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Ranking and selection procedures are standard methods for selecting the best of a finite number of simulated design

alternatives, based on a desired level of statistical evidence for correct selection. But the link between statistical significance

and financial significance is indirect and there has been little or no research into it. This paper presents a new approach

to the simulation selection problem, one that maximizes the expected net present value (NPV) of decisions made when

using stochastic simulation. We provide a framework for answering these managerial questions: When does a proposed

system design, whose performance is unknown, merit the time and money needed to develop a simulation to infer its

performance? For how long should the simulation analysis continue before a design is approved or rejected? We frame the

simulation selection problem as a “stoppable” version of a Bayesian bandit problem that treats the ability to simulate as

a real option prior to project implementation. For a single proposed system, we solve a free boundary problem for a heat

equation that approximates the solution to a dynamic program that finds optimal simulation project stopping times and

that answers the managerial questions. For multiple proposed systems, we extend previous Bayesian selection procedures

to account for discounting and simulation-tool development costs.
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Managers must decide the operating characteristics of their companies’ manufacturing, supply chain, or

service delivery systems. Often the decision reflects the choice of one among a number of competing designs.

To aid their decision-making, managers may use stochastic or discrete event simulation. For a fixed, finite

set of alternative designs, one must decide how long to simulate each alternative and, given the simulation

results, which design to implement.

A common approach for selecting the best of a finite set of simulated systems uses ranking and selection

procedures, which seek to provide a desired level of statistical evidence that the system with the best

performance is ultimately selected. A typical measure of statistical evidence is the probability of correct
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selection (PCS). Good ranking and selection procedures attempt to minimize the mean number of replications

that are needed to reach a desired level of statistical evidence for correct selection. This is a flexible approach

that allows one to assess a wide variety of operational and other measures of system performance.

But statistical significance is not the same as financial significance, and when system performance and

simulation results are themselves financial measures, the maximization of expected net present value (NPV)

may be a more appropriate objective (Brealey and Myers 2001). That is, if a manager’s goal is to maximize

the expected NPV of high-level system design choices, then she is faced with two countervailing costs. On

the one hand, uncertainty about the expected NPV of each alternative compels her to simulate more to reduce

the opportunity cost associated with an incorrect selection. On the other hand, a simulation analysis itself

may incur direct costs, and simulation-driven delays in project implementation may reduce the NPV of the

system that is ultimately implemented, due to discounting. Further, standard practice for sound simulation

studies (e.g., Law and Kelton 2000, §1.7) does not provide formal guidance via economic principles about

whether or not an alternative should be simulated at all.

In this paper, we formulate and solve a simulation selection problem in which the manager seeks to

maximize the expected NPV of the system eventually selected, less discounting and analysis costs. Our

formulation of the problem is Bayesian: we assume that the manager has prior beliefs concerning the

distribution of the NPV of each of the alternatives and that she uses simulation output to update these beliefs.

The system which the manager ultimately chooses to implement maximizes expected NPV with respect to

the posterior distributions of her beliefs (rather than the actual, but unknown, NPV). Section 1 defines the

problem and identifies our assumptions, and §2 compares our formulation with more traditional approaches

found in the simulation literature.

Section 3 shows that, among procedures that sequentially select systems to simulate and then stop to

implement a system, there exists a deterministic, stationary policy that is optimal. Section 4 then provides

asymptotic approximations for the optimal expected discounted NPV of the simulation selection problem

when there is exactly one simulated alternative. The analysis indicates how long one must simulate before

choosing to implement or reject the alternative, given simulation output that is normally distributed with a

known variance. The asymptotic regime is reasonable given typical discount rates and simulation run times.
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The approximation is determined by the solution of a free boundary problem for a heat equation that shares

characteristics with financial and real options. That theory is applied to illustrative simulation selection

scenarios in §5 to demonstrate the economic value of our approach, and to show how a manager can use our

results to decide whether or not a design proposal warrants the time and money that is required to develop

simulation tools.

