing for
k< kS Ifk > kS, then £ £ > fso %L > 0,and I(k) is increasing. Therefore I(k) attains its minimum at

ES. O
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Theorem19. Proof: Equipped with the three lemmas, we turn to a proof of Theorem 10 by contradiction.

Let us assume that ng > n% First of all by Lemma |14, we have f G < f . We consider two cases:

Case 1: f¢ < f, n% > n% In this case, the optimum solution ( f€, ng) would occur in the middle of
F
the region for GF1, so that [06‘ 1} = 0. By plugging ng into (39), we have
67’LE nE:ng
k‘G
0 = / { T'( d)—i—pa}ugU(u)du—i—c
0
kG , %kG o)
S lbr oNd + p,Nd| d
o [T ) + N+ N [ gutw)ia
kG G
b npu
= T(=E a}
| [ Ga + veJuavuau +c
kG 0o
+377 [bT/( ) + paNd + pTNd} / gu(u)du ; (because of nGkY = f¢Nd)
kG
K nGu
> /0 [Nd '( ]\de ) +pa} ugy (u)du + ¢ ; (Lemmal5/and convexity of T'(f))  (43)

On the other hand note that the function J(ng) fo [T () + pa| ugu (w)du is an increasing function

of ng. This is because 7~ = fo [ e [ ulgy (u)du > 0, as T(f) is a convex function. So

n& > n, means that J(ng) > J(n%) By the definition of J(n ), and for k = k©,

K , ng L , n%
/O [NdT(Nd)era]ugU(u)du z/o [NdT(Nd)—i-pa]ugU(u)du (44)
kG S kS S
b nau b nou
If —T(=E= " > T'(=£ . hen (44) impli
/0 [Nd (Nd)+p}ugy(u)du_/0 [Nd (Nd)+p]ugU( u)du, then (44) implies
k‘G G k‘s S
b nAHu b AU
T'(=E a d > —T'(=E o d
/0 [Nd (Nd)+p]ugU(u)u+c > /0 [Nd (Nd)+p]ugU(u)u+c
= 0 ; (by Proposition 8)),

which contradicts (43). So we should have:

J

but this inequality also contradicts Lemma 16. So case 1 results in a contradiction.

Kb ,n%u K ,n%u
T a d T a d
37T D) + g (du < [ [0 CED + puJugu (i
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Case 2: f¢ = f,n§ >n3. In this case, the production level would be nG = np = Lo As (f,ng)is

the optimum pair for G F, we should have: [%GTI;I} n, < 0 or equivalently:

G
k b / ﬁEU G >
0 = [7T (N7d) + pa] ugy (u)du + ¢+ prk gu (u)du
0 kG
kG 9]

- T/ nE a,N /
+Nd[b (Ng ) TP d} c gu (u)du

kG
A

kG —
b ., nEu
> /0 [mT (N7d) + pa] UgU(U)dU +c

b ’ ﬁEu G 0
{mT (m) —i—pa] ugy (w)du + ¢ + prk /kG gu(u)du

On the other hand, the last expression can be written as:

fNd

ng b ’ ﬁE'U,
/0 [N—dT (N7d) + pa} ugy(u)du + ¢ <0 (45)

Note however that np = n% > n% By the monotonicity of the function H (ng) from Proposition 9,

fNd FNd
ng [ b nEu WS rob nyu
T (=) + Pa > e [ LBty _
/0 [Nd (Nde}“gU(“)d“” = /0 [Nd (Nde]“gU(“)d“” 0,

which contradicts (45). Since both cases lead to a contradiction, the claim is proven. [

Claim i1. Proof: First we show that p,.(f) > 0. Note that the function —7'(f) + T'(f)f + T'(0) is an
increasing function of f on [0, f], as its derivative —T"(f) + T"(f) exceeds O for all f < f because T(f)
is strictly convex. Further, its value is zero at f = 0, so —T'(f) + T'(f) f + T(0) is a nonnegative function
over [0, f]. Therefore p,.(f) > 0for f € [0, f]. For f € (f < f], itis clear that p,.(f) = p,(f) > 0.

