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Abstract
Selection procedures are used in a variety of applications to select the best of a finite set of alternatives.

‘Best’ is defined with respect to the largest mean, but the mean is inferred with statistical sampling, as
in simulation optimization. There are a wide variety of procedures, which begs the question of which
selection procedure to select. The main contribution of this paper is to identify, through extensive
experimentation, the most effective selection procedures when samples are independent and normally
distributed. We also (a) summarize the main structural approaches to deriving selection procedures,
(b) formalize new sampling allocations and stopping rules, (c) identify strengths and weaknesses of the
procedures, (d) identify some theoretical links between them, (e) and present an innovative empirical test
bed with the most extensive numerical comparison of selection procedures to date. The most efficient and
easiest to control procedures allocate samples with a Bayesian model for uncertainty about the means,
and use new adaptive stopping rules proposed here.

Selection procedures are intended to select the best of a finite set of alternatives, where best is determined

with respect to the largest mean, but the mean must be inferred via statistical sampling (Bechhofer et al.

1995). Selection procedures can inform managers how to select the best of a small set of alternative actions

whose effects are evaluated with simulation (Nelson and Goldsman 2001), and have been implemented in

commercial simulation products. Selection procedures have also attracted interest in combination with tools

like multiple attribute utility theory (Butler et al. 2001), evolutionary algorithms (Branke and Schmidt 2004),

and discrete optimization via simulation (Boesel et al. 2003).

Three main approaches to solving the selection problem are distinguished by their assumptions about

how the evidence for correct selection is described and sampling allocations are made: the indifference zone

(IZ, Kim and Nelson 2006), the expected value of information procedure (VIP, Chick and Inoue 2001a), and

the optimal computing budget allocation (OCBA, Chen 1996) approaches. IZ procedures typically allocate

samples in order to provide a guaranteed lower bound for the frequentist probability of correct selection (PCS),

with respect to the sampling distribution, for selection problems in a specific class (e.g., the mean of the best

is at least a prespecified amount better than each alternative). The VIP approach describes the evidence for

correct selection with Bayesian posterior distributions, and allocates further samples using decision-theory

tools to maximize the expected value of information in those samples. The OCBA is a heuristic that uses a

normal distribution approximation for the Bayesian posterior distribution of the unknown mean performance

of each alternative in order to sequentially allocate further samples. Each approach stipulates a number

of different sampling assumptions, approximations, stopping rules and parameters that combine to define

a procedure. With so many variations, the question of which selection procedure to select arises. The

question is important because the demands that are being placed upon simulation optimization algorithms

are increasing. The answer may also provide new insights about differences in the empirical performance of

three distinct approaches to statistical decision making (classical, or frequentist, statistics; Bayesian decision

theory; and heuristic models about the probability of correct selection).
∗Institute AIFB, University of Karlsruhe, Germany {branke,csc}@aifb.uni-karlsruhe.de
†INSEAD, Technology and Operations Management Area, stephen.chick@insead.edu

Sep 2005; Revised 4 May 2006; 11 Oct 2006; for Management Science 18 Jan 2007 p. 1

{branke,csc}@aifb.uni-karlsruhe.de�
stephen.chick@insead.edu�


Branke, Chick, Schmidt Selecting a Selection Procedure

A thorough comparison of these three approaches has not previously been done. Initial work shows

that special cases of the VIP outperform specific IZ and OCBA procedures (in a comparison of two-stage

procedures), and specific sequential VIP and OCBA procedures are more efficient than two-stage procedures

(Inoue et al. 1999). TheKN family of procedures is effective among IZ procedures (Kim and Nelson 2006).

No paper has studied more than a limited set of procedures with respect to a moderate experimental test bed.

This paper addresses the unmet need for an extensive comparison of IZ, VIP and OCBA procedures. §1

summarizes the main approaches to selection procedures, derives new variants and formalizes new stopping

rules for the VIP and OCBA procedures. Each procedure makes approximations, and none provides an

optimal solution, so it is important to understand the strengths and weaknesses of each approach. §2 describes

new measurements to evaluate each with respect to:

• Efficiency: The mean evidence for correct selection as a function of the mean number of samples.

• Controllability: The ease of setting a procedure’s parameters to achieve a targeted evidence level.

• Robustness: The dependency of a procedure’s effectiveness on the underlying problem characteristics.

• Sensitivity: The effect of the parameters on the mean number of samples needed.

Some practitioners desire a (statistically conservative) lower bound for the targeted evidence level, such as a

frequentist PCSIZ guarantee, but this may lead to excessive sampling. Together, efficiency and controllability

indicate how close to the desired evidence level a procedure gets while avoiding excess sampling.

The procedures are compared empirically on a large variety of selection problems described in §3. The

test bed is unique not only because of its size, but also by its inclusion of randomized problem instances, in

addition to structured problem instances that are usually studied, but that are unlikely to be found in practice.

The focus is on applications where the samples are jointly independent and normally distributed with

unknown and potentially different variances, or nearly so as is the case in stochastic simulation with batching

(Law and Kelton 2000). Branke et al. (2005) presented a subset of preliminary empirical results, and assessed

additional stopping rules that were somewhat less efficient than those considered below.

§4 empirically compares the different selection procedures on a variety of test problems. The results show

that a leading IZ procedure, called KN++ (described below), is more efficient than the original VIP and

OCBA procedures, but is statistically conservative which may result in excessive sampling. In combination

with the new stopping rules, the VIP and OCBA procedures are most efficient. They also tend to be more

controllable and robust in the experiments below. §5 recommends those procedures, and discusses key issues

for selecting a selection procedure. Appendices in the Online Companion generalize an OCBA procedure,

give structural results that suggest why certain VIP and OCBA procedures perform similarly, describe the

implementation, and display and interpret additional numerical results.

1 The Procedures

We first formalize the problem, summarize assumptions and establish notation. §1.1 describes measures of

the evidence of correct selection and, based thereon, introduces new stopping rules that improve efficiency.

§1.2-1.4 describe existing and new procedures from the IZ, VIP and OCBA approaches.
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The best of k simulated systems is to be identified, where ‘best’ means the largest output mean. Analogous

results hold if smallest is best. Let Xij be a random variable whose realization xij is the output of the jth

simulation replication of system i, for i = 1, . . . , k and j = 1, 2, . . .. Let wi and σ2
i be the unknown

mean and variance of simulated system i, and let w[1] ≤ w[2] ≤ . . . ≤ w[k] be the ordered means. In

practice, the ordering [·] is unknown, and the best system, system [k], is to be identified with simulation.

The procedures considered below are derived from the assumption that simulation output is independent and

normally distributed, conditional on wi and σ2
i , for i = 1, . . . , k.

{Xij : j = 1, 2, . . .} iid∼ Normal
(
wi, σ

2
i

)

Although the normality assumption is not always valid, it is often possible to batch a number of outputs so

that normality is approximately satisfied. Vectors are written in boldface, such as w = (w1, . . . , wk) and

σ2 = (σ2
1, . . . , σ

2
k). A problem instance (configuration) is denoted by χ = (w, σ2).

Let ni be the number of replications for system i run so far. Let x̄i =
∑ni

j=1 xij/ni be the sample mean

and σ̂2
i =

∑ni
j=1(xij − x̄i)2/(ni − 1) be the sample variance. Let x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(k) be the ordering

of the sample means based on all replications seen so far. Equality occurs with probability 0 in contexts of

interest here. The quantities ni, x̄i, σ̂
2
i and (i) are updated as more replications are observed.

Each selection procedure generates estimates ŵi of wi, for i = 1, . . . , k. For the procedures studied here,

ŵi = x̄i, and a correct selection occurs when the selected system, system D, is the best system, [k]. Usually

D = (k) is selected as best.

If Tν is a random variable with standard t distribution with ν degrees of freedom, we denote (as do

Bernardo and Smith 1994) the distribution of µ+ 1√
κ
Tν by St (µ, κ, ν). If ν > 2 the variance is κ−1ν/(ν−2).

If κ = ∞ or 1/0, then St (µ, κ, ν) denotes a point mass at µ. Denote the cumulative distribution function

(cdf) of the standard t distribution (µ = 0, κ = 1) by Φν() and probability density function (pdf) by φν().

1.1 Evidence for Correct Selection
This section provides a unified framework for describing both frequentist and Bayesian measures of selection

procedure effectiveness and the evidence of correct selection. They are required to derive and compare the

procedures below. They are also used within the Bayesian procedures (VIP and OCBA) to decide when the

evidence of correct selection is sufficient to stop sampling.

The measures are defined in terms of loss functions. The zero-one loss function, L0−1(D,w) =

11
{
wD 6= w[k]

}
, equals 1 if the best system is not correctly selected, and is 0 otherwise. The opportu-

nity cost Loc(D,w) = w[k]−wD is 0 if the best system is correctly selected, and is otherwise the difference

between the best and selected system. The opportunity cost makes more sense in business applications.

The IZ procedures take a frequentist perspective. The frequentist probability of correct selection (PCSIZ)

is the probability that the mean of the system selected as best, system D equals the mean of the system with

the highest mean, system [k], conditional on the problem instance (this allows for ties). The probability is

with respect to the simulation output Xij generated by the procedure (the realizations xij determine D).

PCSIZ(χ) def= 1− E [L0−1(D,w) |χ] = Pr
(
wD = w[k] |χ

)
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Indifference zone procedures attempt to guarantee a lower bound on PCSIZ, subject to the indifference-zone

constraint that the best system is at least δ∗ > 0 better than the others,

PCSIZ(χ) ≥ 1− α∗, for all χ = (w, σ2) such that w[k] ≥ w[k−1] + δ∗. (1)

A selected system within δ∗ of the best is called good. Some IZ procedures satisfy frequentist probability

of good selection guarantees, PGSIZ,δ∗(χ) def= Pr
(
wD > w[k] − δ∗ |χ) ≥ 1− α∗, for all configurations

(Nelson and Banerjee 2001). Let PICSIZ = 1− PCSIZ and PBSIZ,δ∗ = 1− PGSIZ,δ∗ denote the probability

of incorrect and bad selections.

An alternative to a PCS guarantee for the evidence of correct selection is a guaranteed upper bound on

the expected opportunity cost (EOC) of a potentially incorrect selection. The frequentist EOC (Chick and

Wu 2005) is also defined with respect to the sampling distribution,

EOCIZ(χ) def= E [Loc(D,w) |χ] = E
[
w[k] − wD |χ

]
.

Bayesian procedures assume that parameters whose values are unknown are random variables (such as

the unknown means W), and use the posterior distributions of the unknown parameters to measure the quality

of a selection. Given the data E seen so far, two measures of selection quality are

PCSBayes
def= 1− E [L0−1(D,W) | E ] = Pr

(
WD ≥ max

i6=D
Wi | E

)

EOCBayes
def= E [Loc(D,W) | E ] = E

[
max

i=1,2,...,k
Wi −WD | E

]
, (2)

the expectation taken over both D (which is determined by the random Xij) and the posterior distribution

of W, given E . Assuming a noninformative prior distribution for the unknown mean and variance, the

posterior marginal distribution for the unknown mean Wi, given ni > 2 samples, is St
(
x̄i, ni/σ̂2

i , νi

)
,

where νi = ni− 1 (de Groot 1970). Each Bayesian procedure below selects the system with the best sample

mean after all sampling is done, D = (k).

Approximations in the form of bounds on the above losses are useful to derive sampling allocations and

to define stopping rules. Slepian’s inequality (e.g., see Kim and Nelson 2006) implies that the posterior

evidence that system (k) is best satisfies

PCSBayes ≥
∏

j:(j)6=(k)

Pr
(
W(k) > W(j) | E

)
. (3)

The right hand side of Inequality (3) is approximately

PCSSlep =
∏

j:(j)6=(k)

Φν(j)(k)
(d∗jk),

where d∗jk is the normalized distance for systems (j) and (k), and ν(j)(k) comes from Welch’s approximation

for the difference W(k) −W(j) of two shifted and scaled t random variables (Law and Kelton 2000, p. 559):

d∗jk = d(j)(k)λ
1/2
jk with d(j)(k) = x̄(k) − x̄(j) and λ−1

jk =
σ̂2

(j)

n(j)
+

σ̂2
(k)

n(k)
, (4)

ν(j)(k) =
[σ̂2

(j)/n(j) + σ̂2
(k)/n(k)]2

[σ̂2
(j)/n(j)]2/(n(j) − 1) + [σ̂2

(k)/n(k)]2/(n(k) − 1)
.
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We found that the Welch approximation outperformed another approximation in earlier comparisons of

selection procedures (Branke et al. 2005). The Bayesian posterior probability of a good selection, where the

selected system is within δ∗ of the best, can be approximated in a similar manner by

PGSSlep,δ∗ =
∏

j:(j)6=(k)

Φν(j)(k)
(λ1/2

jk (δ∗ + d(j)(k))). (5)

The term EOCBayes may be expensive to compute if k > 2. Summing the losses from (k − 1) pairwise

comparisons between the current best and each other system gives an easily computed upper bound (Chick

and Inoue 2001a, 2002). Let f(j)(k)(·) be the posterior pdf for the difference W(j) −W(k), given E . This is,

approximately, a St
(−d(j)(k), λjk, ν(j)(k)

)
distribution. We denote the standardized EOC function by

Ψν [s]
def=

∫ ∞

u=s
(u− s)φν(u)du =

ν + s2

ν − 1
φν(s)− sΦν(−s). (6)

Chick and Inoue’s upper bound for EOCBayes is easy to approximate, using Bonferroni’s inequality, by

EOCBonf, where

EOCBayes ≤
∑

j:(j)6=(k)

∫ ∞

w=0
w f(j)(k)(w) dw

≈
∑

j:(j)6=(k)

λ
−1/2
jk Ψν(j)(k)

[
d∗jk

] def= EOCBonf (7)

The VIP and OCBA procedures defined below can use the values of EOCBonf and PGSSlep,δ∗ to decide

when to stop sampling. In particular, the following stopping rules are used:

1. Sequential (S): Repeat sampling while
∑k

i=1 ni < B for some specified total budget B.