Section 6 extends the scope of our analysis to problems with more than one simulated alternative. It begins

by noting that well-known sufficient conditions for the existence of an optimal “allocation” index, which

could simplify the characterization of the optimal simulation selection policy, do not appear to hold. The

characterization of an optimal selection procedure policy for multiple systems therefore remains an open

question. Nevertheless, §6 extends previous work for Bayesian selection procedures that account for the

expected value of information, but not for discounting, to the present context with discounting. In numerical

examples, the new policies are shown to be close to optimal.

In summary, this paper presents a new approach to the simulation selection problem, one that maximizes

the expected NPV of decisions made when using stochastic simulation. The framework is designed to help

answer these managerial questions: When does a proposed system design, whose performance is unknown,

merit the time and money needed to develop a simulation to infer its performance? For how long should the

simulation analysis continue before a design is approved or rejected? The contributions include: the framing

of the simulation selection problem as a “stoppable” version of a Bayesian bandit problem, one that treats the

ability to simulate as a real option prior to project implementation; the solution to a free boundary problem

for a heat equation that approximates the solution to a dynamic program that finds optimal simulation project

stopping times; and the extension of previous Bayesian selection procedures to account for discounting and

simulation tool development costs.

The Appendices in the Online Companion provide mathematical proofs and specify the numerical methods

used in the paper. They also describe how to handle autocorrelated output from steady-state simulations that

are amenable to analysis with batch means, as well as simulation run times that differ for each system. In

addition, they present a framework for future work by linking the simulation selection problem to variations

of the well-known bandit problem, and improve some numerical approximations for “Bayesian bandits”.
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1. Simulation Selection Problem Description

A manager seeks to develop one of k projects, labeled i = 1,2, . . . , k. The net present value (NPV) of each

of the k projects is not known with certainty, however. The manager wishes to develop the project which

maximizes her expected NPV, or to do nothing if the expected present value of all projects is negative. We

represent the “do nothing” option as i = 0 with a sure NPV of zero.

1.1. Uncertain Project NPV’s

Let Xi be the random variable representing the NPV of project i, where X0 ≡ 0. If the manager is risk neutral

and the distributions of all Xi’s are known to her, then she will select the project with the largest expected

NPV, i∗ = argmaxi{E[Xi]}.

We note that, although we model NPVs as simple random variables, the systems that generate them may

be quite complex. For example, a particular project’s sequence of cash flows may involve the composition

of several interrelated random processes describing the evolution of investments, I(v), revenues, R(v), and

operating costs,O(v), over time, v. Nevertheless, given a continuous-time discount rate δ > 0, each realization

of these processes, ωi, yields a sample X(ωi) =
∫∞

v=0
[R(v,ωi)−O(v,ωi)− I(v,ωi)]e−δvdv. Here, v is the

time elapsed from the moment a system is selected. (The letter t is used differently below.)

Fox and Glynn (1989) and Appendix D.1 suggest techniques for sampling the X(ωi) if the time horizon

is truly infinite. Projects that are to be used for only a finite time (e.g., a 5-year usable time horizon) can be

implemented with terminating simulations, which effectively set R(v,ωi)−O(v,ωi)− I(v,ωi) to 0 during

all but a finite interval. Fixed or random duration delays from the time a project is selected to the time of

implementation (due to the need for project approval or startup delays) can similarly be implemented by

setting R(v,ωi), O(v,ωi) or I(v,ωi) to 0 during an initial interval.

This approach to modeling delays is valid whenever they are statistically independent of the duration of the

simulation analysis that led to the selection. This precludes fixed, pre-scheduled implementation dates, which

can occur in practice. Nevertheless, the analysis below suggests that such pre-scheduled implementation

dates may themselves be suboptimal, given that they ignore a manager’s option to implement earlier or to

pursue additional analysis, depending on simulation results obtained up to that fixed date.
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In this paper, we assume that the distributions of the Xi’s are not known with certainty by the manager.