We show that this p,.(f) satisfies all the conditions in assumption in the reverse order. Multiplying p,-(f)
by fNd and taking the second derivative implies (p,(f) fNd) "= —kbT"(f). SobT"(f)+ (pr(f)fNd) "=

(1 — &)BT"(f). But bT"(f) + (p(f)fNd)" is the left hand side of the third condition in Assumption 3.

By the strict convexity of T'(f),

Yy >0, vo<r<7

bT"(f) + pL())fNd + 2 (f)Nd = 2 <
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Forall f < f <1 wehave bT"(f) + p!'(f)fNd + 2pL.(f) = bT"(f) > 0.

To prove validity of the second part of assumption, by taking the derivative of (pr( N d) we have:
(pr(f)de)/ = kb[ — T'(f) + T'(f)] which is nonnegative for 0 < f < f (by convexity of T(f)) and is
zero for f = f. For f < f <1; (p-(f)fNd) = p,(f)Nd > 0.

Finally to show the first part we take the derivative of p,.(f) for0 < f < f:

e _ [T =T +TO
of Iz

The numerator in the bracket is positive due to convexity of T'(f) indicating the desired result for 0 < f < f.

Finally, for f < f < 1wehave p/.(f) =0. O

Theorem 13. Proof: In order to analyze Problem (19), we again split it into two separate subproblems.

Case 1 (0 < f < f): In this case the optimization problem would be

1 o fna
. o nE npu nE
mfln GF, = [b/O T(—Nd Jgu (u)du + bT'(f) /de gu(u)du —1—panE/0 ugy (u)du
o "E v
+pade%de gu(uw)du + pe(f)ng +p7«(f)nE/ ¥ ugy (u)du
— 0
"E
= cng(by Assumption [6)
4NN [ gvtuydu],
TLE

subject to the constraints fNd = ESng: 0 < < f; and ng > 0. Substituting the constraint ng = %
into the objective function gives
S S
min GF; = [b I8 T (Euygu (w)du + 5T(F) [ gu(u)du + pa L[5 ugy (u)du

N [ v+ L5 (7N [ gt

st. 0< f<f.

We show that in this case the optimum value is at f. For this purpose, it is enough to analyze the first
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derivative of GFY:

OGF bR o Nd [*°
1 _ [k‘s/o T,(kiSU)UgU(u)du+bT/(f) /ks gU(u)du—l—paks/O ugy (u)du

of

o0

N [ gutdu+egs +po (AN [ gutadut (NN [ gutu)du]

Nd K5y
= kT ( /0 [NdTl(kiSu) + pa]ugU(u)du + C) (46)

o0

[0+ N+ pe (N4 7N [ gutudn

We show that each of the two components in (46) is negative, making the derivative of GF} negative for all

0 < f < f. To see this, first note that the function .J ( f fo J; u) + pgJugy (u)du is an increasing

function of f, as J'(f fo T" LS )Jugy(u) > 0. Hence J(f) < J(f), Vf < f. However,

Ndks

_ S
using fNd = n3k%, we get J(f fo T'(%E2) + paJugu (u) = —c (by Proposition 8). As a result

J(f)+¢<0,s0

kS b _
/0 [N—dT'(kiSu) + palugy (u)du + ¢ <0, Vo< f<f.

This shows that the first term in parenthesis in (46) is negative. To show that the second term of the derivative
of GF is also negative, we consider the term bT"(f) + poNd + p,(f)Nd + p..(f) f Nd. The derivative of
this expression is bT" (f) + pl/(f) f Nd + 2p..(f) Nd, which is positive using the third part of Assumption 5.