2. Probability of good selection (PGSSlep,δ∗): Repeat while PGSSlep,δ∗ < 1− α∗ for a specified proba-

bility target 1− α∗ and given δ∗ ≥ 0.

3. Expected opportunity cost (EOCBonf): Repeat while EOCBonf > β∗, for a specified EOC target β∗.

Prior work for sequential VIP and OCBA procedures used the S stopping rule. The other stopping rules

provide the flexibility to stop earlier if the evidence for correct selection is sufficiently high, and allow for

additional sampling when the evidence is not sufficiently high. The IZ requires δ∗ > 0. The VIP and OCBA

permit δ∗ = 0 to obtain a pure PCS-based stopping condition. We use PCSSlep to denote PGSSlep,0.

1.2 Indifference Zone (IZ)
The IZ approach (Bechhofer et al. 1995; Kim and Nelson 2006) seeks to guarantee PCSIZ ≥ 1− α∗ > 1/k,

whenever the best system is at least δ∗ better than the other systems. The indifference-zone parameter δ∗ is

typically elicited as the smallest difference in mean performance that is significant to the decision-maker.

Early IZ procedures were statistically conservative in the sense of excess sampling unless unfavorable

configurations of the means were found. The KN family of procedures, which might be considered state of

the art for the IZ approach, improves sampling efficiency over a broad set of configurations (Kim and Nelson
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2001). The original KN procedure provides a PCS guarantee, and estimates the variance of the output of

each system with the sample variances from a first stage of sampling alone. Procedure KN++ (Goldsman

et al. 2002) updates the sample variance as more samples are observed, but only provides an asymptotic PCS

guarantee as δ∗ → 0. That asymptotic guarantee is also valid with nonnormal samples. We found that more

frequent updates of the sample variance increases efficiency (see Appendix A.1).

Some KN procedures, including KN++, can handle the more general case of correlated simulation

output. Here we specialize Procedure KN++ for independent output. The procedure screens out some

systems as runs are observed, and each noneliminated system is simulated the same number of times. We

used ξ = 1 replication per stage per noneliminated system, and updated the sample variance in every stage.

Procedure KN++ (independent samples)

1. Specify a confidence level 1− α∗ > 1/k, an indifference-zone parameter δ∗ > 0, a first-stage sample
size n0 > 2, and a number ξ of samples to run per noneliminated system per subsequent stage.

2. Initialize the set of noneliminated systems, I ← {1, . . . , k}, set n ← 0, τ ← n0.

3. WHILE |I | > 1 DO another stage:

(a) Observe τ additional samples from system i, for all i ∈ I . Set n ← n + τ . Set τ ← ξ.

(b) Update: Set η ← 1
2

{
[2(1− (1− α∗)1/(k−1))]−2/(n−1) − 1

}
and h2 ← 2η(n−1). For all i ∈ I ,

update the sample statistics x̄i and σ̂2
i .

(c) Screen: For all i, j ∈ I and i > j, set dij ← x̄j− x̄i and εij ← max
{

0, δ∗
2n

(
h2(σ̂2

i +σ̂2
j )

δ∗2 − n

)}
.

If dij > εij then I ← I\{i}. If dij < −εij then I ← I\{j}.

4. Return remaining system, system D, as best.

1.3 Value of Information Procedure (VIP)
VIPs allocate samples to each alternative in order to maximize the expected value of information (EVI) of

those samples. Some balance the cost of sampling with the EVI, and some maximize EVI subject to a sampling

budget constraint (Chick and Inoue 2001a). Procedures 0-1(S) and LL(S) are sequential variations of those

procedures that improve Bonferroni bounds for PCSBayes (the expected 0-1 loss) and EOCBayes, respectively.

An alternative name for EOC is linear loss – hence the name LL. Those procedures allocate τ replications

per stage until a total of B replications are run. The derivation of those procedures assumes that samples are

normally distributed, but the general VIP framework can apply for nonnormal samples too.

This section recalls those procedures, and adapts them to permit the use of the stopping rules in §1.1.

Procedure 0-1.

1. Specify a first-stage sample size n0 > 2, and a total number of samples τ > 0 to allocate per subsequent
stage. Specify stopping rule parameters.

2. Run independent replications Xi1, . . . , Xin0 , and initialize the number of replications ni ← n0 run so
far for each system, i = 1, . . . , k.
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3. Determine the sample statistics x̄i and σ̂2
i , and the order statistics, so that x̄(1) ≤ . . . ≤ x̄(k).

4. WHILE stopping rule not satisfied DO another stage:

(a) Initialize the set of systems considered for additional replications, S ← {1, . . . , k}.

(b) For each (i) in S\{(k)}: If (k) ∈ S then set λ−1
ik ← σ̂2

(i)/n(i) + σ̂2
(k)/n(k), and set ν(i)(k) with

Welch’s approximation. If (k) /∈ S then set λik ← n(i)/σ̂2
(i) and ν(i)(k) ← n(i) − 1.

(c) Tentatively allocate a total of τ replications to systems (i) ∈ S (set τ(j) ← 0 for (j) /∈ S):

τ(i) ←
(τ +

∑
j∈S nj)(σ̂2

(i)γ(i))
1
2

∑
j∈S(σ̂2

j γj)
1
2

− n(i), where γ(i) ←
{

λikd
∗
ikφν(i)(k)

(d∗ik) for (i) 6= (k)∑
(j)∈S\{(k)} γ(j) for (i) = (k)

and the normalized distance d∗ik is as in (4).

(d) If any τi < 0 then fix the nonnegativity constraint violation: remove (i) from S for each (i) such
that τ(i) ≤ 0, and go to Step 4b. Otherwise, round the τi so that

∑k
i=1 τi = τ and go to Step 4e.

(e) Run τi additional replications for system i, for i = 1, . . . , k. Update sample statistics ni ←
ni + τi; x̄i; σ̂2

i , and the order statistics, so x̄(1) ≤ . . . ≤ x̄(k).

5. Select the system with the best estimated mean, D = (k).

The formulas in Steps 4b-4c are derived from optimality conditions to improve a Bonferroni-like bound on the

EVI for asymptotically large τ (Chick and Inoue 2001a). Depending on the stopping rule used, the resulting

procedures are named 0-1(S), 0-1(PGSSlep,δ∗), 0-1(EOCBonf), with the stopping rule in parentheses.

Procedure LL is a variant of 0-1 where sampling allocations seek to minimize EOCBonf.

Procedure LL. Same as Procedure 0-1, except set γ(i) in Step 4c to

γ(i) ←
{

λ
1/2
ik

ν(i)(k)+(d∗ik)2

ν(i)(k)−1 φν(i)(k)
(d∗ik) for (i) 6= (k)∑

(j)∈S\{(k)} γ(j) for (i) = (k)
(8)

1.4 OCBA Procedures
The OCBA is a class of procedures that was initially proposed by Chen (1996) and that has several variations

(e.g. Chen et al. 2000; Chen et al. 2006). The variations involve different approximations for PCSBayes, and

heuristics for how additional samples might improve the probability of correct selection. Here we specify

the idea behind the OCBA and the variations used for this paper.

The OCBA assumes that if an additional τ replications are allocated for system i, but none are allocated

for the other systems, then the standard error for the estimated mean of system i is scaled back accordingly.

The usual OCBA assumes normal distributions to approximate the effect, but we use Student distributions,

W̃i ∼ St
(
x̄i, (ni + τ)/σ̂2

i , ni − 1 + τ
)

W̃j ∼ St
(
x̄j , nj/σ̂2

j , nj − 1
)

for j 6= i,

for consistency with a Bayesian assumption for the unknown σ2
i . Chen et al. (2006) and Branke et al. (2005)

found no notable difference in performance when comparing normal versus Student distributions for the W̃i.

Sep 2005; Revised 4 May 2006; 11 Oct 2006; for Management Science 18 Jan 2007 p. 7



Branke, Chick, Schmidt Selecting a Selection Procedure

The effect of allocating an additional τ replications to system i, but no replications to the others, leads to

an estimated approximate probability of correct selection (EAPCS) evaluated with respect to the distribution

of W̃ = (W̃1, . . . , W̃k), and with W̃(j) − W̃(k) approximated using Welch’s approximation.

EAPCSi =
∏

j:(j)6=(k)

Pr
(
W̃(j) < W̃(k) | E

)

≈
∏

j:(j)6=(k)

(1− Φν̃(j)(k)
(λ̃1/2

jk d(j)(k)))

λ̃−1
jk =

σ̂2
(k)

n(k) + τ11 {(k) = i} +
σ̂2

(j)

n(j) + τ11 {(j) = i} (9)

where 11 {·} is 1 if the argument is true, and 0 otherwise.

These approximations result in a sequential OCBA algorithm that greedily allocates samples to systems

that most increase EAPCSi − PCSSlep at each stage. An innovation for the OCBA here is that sampling

continues until a stopping rule from §1.1 is satisfied.

Procedure OCBA.

1. Specify a first-stage sample size n0 > 2, a number q of systems to simulate per stage, a sampling
increment τ > 0 to allocate per subsequent stage, and stopping rule parameters.

2. Run independent replications Xi1, . . . , Xin0 , and initialize the number of replications ni ← n0 run so
far for each system, i = 1, . . . , k.

3. Determine the sample statistics x̄i and σ̂2
i and the sample mean ordering, so that x̄(1) ≤ . . . ≤ x̄(k).

4. WHILE stopping rule not satisfied DO another stage:

(a) Compute EAPCSi for i = 1, . . . , k.

(b) Set τi ← τ/q for the q systems with largest EAPCSi − PCSSlep, set τj ← 0 for the others.

(c) Run τi additional observations from system i.

(d) For all i with τi > 0, update ni ← ni + τi, the sample statistics x̄i, σ̂2
i , and order statistics, so

that x̄(1) ≤ . . . ≤ x̄(k).

5. Select the system with the best estimated mean, D = (k).

He, Chick, and Chen (2006) proposed an OCBA variation, OCBALL, that accounts for the expected

opportunity cost, and showed that the original OCBA procedure, the new OCBALL and LL perform better

than some other procedures in several empirical tests. By analogy with EAPCSi above, set

EEOCSi =
∑

j:(j)6=(k)

λ̃
−1/2
jk Ψν̃(j)(k)

[
λ̃

1/2
jk d(j)(k)

]
.

Procedure OCBALL is a variation of OCBA that allocates replications to systems that maximize the im-

provement in expected opportunity cost (linear loss), EOCBonf − EEOCSi, in Step 4b.
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Yet another OCBA heuristic incorporates the indifference zone parameter δ∗ into the sampling allocation,

not just the stopping rule. Let EAPGSi,δ∗ generalize PGSSlep,δ∗ by computing it with respect to the distribution

of W̃. ProcedureOCBAδ∗ allocates replications to systems that most improve an estimated probability of a

good selection, EAPGSi,δ∗ − PGSSlep,δ∗ , in Step 4b. This differs from how δ∗ was incorporated into OCBA

by Chen and Kelton (2005), but OCBAδ∗ was found to be more efficient in Branke et al. (2005).

All OCBA variations above were implemented as fully sequential procedures here (q = 1 and τ = 1).