Rather, she believes that a given Xi comes from one of a family of probability distributions, PXi|θi
, indexed by

a parameter θi from a parameter space ΩΘi
. We model her belief with a probability distribution on θi, which

we call PΘi
. For example, the manager may believe that Xi is normally distributed with a known variance,

σ2
i , but unknown mean. Then PΘi

represents a probability distribution for the mean. To ease notation, we

sometimes refer to the distribution as Θi. The expected NPV of project i > 0 is then E[Xi] = E[X(Θi)]
∆=∫∫

X(θi)dPXi|θi
dPΘi

. We denote the vector of distributions for the projects by Θ = (Θ1,Θ2, . . . ,Θk).

1.2. Using Simulation to Select the Best Project

If the distributions of the Xi’s are not known, then the manager may be able to use simulation as a tool

to reduce distributional uncertainty, before having to decide which project to develop. She may decide to

simulate the outcome of project i a number of times, and she views the result of each run as a sample of Xi.

We model the running of simulations as occurring at a sequence of discrete stages t = 0,1,2, . . .. Let Xt

be the set of all outputs seen through stage t. We represent Bayesian updating of prior beliefs and sample

outcomes through time, {(Θt,Xt) | t = 0,1, . . .} as follows. If project i > 0 is simulated at stage t with

sample outcome xi,t, then Xi,t = xi,t and Bayes’ rule determines the posterior distribution Θi,t+1, which is

a function of the parameter θi:

dPΘi,t+1
(θi |xi,t,Θi,t) =

dPXi |θi
(xi,t |θi)dPΘi,t

(θi)∫
θi

dPXi |θi
(xi,t |θi)dPΘi,t

(θi)
∀ θi ∈ ΩΘi

, (1)

while Θj,t+1 = Θj,t, and Xj,t need not be defined for all j 6= i. Thus, the evolution of the manager’s beliefs

regarding the distribution of outcomes of each project, Θi,t, is Markovian. We also assume that simulation

results, hence the evolution of the manager’s beliefs, are independent from one project to the next.

If, in theory, simulation runs could be performed at zero cost and in no time, then the manager might

simulate each of the k systems infinitely, until all uncertainty regarding the θi’s was resolved. At this point

the problem would revert to the original case in which the distributions and means of the Xi are known.

But the simulation runs do take time and do cost money. We assume that the marginal cost of each run of

system i is $ci and takes ηi units of time to complete. Thus, given a continuous-time discount rate of δ > 0,
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the decision to simulate system i once costs the manager ci plus a reduction of ∆i = e−δηi times the expected

NPV of the (unknown) project that is eventually chosen. Note that ∆i < 1.

There may also be associated up-front costs associated with the development of the simulation tool, itself.

It may require time and money to develop an underlying simulation platform, independent of which projects

end up being evaluated. Additional costs may be required to be able to simulate particular projects.

This paper initially makes two assumptions regarding the costs of simulation that simplify the analysis.

First, we assume that the up-front costs and delays to develop the simulation tools are sunk for all k projects.

This is an implicit assumption of all other research on selection procedures. Second, we assume that ηi ≡ η

for all k projects. This allows us to define a common ∆≡∆i for the projects as well. Section 4.4 relaxes the

first assumption. Appendix D.2 relaxes the second.

Even with these simplifications, the availability of a simulation tool to sample project outcomes makes

the manager’s problem much more complex. Rather than simply choosing the project that maximizes the

expected NPV, she must choose a sequence of simulation runs and ultimately select a project, so that the

discounted stream of costs and terminal expected value, together, maximize the expected NPV.

To track the manager’s choices as they proceed, we define a number of indices. We let T ∈ {t = 0,1, . . .}

be the stage at which the manager selects a system to implement. For t < T , we set i(t)∈ {1,2, . . . , k} to be

the index of the project simulated at time t. We let I(T )∈ {0,1, . . . , k} be the ultimate choice of project.