This means that bT"(f) + poa Nd + p,(f)Nd + pl.(f) fNd < bT'(f) + paNd + p-(f)Nd + p..(f) f Nd for

all 0 < f < f. Note that bT"(f) + p,Nd = 0 by the definition of f, and that p,(f)Nd + p.(f)fNd =0

by the second part of Assumption 5. This suggests
OT'(f) + paNd + pr(f)Nd+p,(f)fNd <0,  VO<[f<],

which shows that the second term of the derivative of GF is also negative. By the strict convexity of T'(f),
equality occurs only at f. Hence (46) implies that GFy (f) < Oforall0 < f < f, meaning that the minimum
of GF) is attained at f. The corresponding production value to f is n% (using [18)). So in this case, the only

candidate for optimality is the system optimal solution.
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Case 2 (f < f < 1): Inthis case, using the definition of pr(f),pr(f) = pr(f),andhencepe(f) = pe(f)

forall f > f. As aresult, the government objective becomes:

iNd - iNd
_ ng negu — n
R = [b [ T e a7 [ avdutpans [ ugouda

(%s) ? INd

40afNd [ quwdu+ pe(Pos -+ o (P [ ugo(da
== 0
ng

= cng(by Assumption 5)
4o (DIN [ gula)du .
ng

subject to the constraints fNd = ESng: f < f <1;and ng > 0. Substituting the constraint f Nd = ESng

to remove f from the objective gives:

INd o INd
. ng nEu — ng
GF, = [b/o T(iNd )gu (u)du + bT'(f) /de gu (u)du +panE/O ugy (u)du
+pade/ gu(u)du + cng +pr(f)nEkS/ gU(u)du}

with the constraint f < f replaced by the constraint ny > n]SE
We now show that the derivative of the objective function in this case is positive, and hence GF; is

minimized when that constraint is tight, ngp = n% Consider:

OGF oy o0
2 e b e )k (47)
g /O [NdT(Nd)+pa]ugU(U)dU+c+pr(f)k /ks gu (u)du.

The first term above is exactly the function H (ng) introduced in the proof of Proposition 9. By using its

nondecreasing property, we get H(ng) > H(n%) for all np > n3. Recall that Proposition 8 suggests

fNd
3

n s
H(ng) = [o"% [35T" (%) + pa]ugy (u)du = —c. This implies that

FNd

n b
/0 o [mT’(%) + paJugy (u)du + ¢ > 0; Vng > n%

By using this result with (47), we obtain the desired result,

FNd

OGF, _ [%g b _, ngu s [
i /0 v () + polusu )t e+ pr () | st
> D [ auwdu> 0.

In both case 1 and case 2, the optimum values for the game setting are f, n% U
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Figure 3: Attack rate (p) as a function of the fraction vaccinated (f), for different values of the fraction of
susceptibles that are initially infected () and the basic reproduction number (Rj).

C Justification Why Linear and Convex 7'(f) are of Interest

Figures iy and 3/show the shape of T'( f) with respect to different values of the initial fraction of susceptibles
that become infected due to exogenous exposure, Y, and the expected number of secondary transmissions
caused by one infected in an otherwise susceptible population, Ry. The four graphs correspond to Ry =
1.67,2.0,2.5, 3.0, which are the range for Ry for the different flu pandemics (Gani et al., 2005). In each
graph, T'(f) is drawn for xy = 0,0.005,0.01,0.05,0.1. The graphs look like a piecewise linear function as x
moves towards smaller values (thick blue curve). If x is sufficiently large, then 7'( f) looks strictly convex.
The function T'( ) may also appear convex when averaging over unknown parameter values. Finally, it may
be empirically sufficient for the contract in Section 4.2.2/to coordinate if T'(f) is convex for all sufficiently
large f, even if it is concave for small f.

This section formalizes those statements.

Piecewise linear. If the initial fraction of the population that is infected is due to a very small exogenous

exposure (small x, so I(0) is close to 0), then we can replace 1(0)/S(0) by zero in (3) and conclude:

b — — _
1R S0)=1-9f (48)
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Note that the function % looks like a linear function if Ry is not very large, which is the case for
1—e— 40P

influenza. So the relationship between f and p is almost linear.