The OCBA heuristics in the literature to date assume normally distributed samples. Nonetheless, only

the asymptotic normality of the posterior distribution of the mean is needed to justify the OCBA heuristic. In

fact, posterior distributions converge to a normal distribution under relatively general sampling assumptions

(Bernardo and Smith 1994, Theorem 5.14). That result can be used to asymptotically justify the OCBA

heuristic under those relatively general sampling assumptions too, not just for normally distributed samples.

1.5 Summary of Tested Procedures
In summary, IZ procedures allocate samples in order to provide frequentist (PCSIZ or EOCIZ) correct selection

guarantees, but do not yet have provable properties regarding the EVI of those samples, nor do they quantify

the posterior PCS given the output of a single application of a selection procedure. The VIP and OCBA

procedures can quantify the posterior evidence for correct selection, and can stop when desired levels of

evidence are achieved, but do not yet have provable frequentist correct selection guarantees. In addition, the

VIP allocates samples in a way that provides provable statements about the EVI of those samples.

In addition to KN++, we tested six different allocation procedures, namely

• Equal, which allocates an equal number of samples to each alternative,

• two VIP procedures that allocate with a PCS (denoted 0-1) or EOC (denoted LL) criterion,

• three OCBA procedures that allocate with a PCS (denotedOCBA), PGS (denotedOCBAδ∗), or EOC

(denoted OCBALL) criterion.

Each allocation except for KN++ was used in combination with each of three stopping rules defined

in §1.1 (S , PGSSlep,δ∗ , and EOCBonf). Overall, this resulted in 19 different procedures. So many variations

were tested (a) to be inclusive and match all combinations in order to better understand the relative influence

of each, (b) to unify separate streams of literature where small numbers of variants are compared at a time

and numerical tests do not tend to be comparable, and (c) show the improvement in both VIP and OCBA

procedures with stopping rules other than S (the default in all past VIP and OCBA work). Branke et al.

(2005) reports preliminary results for other allocations and stopping rules that turned out to be less effective

than those considered in this paper. We also tested the effect of including prior information about the means

and variances in the VIP and OCBA configurations, as discussed in §3 below.

At each iteration, the time to compute an allocation is proportional to the square of the number of non-

eliminated systems forKN++, to k2 in the worst case for the VIP (to k if τ is large); and to k for the OCBA.

For most practical applications, the time to compute the allocation is much shorter than the duration of a

typical simulation. Each procedure can allocate multiple samples at a time if that is not the case.
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2 Evaluation Criteria

There are several ways to evaluate selection procedures, including the theoretical, empirical, and practical

perspectives. §1 indicates that the three approaches make different basic assumptions. Each uses different

approximations or bounds. Theory that directly relates the three approaches is therefore difficult to develop,

although theoretical derivations in Appendix B explain why OCBALL and LL perform similarly.

We turn to the empirical and practical perspectives. The efficiency of a procedure is a frequentist

measure of evidence for correct selection (PCSIZ, PGSIZ,δ∗ or EOCIZ) as a function of the average number

of replications, E[N ]. As a function of each problem instance and sampling allocation, the stopping rule

parameters implicitly define efficiency curves in the (E[N ], PCSIZ) plane. For KN++, or for the PGSSlep,δ∗

stopping rule, for example, varying α∗ generates an efficiency curve for any fixed δ∗. Varying the budget, B

for the S stopping rule and varying β∗ for the EOCBonf stopping rule also define efficiency curves. Efficiency

curves for EOCIZ and PGSIZ,δ∗ are defined similarly. Appendix A.7 discusses the distribution of the number

of samples that are required by each procedure, not just the mean.

Dai (1996) proved exponential convergence for ordinal comparisons in certain conditions, so efficiency

curves might be anticipated to be roughly linear on a semi-log scale, (E[N ], log(1−PCSIZ)). ‘More efficient’

procedures have lower efficiency curves.

Efficiency curves ignore the question of how to set a procedure’s parameters to achieve a particular

PCSIZ or EOCIZ. As a practical matter, one expects some deviation between a stopping rule target, say

PCS ≥ 1− α∗ > 1/k, and the actual PCSIZ achieved. The deviation between the desired and realized

performance is measured with target curves that plot (log α∗, log(1−PCSIZ)) for PCS-based targets 1− α∗,

and (log β∗, log EOCIZ) for opportunity cost targets β∗. Procedures whose target curves follow the diagonal

y = x over a range of problems are ‘controllable’ in that it is possible to set parameter values to obtain a

desired level of correct selection. ‘Conservative’ procedures have target curves that tend to be below y = x,

and are said to ‘overdeliver’ because the frequentist measure for correct selection exceeds the desired target.

A procedure that is conservative may have a desirable frequentist guarantee for PCSIZ, but strong overdelivery

results in excessive sampling. A controllable procedure may not have a PCSIZ guarantee if the target curve

varies slightly above and below the diagonal. We say that a procedure is highly effective, if it is both efficient

and controllable.

Target curves can also assess whether Bayesian PCS goals map well to PCSIZ or not (the VIP and OCBA

do not yet claim PCSIZ guarantees).

3 Test Bed Structure

A large number of problem instances assessed the strengths and weaknesses of each procedure. We literally

explored many thousands of combinations of the number of systems, the first stage sampling size, specific

configurations, allocations, stopping rules and their parameters, performance measures, etc. We tested

random problem instances and the ability to use prior information about the unknown means. Design settings

were chosen to explore first-order effects of the stopping rules and each parameter of the configurations and

allocations, but not interactions. Appendix D gives further details about the structure of the experiments.

In a slippage configuration (SC), the means of all systems except the best are tied for second best. A
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SC is identified by the number of systems, the difference in means of the best and each other system, and the

variances of each system. The parameters δ, ρ describe the configurations we tested.

X1j
iid∼ Normal

(
0, σ2

1

)

Xij
iid∼ Normal

(−δ, σ2
1/ρ

)
for systems i = 2, . . . , k

If ρ = 1, then all systems have the same variance, and ρ < 1 means that the best system has a smaller

variance. We set σ2
1 = 2ρ/(1 + ρ) so that Var[X1j −Xij ] is constant for all ρ > 0.

In a monotone decreasing means (MDM) configuration, the means of all systems are equally spaced out

so that some systems are quite a bit inferior to the best. The parameters δ and ρ describe the configurations

that we tested. The outputs were jointly independent, and we set σ2
1 like in SC.

Xij ∼ Normal
(−(i− 1)δ, σ2

1/ρi−1
)

for systems i = 1, . . . , k

Values of ρ < 1 mean that better systems have a smaller variance. For sufficiently small ρ, the probability

that the worst system has the best observed mean is higher than the probability for the second best system.

For the SC and MDM configurations we tested hundreds, but not all, of the following combinations:

k ∈ {2, 5, 10, 20, 50}, δ ∈ {0.25, 0.354, 0.5, 0.707, 1}, ρ ∈ {0.125, 0.177, 0.25, …, 2.828, 4} (ratios

of
√

2), and n0 ∈ {4, 6, 10}. We then varied δ∗ ∈ {0, 0.05, 0.1, . . . , 0.6} and α∗ ∈ [0.001, 0.5] for the

PGSSlep,δ∗ stopping rule and KN++, and varied β∗ ∈ [0.001, 0.5] for the EOCBonf stopping rule.

Assessments of selection procedures in the literature usually apply procedures to a specific set of structured

problems, as above. Such structured problem instances are atypical in practice. A problem found in practice

may be considered “random”. Random problem instance (RPI) configurations sample the problem instance

χ prior to applying a selection procedure. In each RPI configuration below, the output is jointly independent,

Xij
iid∼ Normal

(
wi, σ

2
i

)
for i = 1, . . . , k, conditional on the problem instance. There is no objectively best

distribution for sampling problem instances, so we make arbitrary choices and identify the biases of each.

The first RPI configuration (RPI1) samples χ from the normal-inverse gamma family. A random χ is

generated by sampling the σ2
i independently, then sampling the Wi, given σ2

i ,

p(σ2
i ) ∼ InvGamma (b, c) (10)

p(Wi |σ2
i ) ∼ Normal

(
µ0, σ

2
i /η

)
.

If S ∼ InvGamma (b, c), then E[S] = c/(b− 1), S−1 ∼ Gamma (b, c), E[S−1] = bc−1 and Var[S−1] = bc−2.

Increasing η makes the means more similar and therefore the problem harder. We set c = b − 1 > 0 to

standardize the mean of the variance to be 1, and set µ0 = 0 . Increasing b reduces the difference between

the variances. We tested many combinations out of k ∈ {2, 5, 10, 20}, η ∈ {0.354, 0.5, . . . , 4} (ratios of√
2), b ∈ {2.5, 100}, and n0 ∈ {4, 6, 10}. The derivations of the VIP and OCBA procedures assume η → 0.

The RPI1 configuration permits a test of whether the VIP and OCBA procedures can benefit from using

the sampling distribution of χ in (10) to describe prior judgement about the means and variances of each

system. §1 does not allow for this directly, but the mathematical development to do so was provided elsewhere
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for the VIP (Chick and Inoue 1998, 2001a). In summary, the posterior distribution of Wi, given the prior

distribution in (10) and data Ei = (xi1, . . . , xini), is

p(σ2
i | Ei) ∼ InvGamma

(
b′, c′

)

p(Wi |σ2
i , Ei) ∼ Normal

(
µ′0, σ

2
i /η′

)
,

where b′ = b + ni/2, c′ = c + ( ηni

η+ni
(µ0 − x̄i)2 +

∑ni
j=1(xij − x̄i)2)/2, µ′0 = ηµ0+nix̄i

η+ni
, and η′ = η + ni.

To apply that result to all VIP procedures in §1.3, substitute each x̄i with µ′0; replace each σ̂2
i with c′/b′; and

replace each ni with η′, except in the degrees of freedom, where ni− 1 should be replaced with 2b′. To date,

the OCBA has always assumed a noninformative prior distribution. Nonetheless, analogous substitutions

allow OCBA and OCBALL to use other prior distributions for the unknown means and variances.

A second RPI configuration (RPI2) samples problem instances from a distribution other than normal-

inverted gamma to reduce any potential advantage for the VIP and OCBA approaches. We chose RPI2 to

independently sample from:

p(σ2
i ) ∼ InvGamma (b, c)

p(Wi |σ2
i ) ∼ (−1)aExponential

(
(η/σ2

i )
1/2

)
,

where the mean of an Exponential (λ) distribution is 1/λ. There are typically several competitors for the

best if a = 1 and few competitors for the best if a = 0. A larger η makes for harder problems with closer

means. Heterogeneity in the variances is controlled with b and c. We tested values of k, η, b, n0 as in RPI1.

The SC favors IZ procedures in that IZ procedures provide a minimal target performance with respect

to a least favorable configuration (LFC). For many IZ procedures, the SC with δ = δ∗ is a LFC. Although

the LFC of the KN family has not been proven, empirical studies of KN -type procedures often assess that

configuration. The RPI1 (η near 0) favors the VIP and OCBA, as the derivation of those procedures assumes

prior probability models that are similar to the sampling distribution of the problem instances. The MDM,

RPI1 (larger η) and RPI2 configurations do not appear to favor any procedure in this paper.

4 Empirical Results

It is impossible to present all of the numerical results in one short article. This section summarizes the

main qualitative observations from the analysis. Appendix A provides more numerical results. Appendix C

describes the implementation.

In the following analysis, each point that defines each efficiency and target curve (one for each combination

of problem instance, procedure, and choice of parameters) was estimated with 105 samples (applications of

a procedure). To sharpen the contrasts between different procedures, common random numbers (CRN) were

used to generate common RPI configurations, and to synchronize the samples observed across procedures.

Samples were independent within each procedure. The notation KN++δ∗ specifies the choice of δ∗ for

KN++. By default, n0 = 6 unless specified otherwise.

Two Systems, SC/MDM. When there are k = 2 systems, the SC and MDM configurations are equivalent,

and PICSIZ is proportional to EOCIZ. When the variances are known and equal, it is optimal to sample
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Figure 1: Efficiency of different stopping rules (for
Equal) and KN++ (SC, k = 2, δ = 0.5, ρ = 1).
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Figure 2: Target curves of Equal(PGSSlep,δ∗) and
KN++ depend on δ∗. (SC, k = 2, δ = 0.5, ρ = 1).

equally often from both systems from both frequentist and Bayesian EVI perspectives (for both the 0 − 1

and EOC loss functions, e.g. Gupta and Miescke 1994), so Procedure Equal samples optimally for such

configurations.

Figure 1 demonstrates the effect of different stopping rules on efficiency for a given sampling allocation

(here, Equal). For k = 2 in particular,KN++ samples each system equally often until the stopping criterion

is met, so it is equivalent to the Equal allocation with a special stopping rule. The EOC-based stopping rule

is more efficient than the PCS-based stopping rule. Both are much more efficient than stopping after a fixed

budget (S) because any additional sampling is adapted to the level of evidence observed so far. That relative

ordering of the stopping rules (EOCBonf beats PCSSlep, which beats S) was observed for all VIP and OCBA

allocations with a similar order of magnitude difference. Similar effects were seen for different δ.