Then a selection policy is the choice of a sequence of simulation runs, a stopping time, and a final

project. We define Π to be the set of all non-anticipating selection policies, whose choice at time t = 0,1, . . .

depends only on the history up to t: {Θ0,X0,Θ1,X1, . . . ,Θt−1,Xt−1,Θt}. Given prior distributions Θ =

(Θ1,Θ2, . . . ,Θk) and policy π ∈Π, the expected discounted value of the future stream of rewards is

V π(Θ) = Eπ

[
T−1∑
t=0

−∆tci(t) + ∆T XI(T ),T |Θ0 = Θ

]
. (2)

Formally, we define the manager’s simulation selection problem to be the choice of a selection policy π∗ ∈Π

that maximizes this expected discounted value: V π∗(Θ) = supπ∈Π V π(Θ).
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2. Literature Review

Two broad classes of research are related to this paper. One is the ranking and selection literature, the other

is the bandit and optimal stopping literature. Both have substreams.

Branke et al. (2007) review several statistical approaches to ranking and selection. See also Nelson and

Goldsman (2001) and Butler et al. (2001). To date, none of the approaches explicitly accounts for discounting

costs due to delays in implementation as a result of simulation times, and very few papers explicitly account

for the sampling cost of replications.

Chick and Inoue (2001) provide two-stage procedures whose second stage allocation trades off the cost

of sampling with an approximation to the Bayesian expected value of information (EVI) of those samples.

Sampling costs may differ for each system as may the unknown sample variances. Their work builds upon

earlier results of Gupta and Miescke (1996), who examined the case of known sampling variances, and a

fixed number of samples to be allocated. The EVI is measured with respect to one of two loss functions, the

posterior probability of incorrect selection (PICS), or the posterior expected opportunity cost (EOC) of a

potentially incorrect selection. The EOC is a first step for modeling financial value in selection procedures.

Branke et al. (2007) show that specific Bayesian procedures that allocate samples with an EOC criterion,

and new adaptive stopping rules, perform very effectively for several classes of selection problems.

The indifference-zone (IZ) approach provides a frequentist guarantee of selection procedure effectiveness

(Kim and Nelson 2006b). Almost all IZ procedures focus on guarantees for PCS for each problem instance

within a given class, and most IZ work ignores sampling costs. An exception is Hong and Nelson (2005),

who account for the cost of switching from one system to another and a common sampling cost for each

system. In separate work that is related to this paper, Kim and Nelson (2006a) use diffusion approximations

for sequential IZ screening procedures to reduce the simulation time required to guarantee a desired PCS.

In another stream of literature, Gittins (1979) offers an early account of optimal dynamic allocation indices

(later called Gittins indices) for infinite-horizon, discounted multi-armed bandit problems. Glazebrook (1979)

provides sufficient conditions under which these index results apply to reward streams derived from stoppable

arms. Gittins (1989) shows that Glazebrook’s results hold under a slightly weaker set of assumptions.
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In general, Gittins indices are difficult to compute exactly. Chang and Lai (1987) derive approximations

for the Gittins index for the infinite-horizon discounted “Bayesian bandit” problem. Brezzi and Lai (2002)

use a diffusion approximation for the Gittins index of a Bayesian bandit that is motivated by work of Chernoff

(1961) on composite hypothesis testing (also see Breakwell and Chernoff 1964, Chernoff 1965).

This paper uses Chernoff-like diffusion approximations to solve the simulation selection problem (with

k = 1 system) in an asymptotically optimal way. That asymptotically-optimal solution is shown to provide an

improved approximation to the Gittins index of Brezzi and Lai’s Bayesian bandit problem (see Appendix E).

We will show that the simulation selection problem, with k≥ 1 systems, is an example of what Glazebrook

called a stoppable family of alternative bandit processes. We indicate that Glazebrook’s sufficient conditions

for a Gittins index to exist for “stoppable bandits” do not appear to be satisfied, so the existence of an Gittins

index for the simulation selection problem is an open question. Still, we show that EOC-based sampling

allocations that are analogous to those in Chick and Inoue (2001), together with new stopping rules, are

effective solutions for the simulation selection problem.