By replacing #}% with its Taylor series expansion around zero we have
l1—e™ P

~

p ~ lim [ bo
1—eRop  po—0

———— | + lim
1-— e*ROPOJ po—0

|:1 — (1 + ROPO)eiROPO (p _ 0)

(1 — e*ROPO)2
In order to find the limits we use the Taylor approximation 1 — Ryp for e~107 around zero. Substitute this

approximation into the Taylor series expansion above to obtain

p : Po 11— (1+ Ropo)(1 — Ropo)
7zhm7+hm[ -0
1—eHop Po—0 [1 —-1- Ropo} Po—0 (1 =1~ Ropo)? p=0)

_ 1,
= RO p.
Hence by plugging this last equation instead of # into (48) we have the following linear relationship
1—e—+WP
between attack rate and vaccination fraction:
(- =) - of
p= Ro

Note that the above line has a zero intercept at f = %)0;1 , which is exactly the critical vaccine fraction in
the case of homogeneous population (Hill and Longini, 2003). So clearly p remains zero for the case where
f is greater than the critical vaccination fraction as the attack rate is a nonnegative parameter, and 7'(f) is

approximated by

N(—1/Ry)—Nof, 0< f<f°

0, fr<f=<i
While this equation has an epidemiologically attractive interpretation, it estimates the actual 7'(0) poorly due
to the Taylor series approximations. However, the f- and p-axis intercepts of the roughly linear plot when
I(0) ~ 0 can be more accurately modeled by replacing N (1 — 1/Ry) with M = Npg, where p solves (48)

when f = 0; and by replacing the usual individual-level vaccine effect parameter, ¢, with a parameter )
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Table 3: Comparison between the linear approximation and actual 7'( f)

f¢ ng Game Problem | f° n% System Problem
Actual T(f) 0.98 | 2.61 x 108 [ 1.00 x 10 ] 0.527 | 2.90 x 108 8.84 x 10”
Linear approximation | 0.91 | 2.40 x 10% [  9.68 x 10° [ 0.517 | 2.82 x 10° 8.52 x 10°
Gap 71% 8% 32% 1.9% 2.7% 3.6%

that represents the number of infections averted in the population, v, by one additional vaccination. (The
parameters ¢ and 1 are not necessarily the same, due to nonlinear infection dynamics.)

Hence we define the adjusted piecewise linear approximation for total number infected to be
Npo— Nipf, 0<f<f°

0, fo<r<,

where ¢ = pg Jg)o_d)l is chosen such that 7°(f) hits the f axis at the critical vaccine fraction. Figure i and
Figure 3/show the linear approximation versus the actual values of Iy. We have tested this approximation on
a variety of parameters which are reasonable for the case of influenza. The gap between the actual 7'( ) and
the piecewise linear approximation for the game and the system problems is less than 2 ~ 3% and the gap
between the optimal decision variables is typically less than 4 ~ 5%. Table 3l illustrates these outcomes for
the following parameter values: ¢ = 0.9, N =3 x 10%, d=1, ¢ =6, Ry =187, x = 0, p, =12, b =

95, po, =40, U ~ gammal|5,1/5]).

Convex case. We now derive some of the properties of 7'(f) = Np to argue that it is convex when ¥, and

therefore 1(0) = (1 — ¢f)x, is sufficiently large. Recall (3) and that S(0) = (1 — ¢f)(1 — x) to obtain
p=(1-0f)~ (1= 6f)1 —x)e Hor (49)

Our goal is to show that p is a convex function of f. Notice that in (49) p is an implicit function of f and

to find its second derivative we will use the following lemma from calculus.