Figure 1 also illustrates that the efficiency of KN++ depends on the setting of δ∗, an observation that

holds for all configurations that we checked for all procedures that use δ∗ (see also Figures 20 and 30 in the

Online Companion). In addition, we note that the efficiency curves for KN++ and Equal(S) are straighter

than for the PCS or EOC stopping rules. Those Bayesian stopping rules cause a slight curvature that is

linked to the choice of n0 (a smaller n0 gives more curvature, more on n0 below). For a higher PICS,

Equal(EOCBonf) is more efficient than KN++, while for a very low PICS, KN++ beats Equal(EOCBonf).

A target plot can show by how much a procedure deviates from the desired goal (overdelivery and

underdelivery). The SC configuration for the target plot in Figure 2 is the same configuration that was used

for the efficiency plot in Figure 1. The target line for the PCS-based stopping rule is below the diagonal, which

means that the obtained PICSIZ is smaller than the desired goal α∗. For example, for a desired α∗ = 0.02, a

PICSIZ = 0.005 is obtained with Equal(PICSIZ). As δ∗ increases for the PGSIZ,δ∗ stopping rule, the target

curve shifts upward (the target is not obtained for δ∗ > 0.5). The target plot for KN++0.5 follows the

diagonal well, meaning that the obtained PICSIZ matches the desired goal α∗ well for this configuration (this

was observed for KN++ with all SC configurations that had k ≥ 2 and δ∗ = δ). As δ∗ is reduced, the line

tilts downward, meaning that KN++ becomes extremely conservative.
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Figure 3: Sensitivity of E[N ] to choice of δ∗. (SC,
k = 2, δ = 0.5, ρ = 1).

The consequences of conservativeness can be derived by looking at the efficiency and target plots together.

For example, the x-axis intercept for the target plot ofKN++0.3 is 0.025, meaning that a goal of α∗ = 0.025

resulted in an actual PICSIZ = 0.001 (overdelivers PCS). In Figure 1, the mean number of replications for

KN++0.3 that corresponds to PICSIZ = 0.001 is E[N ] = 68 replications. Figure 1 also indicates that the

mean number of replications that are required to achieve a desired PICSIZ of α∗ = 0.025 with KN++0.3 is

E[N ] = 34, i.e. the procedure runs twice as long as necessary.

Figure 3 illustrates this mapping from α∗ to E[N ] more fully. KN++ is extremely conservative when

δ∗ ¿ δ, but the PGSSlep,δ∗ stopping rule is not (here, with Equal). This shows that a procedure with good

efficiency curves can require much more sampling than is required to achieve a given level of evidence for

correct selection, if that procedure is conservative. On the other hand, the PGS stopping rule has the risk of

delivering a PICSIZ higher than desired (for Equal(PGSSlep,0.5), the PCS target is not met).

Another aid to interpreting efficiency and target curves comes from noting that the efficiency curve for

KN++0.7 in Figure 1 terminates near the level of PICSIZ = 0.009. That is symptomatic of an underdelivery

of PICSIZ, as we tested values of α∗ down to 0.001. Figure 2 corroborates this underdelivery, as the target plot

forKN++0.7 in Figure 2 is above the diagonal. This particular case of underdelivery is fully consistent with

the IZ approach, since the indifference zone parameter exceeds the difference in means (δ∗ = 0.7 > δ = 0.5).

Figure 4 shows how different sampling allocations compare for a given stopping rule (here, for EOCBonf).

Equal performs most efficiently (it is optimal for this particular setting), with 0-1 andOCBA following. LL
performs identically to 0-1 for this problem (not shown, to avoid cluttering the figure). A similar precedence

is observed for the PCSSlep and PGSSlep,δ∗ stopping rules. For the S stopping rule, all VIP and OCBA

allocations perform about the same as Equal (not shown, to avoid clutter).

With adaptive stopping rules (EOCBonf, PCSSlep, PGSSlep,δ∗), a large number of initial samples per system,

n0, limits the opportunity to make an early selection, but a small n0 increases the probability of poor estimates

of the output mean and variance. For the posterior marginal distributions of the unknown means to have a

finite variance, we require n0 ≥ 4. Figure 5 shows that increasing n0 in Procedure Equal(EOCBonf) increases

the number of samples required to reach relatively low levels of evidence for correct selection, but increases
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Figure 5: Influence of n0 (SC, k = 2, δ = 0.5,
ρ = 1).

the efficiency of the procedure to reach high levels of evidence for correct selection. The differences in the

curves are predominantly attributed to output that causes sampling to stop after very few samples due to

misleadingly low variance and PICS estimates. The OCBA and VIP procedures behave similar to Equal

in this respect for each stopping rule. With the nonadaptive stopping rule (S), they seem insensitive to n0.

Figure 5 also shows that KN++ is insensitive to n0, an observation that held in general.

The EOCBonf stopping rule is sensitive to the difference between the two systems, δ (see Figure 6). It

slightly underdelivers EOCIZ for small δ, and significantly overdelivers for large δ.

Overall, for SC with k = 2 and common variances (ρ = 1), Equal(EOCBonf) and KN++ are the most

efficient. No procedure is fully controllable for SC, k = 2. The Online Companion also argues that we

could not find a general way to “trick” the procedure by setting δ∗ and α∗ to nontraditional values in order

to achieve some actually desired level of PCSIZ.

The remarks so far presume a common variance (ρ = 1). When ρ 6= 1, the equal allocation is not optimal,

and more samples should be distributed to the system with a higher variance. We observed thatKN++ and

Equal become less efficient than the Bayesian allocations as ρ is changed away from 1 (Online Appendix).

SC with k > 2 systems. It is not optimal to sample each system equally often if k > 2, so KN++ and

Equal are no longer optimal in this setting, even if the variances are equal.

A comparison of the efficiency of the different allocation rules, for the EOCBonf stopping rule and k = 10

systems, is illustrated in Figure 7. The settings are comparable to Figure 4, which had k = 2 systems. While

Equal is optimal for k = 2, it performs worst for k = 10. The most efficient allocations are OCBALL and

OCBA, then LL closely behind. KN++ is much less efficient than OCBALL, OCBA and LL (each with

EOCBonf as a stopping rule). The difference between the efficiency of the Bayesian procedures relative to

the Equal and KN++ procedures increases with k (tested k = 2, 5, 10, 20), presumably because they can

allocate more samples to the most relevant (best) system from the beginning. The qualitative nature of this

claim does not change as δ and ρ are individually varied from the values used for the plot.

Other observations for k = 2 that also hold for k = 5, 10 and 20 include: the precedence of the

effectiveness of stopping rules (EOCBonf beats PCSSlep which beats S); the importance of a sufficiently large
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Figure 7: Efficiency with EOCBonf stopping rule
(SC, k = 10, δ = 0.5, ρ = 1).

n0 for the VIP and OCBA procedures; the sensitivity of KN++ to δ∗ but not n0.

Monotone Decreasing Means add the complication that EOCIZ is not proportional to PCSIZ when k > 2.

Figure 8 (which has k = 100), and Figure 26 of the Online Companion, illustrate that the EOCBonf stopping

rule outperforms PCSSlep, which beats S, an order observed for the Equal and all VIP and OCBA allocations,

and all MDM configurations tested. The EOCBonf stopping rule outperforms PCSSlep not only for EOCIZ

efficiency, but also for PCSIZ efficiency.

Figure 8 illustrates another key observation for the MDM configurations. ProcedureKN++ with δ∗ = δ

is typically more efficient than the original VIP and OCBA procedures, which use the S stopping rule.

However, the VIP and OCBA allocations with the new EOCBonf stopping rule are more efficient thanKN++,

due to the flexibility of EOCBonf to stop when, and only when, sufficient evidence for correct selection is

obtained. For each MDM configuration tested, LL(EOCBonf) and OCBALL(EOCBonf) are not statistically

different for efficiency, and they were the most efficient allocations, as in Figure 8. Those two procedures

also perform roughly similar in target plots for most configurations. OCBAδ∗ and 0-1 performed similar to

those procedures when EOCBonf was used. With the S stopping rule, however, 0-1 performed poorly.

Figure 9 illustrates that the target performance of KN++ is again very sensitive to the parameter δ∗.
While KN++ adheres to the target quite well for SC when δ∗ = δ, it significantly overdelivers even for

this setting for the MDM configuration. Procedure OCBALL(PGSSlep,δ∗) is also sensitive to the parameter

δ∗, and fails to obtain the desired PICSIZ for δ∗ > 0.2 even though δ = 0.5. While the target curves for

OCBALL(PGSSlep,δ∗) shift roughly parallel to the diagonal, the target curves of KN++ change in slope.

This means that KN++ becomes more conservative as more extreme levels of evidence (α∗) are sought, if

δ∗ < δ, but OCBALL(PGSSlep,δ∗) tends to be conservative by the same amount, on a log scale. Overall, as

for SC, KN++ and PGSSlep,δ∗ are very sensitive to δ∗ and thus not controllable in the sense defined above.

Figure 10 illustrates the effect of the output variance ratio ρ on different procedures for MDM with

k = 10. With ρ = 1 (equal variance), the best PCSSlep procedures perform somewhat more efficiently than

KN++. Increasing ρ (best systems have larger variance) has little effect on the relative performance of the

procedures. Decreasing ρ to 0.5 (very large variance for the worst systems) increases the total number of
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Figure 10: Effect of variance ratio ρ on efficiency (left panel) and target performance (right panel). (MDM,
k = 10, δ = 0.5). Procedures OCBA and OCBALL use PCSSlep stopping rule. Procedures OCBALL and
LL perform the same (not shown to avoid clutter).

samples for all procedures, but particularly deteriorates the efficiency of KN++ (in far right of efficiency

plot) relative to the PCSSlep procedures. KN++ also overdelivers more than some other procedures (right

panel). The reason is that KN++ samples all noneliminated systems, even those whose means have been

estimated with high precision, until a system is selected as best. The target curves for all procedures are

relatively insensitive to ρ (the target curve depends primarily on the difference between the two systems

competing most for best, so efficiency is affected more than the target curve).

For all SC and MDM configurations and almost all sampling procedures, the efficiency curves exhibit

some curvature. We found several explanations for curved efficiency lines for the OCBA and VIP procedures.

One, a small n0 leads to poor initial estimates of the variance, with a potential for either (a) early stopping

if PICS is strongly underestimated, or (b) a massive number of samples being required if an extremely low

PICS or EOC is desired, initial estimates suggest that the best system is worst, and the procedure then tries to

distinguish between the equal systems in the SC. Both cases are alleviated by increasing n0. Two, the test bed
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pushed the procedures to new limits for numerical stability. Preliminary efficiency plots for some procedures

were somewhat more curved than those presented here. Appendix C describes computational techniques that

we used to reduce that curvature. We believe that this cause was eliminated. Three, exponential convergence

results for ordinal comparisons are asymptotic and available for only some procedures, so straight lines

should not be expected at all levels of PICSIZ and EOCIZ for all procedures.

Random Problem Instances 1. For all RPI configurations, the metrics for the evidence for correct selection

in the efficiency and target plots are generalized to be expectations over the sampling distribution of the

problem instances, e.g. PCSIZ = Eχ[PCSIZ(χ)]. One must choose δ∗ > 0 for the PGSSlep,δ∗ stopping rule

because there is a reasonable probability that the two best systems have very similar means, in which case

δ∗ = 0 results in excessive sampling (so δ∗ = 0 is to be avoided in practice). For the same reason, we

measure efficiency by the probability of a bad selection, PBSIZ,δ∗ , instead of PICSIZ, in this section. A bad

selection has a mean that is at least δ∗ worse than the mean of the best system.

Procedures that use an indifference zone parameter δ∗ can conceivably have their efficiency measured

with a PGSδ∗∗ that use an indifference zone value δ∗∗ 6= δ∗, but philosophically this seems inconsistent.

We therefore use the same “matching” indifference zone parameter δ∗ for both allocations and empirical

measurements, unless otherwise specified (see also Figure 30 in the Online Companion).

For basically all RPI settings, the LL, OCBALL and OCBAδ∗ allocation rules are more or less equally

efficient. The 0-1 allocation is generally less efficient (it is derived with more approximations, and wastes

samples trying to distinguish between two very close competitors in the RPI) and Equal is worst. Figure 11

makes this point for the S stopping rule.

While the difference in efficiency among the allocation rules is rather small for RPI, the performance

of the stopping rules varies widely. Figure 12 compares different stopping rules in combination with Equal

allocation based on PGSIZ,δ∗ efficiency. Clearly, the PGSSlep,δ∗ stopping rule with a matching δ∗ is the most

efficient (and the target curve is also good in this setting).