3. General Results

This section shows that, given mild technical conditions, a simple class of stationary and deterministic poli-

cies, which we call “reasonable,” is optimal for the simulation selection problem. It then further characterizes

the simulation selection problem with k = 1 system, to prepare for our approximation results in §4.

We begin by noting that a policy is stationary if the action it prescribes, given state Θt =

(Θ1,t,Θ2,t, . . . ,Θk,t), is independent of the time index, t. A policy is deterministic if the action it prescribes is

never randomized. Blackwell (1965) has shown that, in infinite-horizon problems with discounted rewards,

the following conditions ensure that there exists a deterministic, stationary policy that is optimal: 1) given

any state and action, expected one-period rewards are finite; 2) the same, finite set of actions is available in

all states.

The proof of Lemma 1 shows how the original problem formulation can be transformed to meet these

conditions. The potentially finite stopping time of the simulation selection problem is converted to an infinite

horizon by converting the one-time reward E[X(ΘI(T ),T )] at the simulation stopping time T into a perpetuity
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(1−∆)E[X(ΘI(T ),T )] that is received at each period t≥ T . Without loss of generality, then, we can restrict

our attention to the class of stationary, deterministic selection policies for the infinite-horizon problem.

LEMMA 1. Suppose there exists a finite Υ such that max{E[|X(θi)|], |ci|} ≤ Υ for all θi ∈ ΩΘi
and

i = 1,2, . . . , k for the simulation selection problem in (2). Then there exists a deterministic, stationary policy

π∗ ∈Π that is optimal.

See Appendix C in the Online Companion for proofs of all claims.

Now consider the simulation selection problem with a single project, i, and no ability to select the “do

nothing” option (i = 0). For this problem we call the stopping time Ti, let i(t) = i for t < Ti and let I(t) = i

for t≥ Ti. Thus, πi determines a stopping time, Ti, and an associated expected value,

V πi
i (Θi) = Eπi

[
Ti−1∑
t=0

−∆tci + ∆TiX(Θi,Ti
) |Θi,0 = Θi

]
. (3)

We denote the optimal stopping policy and stopping time for project i as π∗i and T ∗
i . If expected one-period

rewards are uniformly bounded, then there exists a stationary, deterministic policy that is optimal. Further,

the optimal value function satisfies the so-called Bellman equation (Bertsekas and Shreve 1996, Prop. 9.8):

V
π∗i

i (Θi,t) = max
{
−ci +∆E[V πi

i (Θi,t+1) |Θi,t, t 6= Ti], (1−∆)E[X(Θi,t)]+∆V
π∗i

i (Θi,t)
}

= max{−ci +∆E[V πi
i (Θi,t+1) |Θi,t, t 6= Ti], E[X(Θi,t)]} . (4)

We call V
π∗i

i (Θi,t) the optimal expected discounted reward (OEDR) for the option to simulate alternative i

before deciding whether or not to implement it. In (4), the expression Θi,t refers to a specific (conditional)

distribution that describes the uncertainty about the parameter θi, given the first t observations, and Θi,t+1 is

the (random) conditional distribution for θi that will be realized after the next sample to be observed, Xi,t+1,

is actually observed. So the expectation E[V πi
i (Θi,t+1) |Θi,t, t 6= Ti] averages over values of Xi,t+1.

Since setting Ti = ∞ is a feasible (though not necessarily optimal) stationary policy, we know that

V πi
i (Θi,t) ≥ −ci/(1−∆). In turn, from (4) it follows that an optimal policy will never choose the right

maximand, and stop simulating, if (1−∆)E[X(Θi,t)] <−ci.