Lemma 17 Ify = f(x) then

Py 1 P
oy? (8f(x)>3 Ox?
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By rearranging terms in (49), we can solve for f in terms of p:

1 p
F=5l- J
¢ 1—(1— yx)eFor
Hence by taking the derivative:

1A= (Lt Rop)(t - x)e~For
6" (1—(1—x)efory2

f(p) =

First of all we show that f’(p) < 0. It is enough to show that the numerator in f’(p) is positive. But we

know that:

1— (14 Rop)(1 - x)e P > 1 (14 Ryp)eTtor

> 0

The last inequality is based on the fact that the function (1 + z)e” obtains its maximum at zero in the interval
[0, 1]. Hence by basic calculus since g—g is negative so is g—? So far we have shown that p is a decreasing
function of f, when y > 0.

The second piece of the puzzle is to find the relationship for f”(p) or the sign of it. By taking the second

derivative of f we have:

1| Ro(1- x)eFor [Rop — 2+ (Rop +2)(1 — X)efRop]

f(p) = p [1 (- X)G*RUP]?)

Note that if the second derivative of f(p) were nonnegative, then by the nonpositivity of f’(p) and using the
above lemma, we would have g—jg > 0, which is the desired result in this part.

We will show that f”(p) is not always positive, but that f”/(p) > 0 for values of x far enough from zero
and small enough values of p. To show this, we note that the denominator is positive, and we evaluate the
sign of the f”(p)’s numerator. Since Ro(1 — X)e*Rop is always positive, we find the sign of (Rop — 2) +
(Rop +2)(1 — x)e~For.

Note that if Rgp > 2, then f(p) would be concave (since the numerator would be positive), and by the

lemma, T'(f) would be concave, independent of the value of y. The numerator may also be positive if p is
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big enough (so that f is small enough). On the other hand, many estimates of Ry for influenza are less than
2, and for those estimate that are larger than 2, Ryp < 2 for even small to moderate values of f. We observe
two things, numerically. (i) If Ry < 2 and x big enough, then attack rate is convex independent of f. (ii)
Otherwise attack rate is convex for big enough values of f (which lead to small enough p). The reason is
that for sufficiently small p, terms in the numerator that contain p become negligible, so the numerator is
negative, making f convex. The related statement for the attack rate is that for big enough values of f (small
enough p), the attack rate is a convex function of f.

This is sufficient to show that all of our results still hold true even when attack rate is not completely
convex, i.e., the contract is still coordinating for the case where the function 7'( f) is first a concave but after
some point convex function of f, when the optimal f is in the region where 7'(f) is convex. In fact our
examples in man paper are based on this property, since 7°( f) is not precisely convex for those sets of values

of the parameters.

Uncertain outbreak parameters. Throughout the main paper, it is assumed that exact values of the repro-
duction number (Ry), the vaccine efficiency (¢) and the fraction of susceptible individuals that are initially
infected (x) are known. This might not be the case for a real influenza season. Although in general Ry, ¢, x
are random variables, our analysis only depends on these parameters through the function 7'(f). In this
section we show that the shape of function 7'( f) can still be convex, even with uncertainty about the values
of epidemic parameters.

In order to incorporate this randomness, the definition of 7( f) should be the expected number of infected
population, where expectation is taken over the uncertain Rg, ¢, y. This way the definition of f requires
that the marginal (expected) benefit balance with the (expected) marginal cost. For this purpose we take
a mixture of T, 4 (f) (the number infected, given the specified Ry, ¢, ), in order to obtain T'(f) =
Ery¢x[Tro6x(f)]. Soitis not surprising that if each individual T, 4 , (f) is convex then 7'( f) is convex

as well, since integration preserves convexity. To illustrate this, Figure 4' shows the graph 7'(f) when
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0.8

Figure 4: Graph of T'(f) by averaging over random Ry, ¢, X.

Ry ~ uniform[1.5,2], ¢ ~ beta(a = 15,8 = 5) (i.e. u = 0.75, 02 = 0.0945), and y ~ beta(a =
0.96, 3 = 47.04) (i.e. o = 0.02, 02 = 0.022). For this purpose we sampled 99 observation of each random
variable, corresponding to CDF values at 0.005,0.015,0.025, - - - ,0.995 then by taking the inverse integral

obtained the corresponding values, and numerically averaged to find the resulting 7°(f).