For EOCIZ efficiency, settings for δ∗ exist so that PGSSlep,δ∗ is more efficient than the EOCBonf stopping

rule, see Figure 13 (left panel). But we were not able to find a way to pick δ∗ in PGSSlep,δ∗ to control EOCIZ
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Figure 13: Efficiency (left) and target (right) for Equal allocation and different stopping rules w.r.t. EOCIZ
(RPI1, k = 5, η = 1, b = 100). For PGSSlep,δ∗ stopping, β∗ is approximated by α∗δ∗
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Figure 14: Comparison ofOCBALL(PGSSlep,δ∗) and KN++ for PBSIZ,δ∗ target (left panel) and number of
samples (right panel) for different δ∗ and α∗ (RPI1, k = 50, η = 1, b = 100).

(the right panel shows a lack of controllability if one were to try to control EOCIZ by setting β∗ = δ∗α∗,
which is the expected opportunity cost for the LFC with respect to PCS for a number of IZ procedures).

Several efficiency curves, in particular Equal(S) in Figure 12 and Figure 13, are more curved for the RPI1

results than for the SC and MDM results. That curvature is largely due to a very large number of samples

for a few very “hard” configurations (the best two systems have very close means and large variances).

For the RPI1 configurations,LL,OCBALL andOCBAδ∗ , each with the PGSSlep,δ∗ stopping rule, typically

outperform KN++ for efficiency and controllability. Figure 14 illustrates this observation by depicting the

effect of different δ∗ and α∗ on the number of samples required byKN++ andOCBALL(PGSSlep,δ∗), and the

ability to deliver the desired PGS (the δ∗ parameter of the procedure is also used to measure PGSIZ,δ∗). For this

figure, with k = 50, the number of macroreplications was reduced to 104 to keep simulation time reasonable.

The left panel shows thatOCBALL(PGSSlep,δ∗) follows the target much better thanKN++ (which is barely

visible at the lower right of the figure). The right panel shows that the penalty for conservativeness is a

significantly higher sampling effort for a given desired α∗. For example, for α∗ = 0.01 and δ∗ = 0.1,

OCBALL(PGSSlep,δ∗) requires 803 samples on average, while KN++ requires 5845 samples.
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Figure 15: Influence of η on efficiency and target for PCS-based procedures (RPI1, k = 5, b = 100).

As can be seen in Figure 15, the sensitivity with respect to η in the RPI configurations is much smaller

than the sensitivity with respect to δ observed for the SC and MDM configurations in Figure 6. Note that

the difference between the best and second best system is proportional to η−2. For efficiency (left panel),

OCBALL(PGSSlep,δ∗) slightly outperforms KN++. For the target plot, KN++ consistently and strongly

overdelivers, while OCBALL(PGSSlep,δ∗) meets the target rather well over all η tested. Also, procedures

with the EOCBonf stopping rule follow an EOCIZ target well (not shown for this setting, but the pattern is

like that of Figure 15 for PBSIZ,δ∗ , and for EOCIZ in Figure 16 below).

Observations from the SC and MDM configurations that are also valid for RPI1 include: The Bayesian

procedures are sensitive to n0 (pick n0 ≥ 6, or even 10 if practical), while KN++ is not; KN++ becomes

less efficient relative to the Bayesian procedures as k increases (Online Companion, Figures 31 and 32).

If prior knowledge on the distribution of means and variances is available, this can be integrated into the

Bayesian procedures, as described in §3. The benefit of doing so, when possible, is apparent in Figure 16

(left panel). The top line shows the efficiency of the standard Equal allocation with the budget (S) stopping

rule. This can be improved stepwise by switching to a flexible allocation (OCBALL(S)), then using an

adaptive stopping rule (OCBALL(EOCBonf)), and finally using prior information (OCBAprior
LL (EOCprior

Bonf)).

These changes reduce the mean number of samples required to achieve a loss of 0.01 from 291 for Equal(S)

to 164 for OCBALL(S), then to 94 for OCBALL(EOCBonf), and finally to 79 for OCBAprior
LL (EOCprior

Bonf).

Controllability is only slightly affected by using prior information in this test (right panel).

Random Problem Instances 2. The RPI2 configuration samples random problem instances with a distri-

bution that does not match the underlying assumptions of the derivations of the VIP and OCBA procedures.

Still, Procedure LL andOCBALL again perform almost identically for efficiency and controllability, so only

the latter is shown in plots.

Figure 17 compares the efficiency and target curves for KN++ and OCBALL(PGSSlep,δ∗). Procedures

OCBALL and LL are somewhat less efficient than KN++ if there are several good systems (a = 1, left

panel). The difference is smaller for larger δ∗. Procedures OCBALL and LL are more controllable than

KN++, which is conservative and significantly overdelivers PBSIZ,0.2 (right panel). The RPI2 configuration

with few good systems (a = 0) is similar to RPI1 with respect to the long tail distribution of the good systems,
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Figure 16: Effect of allocation, stopping rule and prior information (RPI1, k = 5, η = 1, b = 100).
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Figure 17: Efficiency and target for RPI2 (k = 5, η = 1, b = 100). LL and OCBALL perform the same.

so it is not surprising that results are very similar. Appendix A.6 has more graphs.

On the whole, OCBALL and LL perform very well for RPI2 even though the problem instances do

not have the normal-inverted gamma distribution that is implicit in their derivation. A small degradation in

efficiency relative to KN++ may be expected if there are multiple very good systems, but controllability

remains with PGSSlep,δ∗ . Procedure 0-1 is less efficient and not more controllable.

5 Discussion and Conclusion

The choice of the selection procedure and its parameters can have a tremendous effect on the effort spent

to select the best system, and the probability of making a correct decision. The new experimental setup

(including random problem instances) and measurement displays (efficiency and target curves, as opposed

to tables), proved useful for identifying strengths and weaknesses of both existing and new procedures.

For the SC and MDM configurations, the LL and OCBALL allocations together with the EOCBonf

stopping rule were generally the most efficient. KN++ was also very efficient when k = 2, with similar

variances and low PICS values, but was less efficient otherwise. Procedures that use an indifference zone

parameter, δ∗ (KN++ and PGSSlep,δ∗ stopping rule) were very sensitive to the value of δ∗ (i.e., may require

a lot of sampling). No procedure was particularly controllable for the SC and MDM configurations.

An arbitrary configuration encountered in practice is not likely to be an SC or MDM configuration. With
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randomized configurations (RPI1 and RPI2), the PGSSlep,δ∗ and EOCBonf stopping rules were reasonably con-

trollable for the desired PGSIZ,δ∗ and EOCIZ, respectively. ProceduresLL(PGSSlep,δ∗),OCBALL(PGSSlep,δ∗),

OCBAδ∗(PGSSlep,δ∗) and KN++ were the most efficient. ProcedureOCBAδ∗(PGSSlep,δ∗) uses a different

allocation and stopping rule than is usual for the OCBA approach. Procedure KN++ tended to overdeliver

for PGSIZ,δ∗ in RPI experiments.

Strengths of KN++ include a low sensitivity to the number of first stage samples (n0), and its natural

ability to account for correlated output. It is the only method tested here with a proven asymptotic lower

bound for PCSIZ ≥ 1− α∗ > 1/k. The cost of preferring a lower bound for PCS is the potential for highly

excessive sampling. Although we only tested moderate numbers of systems,KN++ seems to lose efficiency

relative to the Bayesian procedures as the number of systems increases.

We recommend combining the Bayesian allocation procedures with an adaptive stopping rule to substan-

tially improve efficiency. Independent of the stopping rule, the loss-based allocations LL and OCBALL are

among the most efficient allocations. The Online Companion suggests theoretical reasons why OCBALL

and LL perform so similarly. The most efficient and controllable stopping rule depends on the desired goal

(EOCBonf or PGSSlep,δ∗). The strong efficiency is relatively robust to different configurations, and control-

lability is relatively robust for RPI. These procedures also allow for the incorporation of prior information

about problem instances when that is available. Other strengths include the ability (i) to allocate samples in

order to optimize the total CPU time even if the CPU times of each system are different (Chick and Inoue

2001a, and Appendix B), (ii) to run with a time constraint with the S stopping rule, and (iii) to run as a

two-stage procedure if needed (e.g., the EOCBonf stopping rule can be adapted to two stages by finding a

second-stage sampling budget that achieves a desired predicted EOCBonf). Weak points of those procedures

are a dependency on the initial number of samples for each system, n0 (we recommend n0 ≥ 6), and the

potential for a small degradation in performance if there are many systems that are close to the best.

Procedures Equal and 0-1 are not recommended for general use.

We did not assess output from steady-state simulations. KN++ uses batching to estimate variances,

a standard technique for the handling the autocorrelation from such simulations, but can take observations

one-at-a-time. We do not see why batching might affect the different Bayesian procedures differently.

We therefore selectOCBAδ∗(PGSSlep,δ∗), with δ∗ > 0, for further work to integrate selection procedures

into discrete optimization via simulation environments where PGS is of interest. The clear winners for appli-

cations where the simulation output represents economic value are LL(EOCBonf) and OCBALL(EOCBonf).

Future goals are theory and practical developments to assess the use of CRN with those procedures in fully

sequential environments, (ground work was laid by Fu et al. 2006 for the OCBA and by Chick and Inoue

2001b for the VIP), and the ability to further account for the economics of decisions made with simulation.
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This Online Companion to “Selecting a Selection Procedure” contains several technical appendices that

present both empirical and analytical results.

Appendix A provides additional graphs that support the claims in the main paper. Appendix A.7 also

provides an initial exploration of the distribution of the number of samples for different procedures, as an

extension to the paper’s focus on the expected number of samples as a measure of efficiency.

Appendix B provides a theoretical motivation to explain whyLL andOCBALL perform similarly. Along

the way, it shows how theOCBALL procedure can be extended to account for different sampling costs for each

system (e.g., different CPU times), and how OCBALL might be run as a two-stage, rather than sequential,

procedure, if that is desired. Those are properties of the original LL procedure.

Appendix C describes implementation issues, and describes computational techniques that can overcome

numerical stability problems that arise in extreme applications of ranking and selection procedures. As it

turns out, ProceduresKN++, LL, and 0-1 did not suffer from numerical stability issues in our experiments.

OCBA andOCBALL needed mild assistance when pushed to extreme levels of evidence for correct selection.

Appendix D provides additional information about the configurations that were tested for this paper.

A Additional Supporting Graphs

The paper presented a summary of the general conclusions from the study. This section contains a subset of

additional results that explore the ideas further. It is not practical to display all results from the experiments,

as we tested over 150 problem configurations defined by combinations of k, {SC, MDM, RPI1, RPI2}, and

configuration parameters (δ, ρ for SC, MDM; η, b, c for RPI1, RPI2). Together with combinations of n0,

sampling allocations, and stopping rule parameters, well over 104 different combinations were run.

We developed a GUI to allow a graphical visualization and easy navigation through the results. That

GUI was used to generate most of the figures in this paper.

A.1 Sample Variance Updates for Procedure KN++

The version of KN++ in §1.2 of the main paper updates the sample variances after each sample observed.

Updating the sample variance means that asymptotic arguments are used to assess asymptotic PCS guarantees.

The original Procedure KN estimates the variances only once after the initial sampling stage and uses them

throughout the run, never updating. We also tested intermittent updating of the sample variances, by regularly

refreshing the variance only once every several iterations of the main loop in Procedure KN++.

Intermittent updating of the sample variances requires a small change in the procedure. The exponent

of −2/(n− 1) in the formula for η of Step 3b of Procedure KN++ should be replaced with −2/(n′ − 1),
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where n′ is the number of independent samples that are used to compute the sample variance. Similarly,

assign h2 ← 2η(n′ − 1) in that same step.

In each of the handful of SC, MDM and RPI configurations that we tested, updating after every sample

is at least as efficient as less frequent updates. Figures 18 and 19 illustrate that point. The number that

corresponds to each line in the graph is the number of samples between each update of the sampling interval.

The line associated with the value 0 describes the curve associated with never updating the sample variance

after the initial estimate is made, based upon the first stage of sampling (KN ). Updating after every sample

also resulted in the best performance with respect to target curves, up to sampling noise.
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Figure 18: Influence of variance update intervals for KN++0.1 (RPI1, k = 5, η = 1, b = 100).