More generally, we call any stationary, deterministic stopping policy, πi, reasonable if Ti = t <∞ implies

(1−∆)E[X(Θi,t)]≥−ci. Thus a reasonable policy never stops when the one-period expected revenue from
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a project falls below the cost of sampling. Similarly, a reasonable policy for the entire simulation selection

problem has T = t and I(t) = i only if (1−∆)E[X(ΘI(t),t)]≥−cI(t).

LEMMA 2. Anoptimal deterministic, stationarypolicy for the simulationselectionproblem is reasonable,

almost surely.

Thus, without loss of generality, we can restrict our attention to the analysis of reasonable policies.

4. A Value Function Approximation for One Alternative

A normative solution to the analysis of a single simulated alternative requires the evaluation of the OEDR,

V
π∗i

i (Θi,t). In this section we develop diffusion approximations that provide structural insight into the form

of the OEDR and allow for its efficient computation. Our approach follows in the spirit of Chernoff (1961).

This section assumes k = 1, so to simplify notation we drop the system index, i. It also assumes that the

simulation output Xj is i.i.d. Normal (θ,σ2) for replication j = 1,2, . . ., with a known finite variance σ2

and unknown mean θ. We suppose that θ has a prior distribution Θ which is Normal (µ0, σ
2
0). While this

assumption may not satisfy the uniform boundedness condition in Lemma 1, the analysis below results in a

well-defined finite OEDR when σ2
0 is finite.

The diffusion approximations are asymptotically appropriate when the effective discount rate over the

duration of a simulation replication is small, as is usually the case. Repeated sampling leads to realizations

of a scaled Brownian motion with drift.

The calculation of the OEDR involves the solution of a so-called free boundary problem for a heat equation

that is obtained from the diffusion approximation. The boundary is “free” since it is determined by equating

the two maximands in the value function, rather than being a known, pre-specified boundary. A comparison of

the maximands in the continuous-time analogue of (4) determines the free boundary between a continuation

set (in which it is optimal to continue simulating a project) and a stopping set (in which it is optimal to stop

simulating and to implement the project).

We motivate the diffusion approximation, present a standardized free boundary problem for the diffusion,

and solve the problem for the special case of c = 0. The solution when c > 0 is proven to be a function of

the solution when c = 0. We then derive the solution to the optimal stopping problem when comparing a
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single (k = 1) simulated project with a project that has a known, deterministic NPV. This section concludes

by showing how the diffusion approximation can be used to determine whether or not a simulation tool for

one alternative should be implemented in the first place.

4.1. Diffusion Approximation for the Output of One System

Define t0 = σ2/σ2
0 , and redefine t = t0 +n, where n is the number of simulation observations seen so far for

the single system in question. Set yt0 = t0µ0 and yt = yt0 +
∑n

j=1 xj . This transformation conveniently makes

the posterior distribution Θt of θ given x1, x2, . . . , xn a Normal (yt/t,σ2/t) distribution and will help to find

an optimal stopping time for (3) when there is k = 1 system. We will represent Θt, given x1, x2, . . . , xt−t0 ,

by (yt, t), which uniquely determines it. When X1,X2, . . . ,Xt−t0 have not yet been observed, (Yt, t) can be

thought of both as a real-valued stochastic process and as a random distribution.

Proceeding informally at first, suppose that observations are obtained continuously rather than at discrete

intervals, so that Yt is a Brownian motion with unknown drift θ and variance σ2 per unit time. If we let Bπ

be the continuous-time analog of V πi in (3), we can take the supremum over all non-anticipative policies π

with a stopping time T ≥ t0 to obtain the continuous-time approximation for the OEDR

B(yt0 , t0) = sup
T≥t0

Eπ

[
−
∫ T

t0

ce−δ(ξ−t0)dξ + e−δ(T−t0)D(yT , T )
]
, (5)

where discounting is applied to sampling costs and to the terminal reward function, D(yT , T ) = yT /T .