A.2 SC, k = 2

The main paper indicated that the target curves for (α∗, PCSIZ) and (α∗, PGSIZ,δ∗) forKN++ and PGSSlep,δ∗

are sensitive to the choice of δ∗. Another way to assess that sensitivity for PGSIZ,δ∗ with α∗ is to fix α∗, and

attempt to pick an δ∗ such that the empirical PCSIZ matches the actually desired 1− α∗. While this is not the

traditional way to set δ∗, this thought experiment will help explain how difficult it is to control a procedure

to obtain exactly the desired PCSIZ, rather than obtaining a lower bound.

Figure 20 shows the influence of δ∗ on PCSIZ efficiency (the mean number of samples required to
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Figure 19: Influence of variance update intervals for KN++0.5 (SC, k = 10, δ = 0.5, ρ = 1).
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Figure 21: Different variances make Equal and
KN++ suboptimal with k = 2 (SC, k = 2, δ = 0.5,
ρ = 0.354, τ0 = 10).

obtain a specified level PICSIZ). For small PICSIZ, there may exist settings for δ∗ so that KN++ and

Equal(PGSSlep,δ∗) are more efficient than Equal(EOCBonf). To see this, note that when PICSIZ = 0.005 and

0.01, the curves forKN++ and Equal(PGSSlep,δ∗) go below the horizontal lines. The horizontal lines show

mean number of samples required by Equal(EOCBonf) to reach the corresponding PICSIZ level. The value

of δ∗ that is needed to obtain the minimal mean number of samples depends on the problem instance. Since

the problem instance is unknown in practice, it is not clear how to set δ∗ in general.

The main paper primarily focused on the case of equal variances when k = 2. It is not optimal to sample

from each system equally often when k = 2 and the variances of each system differ. The Equal andKN++

allocations both sample equally often when k = 2. The Bayesian allocations do not need to sample equally

often, and therefore can be more efficient than procedures that sample equally often when k = 2. Figure 21

illustrates that point.

A.3 SC, k > 2

Figure 22 (left panel) illustrates the observation that the advantage of adaptive Bayesian procedures, relative

to Equal, increases with k. The qualitative nature of the graph does not change as δ and ρ are individually

varied from the values used for the plot. For all other procedures with the new stopping rules, there is a

tendency to overdeliver as k increases, butOCBALL is more sensitive than Equal (right panel). The tendency

to overdeliver with increasing k might be attributed to the slack introduced by Slepian’s and Bonferroni’s

inequalities.

Similar to Equal, KN++ also loses efficiency relative to OCBA(EOCBonf) as the number of systems k

increases (Figure 23).

Figure 24 shows the importance of a sufficiently large n0 for the case k > 2, too. The right panel indicates

that increasing n0 increases the tendency to overdeliver. While LL(EOCBonf) is slightly closer to the target

than OCBALL(EOCBonf), it is slightly less efficient. KN++ is insensitive to n0 (this was demonstrated in

Figure 5 for SC with k = 2, and is demonstrated for another configuration in Figure 31 below).
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Figure 22: Influence of the number of systems k on efficiency (right panel) and target (left panel). Equal and
OCBA allocation are used in combination with EOCBonf stopping rule (SC, δ = 0.5, ρ = 1).
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Figure 23: Efficiency of KN++ and
OCBA(EOCBonf), as function of the number
of systems k (SC, δ = 0.5, ρ = 1).
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Figure 24: Effect of various n0, with EOCBonf stopping rule on efficiency (left) and target (right) (SC, k = 10,
δ = 0.5, ρ = 1).
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Figure 25: Influence of variance ratio ρ on OCBA and OCBALL (SC, k = 10, δ = 0.5, EOCBonf).
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Figure 26: Different stopping rules (line types) and
allocation procedures (symbols) (MDM, k = 10,
δ = 0.5, ρ = 1).

A larger variance for the best system relative to the other systems (larger ρ) makes correct selections

easier (Figure 25, left panel). Different allocation functions respond differently to ρ, as illustrated forOCBA
and OCBALL, representatives for the PCS-based and EOC-based allocations. With ρ = 4, the EOC-based

allocation is clearly superior, but the advantage diminishes for low PICS as ρ decreases, and the PCS-based

allocation partially outperforms the EOC-based allocation. Larger ρ overdeliver slightly more on the target

plots, and OCBA overdelivers slightly more than OCBALL (right panel).

A.4 MDM, k > 2

First, recall that LL and OCBALL performed virtually indistinguishably, except for sampling error, for all

MDM settings that we examined. Thus we only show one of these two procedures in a given graph.

Figure 26 is like the efficiency plot in Figure 8 of the main paper, except that k = 10 instead of k = 100

systems are analyzed by the procedures. As would be expected, the number of samples required for k = 100

is much higher than for k = 10. The relative ordering of the procedures is the same, and the Equal allocation

suffers by far more than the others as the number of systems is increased.

Figure 27 shows PBSIZ,δ∗ efficiency and target performance for different δ∗. The parameter δ∗ for
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Figure 27: PBSIZ,δ∗ efficiency and target for OCBALL(PGSSlep,δ∗) and KN++ for different settings of δ∗

(MDM, k = 10, δ = 0.5, ρ = 1). In this configuration PBSIZ,0.2 = PBSIZ,0.4 = PCSIZ.

KN++ and PGSSlep,δ∗ stopping rule have thereby been set to the indifference zone used for measuring

performance. For MDM with δ = 0.5, an indifference zone of δ∗ = 0.2 or δ∗ = 0.4 are equivalent for

PBSIZ,δ∗ efficiency, as only the best system is considered to be a good selection. For δ∗ = 0.6, the two

best systems are considered good. On the efficiency plot (left panel), it can be seen that the problem with

PBSIZ,0.6 is significantly easier. The efficiency curves for δ∗ = 0.2 and 0.4 are very similar for OCBALL,

while KN++ loses efficiency for δ∗ = 0.4. On the target plot (right panel), the target performance of both

procedures is affected by δ∗. Overall, the PGSSlep,δ∗ stopping rule is closer to the target thanKN++, which

very much overdelivers in each case (the curve for δ∗ = 0.2 is almost outside the plot). On the other hand,

OCBALL(PGSSlep,δ∗) consistently underdelivers for δ∗ = 0.4.

A.5 RPI1
Figure 28 compares three selection procedures with adaptive stopping rules, Equal(PGSSlep,δ∗),KN++, and

OCBAδ∗(PGSSlep,δ∗). As is typical for the RPI1 problems tested,OCBAδ∗(PGSSlep,δ∗) outperformsKN++

for efficiency (left panel) and controllability (right panel). When moving from b = 100 (very similar variances

for each system) to b = 2.5 (very different variances), the efficiency of OCBAδ∗(PGSSlep,δ∗) improves and

the efficiency of KN++ is basically not affected.

Figure 29 further illustrates this comparison, and is similar to Figure 14 of the main paper except that

k = 5 instead of k = 50. Figure 29 depicts the effect of different δ∗ and α∗ on the number of samples

required by KN++ and OCBALL(PGSSlep,δ∗), and the ability to deliver the desired PGS (the δ∗ parameter

of the procedure is also used to measure PGSIZ,δ∗). The left panel shows thatOCBALL(PGSSlep,δ∗) follows

the target better than KN++, although OCBALL(PGSSlep,δ∗) slightly underdelivers for low values of α∗.
Again, the right panel shows that the penalty for conservativeness is a significantly higher sampling effort

for a given desired α∗.
One question is whether the δ∗ of the selection procedure can be selected in a nontraditional way to

achieve a given desired performance for the probability of a good selection. That is, one might ask if it

is possible to choose a value of δ∗ for a procedure’s allocation and stopping rule in a way that controls

the desired empirical performance for PGSδ∗∗ , for some δ∗∗ 6= δ∗. Here we explore a response to that
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Figure 28: Efficiency and target for PCS-based procedures (RPI1, k = 5, η = 1, b ∈ {2.5, 100}).
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samples (right panel) for different δ∗ and α∗ (RPI1, k = 5, η = 1, b = 100).
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η = 1, b = 100).
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Figure 31: Efficiency of OCBALL and KN++ de-
pends on n0 (RPI1, k = 5, η = 1, b = 100).
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Figure 32: Efficiency depends on the number of sys-
tems k (RPI1, η = 1, b = 100).

question with empirical results. Figure 30 illustrates the influence of δ∗ on the PGSIZ,0.2 efficiency of

KN++ andOCBALL(PGSSlep,δ∗). For reference, the horizontal lines show the number of samples required

byOCBALL(EOCBonf). For RPI, setting the procedure’s parameter δ∗ to the δ∗ as specified in the efficiency

goal (0.2) yields reasonable, though not optimal, efficiency for both procedures. The target performance is

good for OCBALL(PGSSlep,δ∗), while KN++ significantly overdelivers (Figure 28, right panel).

Some other observations from SC and MDM also carry over to RPI: The Bayesian procedures are

generally very sensitive to n0, while KN++ is not (Figure 31), and KN++ becomes less efficient relative

to the Bayesian procedures as the number of systems k increases (Figure 32).

Figure 33 shows that the benefit of including prior information in the VIP and OCBA procedures is more

or less independent of b and η for the values tested.
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Figure 33: Benefit of providing prior information depending on problem configuration parameters b, η (RPI1,
k = 5, b = 100, unless specified otherwise).

A.6 RPI2
§4 states that most observations made for RPI1 carry over to RPI2 even in the case of a = 1, i.e. many

good systems. Some evidence for this claim is given here. Figure 34 shows that the main conclusions about

allocation rules also hold for RPI2. The LL, OCBALL and OCBAδ∗ allocations are more or less equally

efficient. Procedures 0-1 and Equal are clearly less efficient.

The relative ordering of the stopping rules with respect to EOCIZ efficiency in combination with the Equal

allocation remains the same: PGSSlep,δ∗ is more efficient than EOCBonf which is more efficient thanS stopping

rule (Figure 35). Figure 36 compares target plots for the negative exponential (RPI2, a = 1), Gaussian (RPI1)

and positive exponential (RPI2, a = 0) distribution of the means, in the order of decreasing number of good

systems. If the sampling distribution for the means matches the prior distribution used for a Bayesian

procedure, the target is matched closely. Modifying the distribution towards more good systems (negative

exponential) or fewer good systems (positive exponential) leads to over- and underdelivery, respectively.
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Figure 34: PBSIZ,δ∗ efficiency of allocations with S
stopping rule (RPI2, k = 5, a = 1, η = 1, b = 100).
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Figure 36: Influence of the sampling distributions
of configurations on target (RPI1, RPI2, k = 5, η =
1, b = 100, Equal(EOCBonf)).

A.7 Distribution of the Number of Samples
The main paper describes how the mean number of samples of each procedure can vary as a function of the

allocation rule, stopping rule, and the parameters of each individual procedure. This subsection looks at the

distribution of the number of samples for some of the procedures for some representative configurations. We

did not do an exhaustive analysis over all configurations, parameter values, allocations, and so forth for this

subsection, but the following graphs give some initial ideas of how the procedures perform in distribution,

rather than on average.

We first note that with the S stopping rule, one can completely control the number of samples. The

distribution of the number of samples equals the mean number of samples for that stopping rule, independent

of the configuration and of the allocation rule.

We now turn to flexible stopping rules. A direct comparison of the distribution of the number of samples

is not quite obvious, since picking the same parameters for each procedure leads to a different mean number

of samples and a different PCSIZ or EOCIZ. We therefore attempt to display the distributions by picking the

parameters of each procedure separately, in order to obtain a similar empirical figure of merit, as well as a

more direct comparison of the procedures as a function of their parameters.

Figure 37 shows the distribution of the number of samples that several procedures require, if the stopping

rule parameters are chosen so that each procedure stops, on average, after approximately 400 samples. In

Figure 38, the stopping rules for each procedure were chosen to achieve PICSIZ = 0.005. Table 1 provides

the specific parameter values and the estimates of the figures of merit for each procedure. The distributions

are rather more skewed for Equal(EOCBonf) andOCBALL(EOCBonf) than forKN++, when parameters are

chosen to achieve the same mean number of samples.

The distribution of the number of samples for different stopping values are shown in Figure 39 and

Figure 40. While the main paper indicates that the EOCBonf stopping rule withOCBALL and LL allocations

tend to be more efficient than KN++, these graphs indicate that the distribution of the number of samples

that are required by KN++ has a smaller ‘tail’ than that for OCBALL and LL. That is, there is a high
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Figure 37: Distribution of the number of samples for
Equal(EOCBonf = 0.0158), OCBALL(EOCBonf =
0.00107) and KN++δ∗=0.2(α∗ = 0.191) (MDM,
k = 10, δ = 0.25, ρ = 1, E[N ] ≈ 400).
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Figure 38: Distribution of the number of samples for
Equal(EOCBonf = 0.00174), OCBALL(EOCBonf =
0.00115) and KN++δ∗=0.2(α∗ = 0.166) (MDM,
k = 10, δ = 0.25, ρ = 1, PICS ≈ 0.005).