Appendix B shows that B(yt, t) is the solution to the following heat equation in a continuation set C,

0 =−c− δB +
y

t
By +Bt +

σ2

2
Byy, (6)

where subscripts on B indicate partial derivatives, and B(yt, t) = D(yt, t) outside of C. The free boundary,

∂C, of C is determined by the following conditions,

B(y, t) = D(y, t) = yt/t, on ∂C (7)

By(y, t) = Dy(y, t), on ∂C (smooth pasting).

The basic problem is to solve for the value function, B, and the free boundary, ∂C, determined by (6)-(7).
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4.2. Standardized Free Boundary Problem for Optimal Stopping

The free boundary problem that is determined by (6)-(7) depends on three parameters, c, δ and σ. In the

spirit in which problems with normal distributions are analyzed using z-statistics, we can rescale specific

instances of the problem to obtain a standardized free boundary problem for optimal stopping. To do this we

define a new time scale, τ = γt. Set τ0 = γt0. Let Zτ = αYt be a scaled motion with zτ0 = z0 = αyt0 .

Let µ = βθ be a rescaled drift parameter. So E[Zτ ] = µτ = E[αYt] = αθt = αµ
βγ

τ . If α/βγ = 1 then the

drift of Zτ is µ. Also, Var[Zτ ] = α2Var[Yt] = α2σ2t = α2σ2

γ
τ , so Zτ has unit variance per time unit if

α2σ2 = γ. Those two moment relations constrain the set of suitable choices of γ,α,β. The third constraint,

which is needed to identify the three parameters, is chosen after examining whether or not c equals 0.

4.2.1. Discounting Costs Only (c = 0, δ > 0) Suppose the marginal cost of additional replications is

essentially nil (c = 0), e.g. if analyst and computer time are considered to be sunk costs, but simulation

delays discount a project’s value (δ > 0). We first find values γ,α and β that standardize the problem, then

introduce a change of variables that will simplify its solution. The discounted terminal reward at time t is

e−δ(t−t0)D(yt, t) = e−(τ−τ0)δ/γ γ

α

zτ

τ
.

We choose the parameters to standardize both the discount factor in the loss function (δ/γ = 1) and the

diffusion parameters (α/βγ = 1 and α2σ2/γ = 1). This parametrization requires

α = δ1/2σ−1, β = δ−1/2σ−1 and γ = δ. (8)

A second change of variables will simplify the solution of the resulting standardized free boundary problem,

s = 1/τ = 1/(δt) and ws = zτ/τ = βyt/t,

with s0 = 1/τ0 = 1/(δt0), and W (s0) = w0 = zτ0/τ0 = βyt0/t0. Then W is a Brownian motion in the −s

scale going backward from time s = s0 to time s = 0, with initial point (s0,w0) (Chernoff 1961).

With these changes of variables and with c = 0, solving (6)-(7) is equivalent to solving the following free

boundary problem in (w,s) coordinates. Problem (9) is standardized in that it models c = 0, δ = 1 and σ = 1:

0 = −B1

s2
−B1,s +

1
2
B1,ww (9)
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D(w,s) = max{0,w}

B1 = D and B1,w = Dw, on the free boundary ∂C.

We use D(w,s) = max{0,w}, rather than D(w,s) = w, because boundary conditions at s = 0 are needed to

specify the problem. A discounted reward of 0 at time s = 0 corresponds to simulating forever. The following

theorem characterizes the the solution of the standardized problem (9):

THEOREM 1. The free boundary ∂C of the continuation set for the standardized problem in (9) is a

function b1(s)≥ 0. Suppose that c = 0 and δ > 0. The OEDR B of the original free boundary problem in

(6)-(7) is B(yt0 , t0) = σ
√

δB1(w0, s0)≥max{0, yt0/t0}, where B1 solves (9), and the continuation set is

C = {(w,s) : w < b1(s)}= {(y, t) : y/t < σ
√

δb1(1/δt)}.

The proof of Theorem 1 can be found in Appendix C. The appendix also fills in some details of the above

development.