Procedure: allocation (stopping rule) E[N ] Stddev[N ] PICSIZ EOCIZ

Equal(EOCBonf ≤ 0.0158489) 393.873 332.001 0.06981 0.0183
Equal(EOCBonf ≤ 0.0017378) 1064.7 849.368 0.00525 0.0013275
OCBALL(EOCBonf ≤ 0.00114815) 384.794 223.046 0.00512 0.0013125
OCBALL(EOCBonf ≤ 0.00107152) 391.677 226.293 0.00477 0.0012225
KN++δ∗=0.2(α∗ = 0.190546) 399.917 93.2954 0.00643 0.00161
KN++δ∗=0.2(α∗ = 0.165959) 420.515 96.2242 0.00505 0.001265

Table 1: Parameters and estimated figures of merit for MDM comparisons in Figures 37–38.

probability that OCBALL and LL will require fewer samples than KN++, but there is a small probability

that OCBALL and LL will require many more samples than KN++.
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Figure 39: Distribution of the number of samples for
Equal(EOCBonf) and OCBALL(EOCBonf) (MDM,
k = 10, δ = 0.25, ρ = 1).
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Figure 40: Distribution of the number of samples for
KN++ (MDM, k = 10, δ = 0.25, ρ = 1).

Figure 41 and Figure 42 are analogous to Figure 37 and Figure 38, except that they apply to an RPI1

configuration rather than to an MDM configuration. They show that when the parameters of each procedure
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Procedure: allocation (stopping rule) E[N ] Stddev[N ] PGSIZ,0.2

OCBAδ∗=0.2(1− PGSSlep,0.2 ≤ 0.00524807) 201.778 166.606 0.00515
OCBAδ∗=0.2(1− PGSSlep,0.2 ≤ 0.00199526) 250.672 214.615 0.00218
KN++δ∗=0.2(α∗ = 0.40738) 234.541 107.828 0.0052
KN++δ∗=0.2(α∗ = 0.354813) 254.658 118.029 0.00397

Table 2: Parameters and estimated figures of merit for RPI comparisons in Figures 41-42.

are selected separately in order to obtain a similar mean number of samples, or a similar empirical probability

of bad selection, then the Bayesian procedures again have a larger skew. For all procedures, the distributions

for RPI are more skewed than for MDM, presumably due to some very hard random problem instances.

Table 2 provides the specific parameter values and the estimates of the figures of merit for each procedure

for these graphs.
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Figure 41: Distribution of the number of samples
forOCBALL(EOCBonf) andKN++ (RPI1, k = 10,
η = 1, b = 100, E[N ] ≈ 250).
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Figure 42: Distribution of the number of samples
forOCBALL(EOCBonf) andKN++ (RPI1, k = 10,
η = 1, b = 100, PGSIZ,0.2 ≈ 0.005).

If, on the other hand, the parameters for the Bayesian procedures andKN++ are chosen similarly, as for

OCBAδ∗(PGSSlep,δ∗) andKN++, the mean number of samples for the Bayesian procedures is significantly

smaller than that of KN++, and the ‘tail’ of the distribution of the Bayesian procedures is not an issue, see

for example Figure 43 and Figure 44.

In summary of the limited number of experiments to examine the distribution of samples, and not only

the mean number of samples, the Bayesian procedures appear to have a larger skew than KN++, and all

procedures have a larger skew for RPI than for MDM configurations.

The larger skew of the Bayesian procedures means that these procedures would have performed relatively

even better if we had chosen the median instead of the mean number of replications to measure efficiency.

On the other hand, they can require a much larger number of replications than KN++ in the worst case.

However, at least for RPI configurations, this does not seem to be an issue, as the Bayesian procedures require

significantly less samples for the equivalent parameter settings, an effect that hides the effect of skew.

These preliminary observations suggest potential value for a combined stopping rule for the Bayesian
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Figure 43: Distribution of the number of samples
for OCBA0.2(PGSSlep,0.2) (RPI1, k = 10, η = 1,
b = 100).
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Figure 44: Distribution of the number of samples for
KN++ (RPI1, k = 10, η = 1, b = 100).

procedures, which continue to allocate samples until either a flexible stopping rule is satisfied, or a budget

limitation is reached. That rule would be easy to implement in practice (keep running until the evidence

looks very strong or an analysis deadline is reached). A full analysis of that idea is reserved for future work.
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B Asymptotic Relationship Between LL And OCBALL

The LL allocation is derived to maximize the value of information, relative to EOCBonf, for asymptotically

large numbers of additional replications per stage. This section shows that a continuous generalization of

OCBALL shares similar properties for asymptotically small numbers of additional replications. This property

gives theoretical motivation why those two allocations empirically perform so similarly.

TheOCBALL presented above can be considered to be a discretized version of the following continuous

optimization formulation which generalizes λ̃ij from (9) to the form (11) that allows every system to have a

different number of additional replications, τ(i), with the τ(i) treated as real-valued (and not constrained to

be nonnegative),

EEOCS =
∑

j:(j) 6=(k)

λ̃
−1/2
jk Ψν̃(j)(k)

[
λ̃

1/2
jk d(j)(k)

]

λ̃−1
jk =

σ̂2
(k)

n(k) + τ(k)
+

σ̂2
(j)

n(j) + τ(j)
. (11)

Suppose that τ(j) replications of system (j) cost c(j) per replication. The optimal number of replications

for each system, subject to a budget constraint τ =
∑k

i=1 ciτi can be determined with Lagrange multipliers.

Let θ be the Lagrange multiplier associated with the sampling budget constraint, and let j be such that

(j) 6= (k). Recall Ψν [s] = ν+s2

ν−1 φν(s) − s(1 − Φν(s)), and note that ∂Ψν [s]/∂s = Φν(s) − 1 and

∂λ̃jk/∂τ(j) = λ̃2
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2
(j)/(n(j) + τ(j))2. First order optimality conditions imply:
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2
(j)

(n(j) + τ(j))2

= −1
2

ν̃(j)(k) + λ̃jkd
2
(j)(k)

ν̃(j)(k) − 1
φν̃(j)(k)

(λ̃1/2
jk d(j)(k))λ̃

1/2
jk

σ̂2
(j)

(n(j) + τ(j))2

= −
σ̂2

(j)ζ̃(j)

2(n(j) + τ(j))2

where ζ̃(j) =
ν̃(j)(k)+λ̃jkd2

(j)(k)

ν̃(j)(k)−1 φν̃(j)(k)
(λ̃1/2

jk d(j)(k))λ̃
1/2
jk does not depend on any τi. Note that the optimal

OCBALL allocation with budget constraint seeks to preserve the following ratio between the total number

of replications of systems (`) and (j) 6= (k):

n(`) + τ(`)

n(j) + τ(j)
=

(
σ̂2

(`)ζ̃(`)/c(`)

σ̂2
(j)ζ̃(j)/c(j)

)1/2

. (13)

A similar analysis holds for system (k), with ζ̃(k) =
∑

j:(j)6=(k) ζ̃(j), and θc(k) = −σ̂2
(k)ζ̃(k)/2(n(k) + τ(k))2.

The ζ̃(j) depend upon the n(`) and τ(`), but there is a ‘fixed point’ that preserves the fraction of replications

allocated to each system from one stage to the next. Namely, if each τ(`) → 0 as τ → 0, then λ̃jk → λjk,
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ν̃(j)(k) → ν(j)(k), and ζ̃(j) → ζ(j) as τ → 0, where ζj =
ν(j)(k)+λjkd2

(j)(k)

ν(j)(k)−1 φν(j)(k)
(λ1/2

jk d(j)(k))λ
1/2
jk . That

means that if
n(`)

n(j)
=

(
σ̂2
(`)

ζ(`)/c(`)

σ̂2
(j)

ζ(j)/c(j)

)1/2

and each τ(`) → 0 as τ → 0, then an infinitesimally small number of

additional replications does not change that ratio,

lim
τ→0

n(`) + τ(`)

n(j) + τ(j)
=

(
σ̂2

(`)ζ(`)/c(`)

σ̂2
(j)ζ(j)/c(j)

)1/2

. (14)

The ratio in (14) is equivalent to the allocation in Step 4c of LL (cf. (8)) because ζ(j) = γ(j) for all j.

Recall that the LL allocation is derived assuming τ → ∞ so that all systems with a nonzero variance will

get some replications added (are in S). The original derivation of Step 4c of LL in Chick and Inoue (2001)

was for a two-stage procedure, but some algebra like that following (12) shows that the allocation holds for

the sequential LL too. The basic insight is that both LL and OCBALL use Bonferroni-like bounds for the

VIP and OCBA conceptualizations of EOC, respectively. AlthoughLL uses λ{jk} andOCBALL uses λ̃jk in

those bounds, they share a common limit, limτ→∞ λ{jk} = λjk = limτ→0 λ̃jk in the sense described above.

As a result the two procedures perform similarly (there are differences due to rounding when allocating).

We remark that (14) generalizes OCBALL to allow for different sampling costs for each system. It also

permits OCBALL to be run rather flexibly as a two-stage procedure, just as for one of the LL variations

in Chick and Inoue (2001): allocate some number B additional replications so that (14) holds, subject to a

sampling budget constraint
∑k

i=1 ciτi = B.
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C Computational Issues

The implementation that generated the analysis and graphs in this paper used the Gnu Scientific Library (gsl)

for calculating cdfs, the Mersenne twister random number generator (Matsumoto and Nishimura 1998, with

2002 revised seeding), and FILIB++ (Lerch et al. 2001) for interval arithmetic. Calculations were run on

a mixed cluster of up to 120 nodes. The nodes were running Linux 2.4 and Windows XP with Intel P4 and

AMD Athlon processors ranging from 2 to 3 GHz. The program is written in C++ and jobs were distributed

with the JOSCHKA-System (Bonn et al. 2005).

Numerical stability problems may arise in implementations of the OCBA allocations, even with double-

precision floating point arithmetic, as the total number of replications gets quite large (i.e., for low values of α∗

or EOC bounds). To better distinguish which system should receive samples in a given stage, numerical sta-

bility was increased by evaluating the system that maximizes log(EAPCSi−APCS) instead of EAPCSi (e.g.,

forOCBA) and log(EEOCSi−AEOC) (e.g., forOCBALL). In particular, forOCBA, set pj = Φν(j)(k)
(d∗jk),

p̃j = Φν̃(i)(k)
(λ̃1/2

ik d(i)(k)), for OCBALL, set qi = λ
1/2
ik Ψν(i)(k)

(d∗ik), q̃i = λ̃
1/2
ik Ψν̃(i)(k)

(λ̃1/2
ik d(i)(k)), and set∑

j =
∑

j:(j)6=(k). Then

log(EAPCSi − APCS)

=





∑
j log(1− pj)− log(1− pi) + log pi + log [− (exp(log p̃i − pi)− 1)] if i 6= (k)∑
j log(1− p̃j)

+ log
[
−

(
exp

(∑
j log(1− pj)−

∑
j log(1− p̃j)

)
− 1

)]
if i = (k),

(15)

and

log(EEOCSi − AEOC) =

{
log(qi − q̃i) if i 6= (k)

log(
∑

j qj − q̃j) if i = (k).
(16)

These transformations are useful, because log(1−x) = log1p(-x) and exp(x)−1 = expm1(x) from

the C runtime library have increased accuracy for x near 0. We used these transformations for the calculation

of 1 − PCSSlep = −(exp(
∑

j log(1 − pj)) − 1), too. In rare cases, we computed EAPCSi < APCS or

EEOCSi < AEOC, which we handled by setting log(EAPCSi − APCS) to −∞.

For calculating log pj and log qj , we need log Φν(t) and log Ψν(t). If the numerical stability does

not suffice to calculate log Φν(t) (underflow error) we derive bounds for log Φν(t) based on the following

property of the cdf of a t-distribution (Evans, Hastings, and Peacock 1993),

Φν(t) =

{
1
2βinc

reg(ν
2 , 1

2 , ν
ν+t2

) if t ≤ 0

1− 1
2βinc

reg(ν
2 , 1

2 , ν
ν+t2

) if t > 0,
(17)

where βinc
reg(a, b, x) = β(a, b)−1

∫ x
0 ua−1(1 − u)b−1du is the incomplete beta function, and β(a, b) =

Γ(a)Γ(b)/Γ(a + b) denotes the beta function. A lower bound for log Φν(−t) for t > 0 can be derived as

follows. If f(u) = ua−1(1− u)b−1, then f(0) = 0, f ′(u) ≥ 0 and f ′′(u) > 0 for a = ν
2 > 1, b = 1

2 and all

u ∈ [0, 1]. So the area below f(u) over [0, x] is always larger than the area below the tangent at (x, f(x)).

log Φν(−t) ≥ ν
2 log ν

t2+ν
+ 1

2 log(1− ν
t2+ν

)− log
(
(ν

2 − 1)(1− ν
t2+ν

) + 1
2

ν
t2+ν

)
− log 2 (18)
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For the upper bound, recall (6). As Ψν(t) > 0 for all t > 0 we obtain Φν(−t) < 1
t

ν+t2

ν−1 φν(t), so

log Φν(−t) < log ν/t+t
ν−1 + log φν(t). (19)

Note that log φν(t) can be calculated by using the logarithm of the Gamma-function,

log φν(t) = log Γ
(

ν+1
2

)− log Γ
(

ν
2

)− 1
2 log(νπ)− ν+1

2 log
(
1 + t2

ν

)
. (20)

Collisions, due to log(EAPCSi−APCS) or log(EEOCSi−AEOC) being not numerically unique because

of the interval bounds above, occurred rarely withOCBA andOCBALL. If there was no clearly defined best

and EAPCSi−APCS or EEOCSi−AEOC was not numerically different from 0 for any system (with interval

arithmetic), then we repeatedly doubled τ for purposes of calculating EAPCSi−APCS and EEOCSi−AEOC,

until at least one system was numerically greater than 0. The ‘winner’ then received 1 replication. Usually,

doubling at most 3 times (τ = 8) was sufficient to select a winner. If there was no clearly defined best

because two or more systems whose EAPCSi − APCS or EEOCSi − AEOC had overlapping intervals but

the intervals did not contain 0, then we allocated τ = 1 replication to the system with the highest upper

bound for the interval. Because the interval arithmetic increased CPU time by 50 % and we did not observe

different allocations forOCBA when resolving collisions as described or by simply using the upper bounds,

we ran the experiments with the upper bounds.

Although collisions occur rarely with OCBA and OCBALL, there is some slight bend to the right for

low values of α∗ or EOC bounds. That may suggest a potential inefficiency due to another numerical issue

that we have not yet identified. Increasing τ0 can help to reduce the bending for low values of α∗ or EOC.

Numerical stability problems also arise with some other allocations that we tested. Those other allocations

are not presented in this paper, as they were less effective than the allocations in the main paper, in spite of

the assistance that they received from the above ideas that are designed to improve numerical stability.

In conclusion, we tested a number of numerical techniques in order to improve the performance of each

procedure. Some, but not all, of those numerical techniques required additional computational overhead

in order to compute the allocation. Monte Carlo estimates and complicated quadrature, the techniques that

required the most additional overhead, did not necessarily help more. The procedures that improved the most

from the help from interval arithmetic were not the best procedures and are not reported here any more due

to size restrictions. TheOCBA andOCBALL required some attention for numerical stability, but not much,

and without any notable decrease in the time required to compute an allocation.

Procedures KN++, LL, and 0-1 did not experience numerical stability problems with collisions.
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D Design Settings for Experimental Test Bed

This experiment appears to have tested more settings for the sampling allocations, stopping rules, number of

systems, and selection problem configurations than any previous empirical study.

The study served to identify consistent patterns as a function of the number of systems, the difficulty of

the problem structure (as identified by either the closeness of the means of the competitors for the best; or

by the size of the variances of the different alternatives), the number of first stage replications, the stopping

rules, the allocations, and so forth. When we observed clear trends in multiple scenarios (e.g., sensitivity to

the number of first stage replications, etc.), we documented the result. When there was an unclear pattern,

we ran many additional replications in order to clarify the mixed message.

The experimental design therefore represents the testing of multiple first-order trends for varying problem

structures, with additional exploration in ‘interesting’ areas.

The quantification of interactions between two parameters, say the number of first-stage replications and

the number of systems, was not a primary goal. Such a quantification with a linear response model would

likely be subject to biases anyway. Since the use of any given parametric response model would likely

give model mis-specification errors, we did not propose one. We therefore did not use experimental design

techniques (such as fractional factorial) to select settings. We note that experimental design techniques are

not typically used in such settings.

Our choice of structured configurations is similar in spirit to the approach of Nelson, Swann, Goldsman,

and Song (2001), which is one of the larger empirical studies that we have seen published. That study

compared several IZ procedures.

Table 3 gives a listing of the configurations that were tested. Not all procedures were tested in all settings.

When k ≥ 50, it often turned out that some procedures would not finish running in a reasonable time (e.g.,

overly conservative procedures for those settings). So we mostly explored configurations with k ≤ 20. We

ran S in many but not all settings, since its behavior became clear part way through the study. Similarly,

we tested the effects of n0 on many configurations, but once we determined that n0 < 6 behaved poorly, we

focused on n0 = 6 for most cases, and tested n0 = 10 on a subset of configurations for additional sensitivity.

We only tested the inclusion of prior information for the VIP and OCBA on a handful of settings.

In spite of this pruning, we arrived at 25,000+ different combinations of configurations and parameters for

the procedures (allocations, stopping rules, n0, δ∗, α∗, β∗, etc., including some allocations and stopping rules

that were reported in preliminary work of Branke, Chick, and Schmidt (2005) or small-sample derivations

for VIP procedures, and that were tested on a subset of configurations, but were dropped due to lower

performance). That must be multiplied again to account for the multiple types of graphs that we considered

(PBSIZ,δ∗ and EOCIZ, both efficiency and target). With so many combinations, we cannot claim that we

examined each and every one visually with our output browser. However, we can say that we examined at

least 10,000 of them. One can view the output of multiple procedures simultaneously on a single plot (up

to 10 or 15, reasonably), can browse from one parameter setting to another very quickly using the interface

in Figure 45, and three coauthors can work in parallel. We systematically varied each main parameter that

was discussed in the paper over a variety of configurations and parameter settings to insure that any general
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claims (not specific to particular setting) in the main paper represent qualitative conclusions that we viewed

repeatedly for a number of settings.

Figure 45: Graphical User Interface for Browsing and Visualizing Selection Procedure Performance.
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Slippage Configuration: <# systems>_SC_<delta>_<rho>
10_SC_0.25_1/ 20_SC_0.354_1/ 2_SC_0.25_1/ 50_SC_0.354_1/
10_SC_0.354_1/ 20_SC_0.5_0.354/ 2_SC_0.354_1/ 50_SC_0.5_1/
10_SC_0.5_0.125/ 20_SC_0.5_0.5/ 2_SC_0.5_0.125/ 50_SC_0.707_1/
10_SC_0.5_0.177/ 20_SC_0.5_0.707/ 2_SC_0.5_0.177/ 50_SC_1_1/
10_SC_0.5_0.25/ 20_SC_0.5_1.414/ 2_SC_0.5_0.25/ 5_SC_0.25_1/
10_SC_0.5_0.354/ 20_SC_0.5_1.5/ 2_SC_0.5_0.354/ 5_SC_0.354_1/
10_SC_0.5_0.5/ 20_SC_0.5_1/ 2_SC_0.5_0.5/ 5_SC_0.5_0.354/
10_SC_0.5_0.707/ 20_SC_0.5_2.828/ 2_SC_0.5_0.707/ 5_SC_0.5_0.5/
10_SC_0.5_1.414/ 20_SC_0.5_4/ 2_SC_0.5_1.414/ 5_SC_0.5_0.707/
10_SC_0.5_1.5/ 20_SC_0.707_1/ 2_SC_0.5_1.5/ 5_SC_0.5_1.414/
10_SC_0.5_1/ 20_SC_1_1/ 2_SC_0.5_1/ 5_SC_0.5_1.5/
10_SC_0.5_2.828/ 2_SC_0.0625_1/ 2_SC_0.5_2.828/ 5_SC_0.5_1/
10_SC_0.5_4/ 2_SC_0.125_1/ 2_SC_0.5_4/ 5_SC_0.5_2.828/
10_SC_0.707_1/ 2_SC_0.177_1/ 2_SC_0.707_1/ 5_SC_0.5_4/
10_SC_1_1/ 2_SC_0.25_0.354/ 2_SC_1_1/ 5_SC_0.707_1/
20_SC_0.25_1/ 2_SC_0.25_0.5/ 50_SC_0.25_1/ 5_SC_1_1/
Monotone Decreasing Means Configurations: <# systems>_MDM_<delta>_<rho>

100_MDM_0.1_1/ 10_MDM_0.5_2.828/ 2_MDM_0.354_1/ 50_MDM_0.707_1/
10_MDM_0.118_1/ 10_MDM_0.5_4/ 2_MDM_0.5_0.00195/ 50_MDM_1_1/
10_MDM_0.165_1/ 10_MDM_0.707_0.5/ 2_MDM_0.5_0.00781/ 5_MDM_0.25_0.354/
10_MDM_0.167_1/ 10_MDM_0.707_1/ 2_MDM_0.5_0.354/ 5_MDM_0.25_0.5/
10_MDM_0.25_0.5/ 10_MDM_1.414_0.5/ 2_MDM_0.5_0.5/ 5_MDM_0.25_1/
10_MDM_0.25_1/ 10_MDM_1_0.5/ 2_MDM_0.5_0.707/ 5_MDM_0.354_1/
10_MDM_0.354_0.5/ 10_MDM_1_1/ 2_MDM_0.5_1.414/ 5_MDM_0.5_0.25/
10_MDM_0.354_1/ 10_MDM_2_0.5/ 2_MDM_0.5_1.5/ 5_MDM_0.5_0.354/
10_MDM_0.5_0.125/ 20_MDM_0.25_1/ 2_MDM_0.5_1/ 5_MDM_0.5_0.5/
10_MDM_0.5_0.177/ 20_MDM_0.354_1/ 2_MDM_0.5_2.828/ 5_MDM_0.5_0.707/
10_MDM_0.5_0.25/ 20_MDM_0.5_1/ 2_MDM_0.5_4/ 5_MDM_0.5_1.414/
10_MDM_0.5_0.354/ 20_MDM_0.707_1/ 2_MDM_0.707_1/ 5_MDM_0.5_1.5/
10_MDM_0.5_0.5/ 20_MDM_1_1/ 2_MDM_1_1/ 5_MDM_0.5_1/
10_MDM_0.5_0.707/ 2_MDM_0.04_1/ 3_MDM_0.5_0.125/ 5_MDM_0.5_2.828/
10_MDM_0.5_1.414/ 2_MDM_0.25_0.354/ 50_MDM_0.25_1/ 5_MDM_0.5_4/
10_MDM_0.5_1.5/ 2_MDM_0.25_0.5/ 50_MDM_0.354_1/ 5_MDM_0.707_1/
10_MDM_0.5_1/ 2_MDM_0.25_1/ 50_MDM_0.5_1/ 5_MDM_1_1/
Random Problem Instances, RPI1: <# systems>_RPI_<eta>_<b>

10_RPI_0.5_100/ 20_RPI_2_100/ 5_RPI_0.354_100/ 5_RPI_2.828_100/
10_RPI_0.707_100/ 2_RPI_0.707_100/ 5_RPI_0.5_100/ 5_RPI_2_100/
10_RPI_1.414_100/ 2_RPI_1.414_100/ 5_RPI_0.707_100/ 5_RPI_2_2.5/
10_RPI_1_100/ 2_RPI_1_100/ 5_RPI_1.414_100/ 5_RPI_4_100/
10_RPI_1_2.5/ 2_RPI_1_2.5/ 5_RPI_11.314_100/ 5_RPI_5.657_100/
10_RPI_2_100/ 2_RPI_2_100/ 5_RPI_16_100/ 5_RPI_8_100/
10_RPI_2_2.5/ 2_RPI_2_2.5/ 5_RPI_1_100/
20_RPI_1_100/ 50_RPI_2_100/ 5_RPI_1_2.5/
Random Problem Instances, RPI2: <# systems>_RPI3_<eta>_<b>
(an extra - before <eta> in the name indicates a=0; otherwise a=1)

10_RPI3_1.414_100/ 2_RPI3_-1_100/ 2_RPI3_2_2.5/ 5_RPI3_1_100/
10_RPI3_1.414_2.5/ 2_RPI3_1.414_100/ 5_RPI3_-1_100/ 5_RPI3_1_2.5/
10_RPI3_1_100/ 2_RPI3_1.414_2.5/ 5_RPI3_0.5_100/ 5_RPI3_2_100/
10_RPI3_1_2.5/ 2_RPI3_1_100/ 5_RPI3_0.707_100/ 5_RPI3_2_2.5/
10_RPI3_2_100/ 2_RPI3_1_2.5/ 5_RPI3_1.414_100/
10_RPI3_2_2.5/ 2_RPI3_2_100/ 5_RPI3_1.414_2.5/

Table 3: Configurations Tested in the Empirical Study. §3 Defines the Configuration’s Parameters.
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