Thus, if yt/t < σ
√

δb1(1/δt) then it is optimal to simulate. The output of the simulation can be used with

Bayes’ rule to obtain a posterior distribution for the unknown mean, which becomes the prior distribution

for the next stage. If yt/t≥ σ
√

δb1(1/δt), then discounting costs outweigh the value of gathering additional

information from more simulations, and there is a higher value B(yt, t) = yt/t to implementing immediately.

Theorem 2 characterizes the asymptotics of the stopping boundary – its proof shows that b1(s) is also the

optimal stopping boundary of a related problem that was considered by Brezzi and Lai (2002).

THEOREM 2. b1(s)
.= s/
√

2 as s→ 0 and b1(s)
.= s1/2 (2 log s− log log s− log 16π)1/2 as s→∞.

Appendix E shows how we compute B1 and b1 for the numerical examples below. The computations make

use of the following lemma, which is also used below. The lemma’s lower bound is obtained by examining

one-stage policies which work as follows: first ß replications are observed; then, if the posterior mean exceeds

−c/δ (=0 here), the system is selected; otherwise it is rejected in favor of infinite simulation replications.

LEMMA 3. Let φ and Φ be the pdf and the cdf of a standard normal distribution. Let Ψ[s] =
∫∞

s
(ξ −

s)φ(ξ)dξ = φ(s)− s(1−Φ(s)) be the Newsvendor loss function for a standard normal distribution. Then

B(yt0 , t0)≥B(yt0 , t0)
∆= sup

ß≥0

e−δß
(
− c

δ
+
(

σ2ß
t0(t0 + ß)

)1/2

Ψ

[
−
(

yt0

t0
+

c

δ

)/( σ2ß
t0(t0 + ß)

)1/2
])

.

(10)
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4.2.2. Both Sampling and Discounting Costs (c, δ > 0) A similar analysis to that in §4.2.1 can be

applied when both sampling and discounting costs are positive. That analysis, along with the proof of the

following theorem, is found in Appendix C.

THEOREM 3. Let b1(s) be the free boundary and B1(w,s) be the OEDR for the standardized problem (9)

for the case c = 0, δ > 0. Suppose that c > 0 and δ > 0, and set κ = δ3/2σc−1. The OEDR B of the original

free boundary problem in (6)-(7) is

B(yt0 , t0) = β−1

(
B1(w0 +1/κ, s0)−

1
κ

)
= σ
√

δB1

(
1

σ
√

δ
(
yt0

t0
+

c

δ
),

1
δt0

)
− c

δ
, (11)

and the continuation set is C = {(w,s) : w < b1(s)− 1/κ}= {(y, t) : y/t < β−1b1(1/δt)− c/δ}.

Theorem 3 says that the OEDR when c > 0 is a simple transformation of the OEDR when c = 0. It further

says that the continuation set for y/t is shifted by −c/δ. This implies that only one free boundary problem

must be solved to handle any values of c≥ 0 and δ > 0.

Note that the formula b(t) = β−1b1(1/δt)−c/δ for the boundary of C is valid for both c = 0 and c > 0. We

define b−1(m) = sup{t : b(t)≥m} for all m >−c/δ. Theorem 2 implies that b(t) is monotone decreasing

and continuous for sufficiently large and sufficiently small t. Numerical experiments in Appendix E suggest

that b(t) is, in fact, monotone decreasing and continuous for all t (and thus invertible for m >−c/δ) .

4.3. Comparing a Single Simulated System to a Known Alternative

The analysis in §4.2 requires that one either simulate or implement a single system. In this case, given a

simulated system whose E[NPV] is far below −c/δ with high probability, it is optimal to simulate forever,

rather than to implement. Alternatively, one may wish either to simulate, to stop and implement the simulated

system, or to stop and obtain a known deterministic NPV whose value is m. If the known deterministic

alternative is to “do nothing”/maintain the status quo, then m = 0. An arbitrary m 6= 0 allows for comparisons

with a known standard (Nelson and Goldsman 2001) or with the “retirement option” often used to characterize

multi-armed bandit problems (Whittle 1980). We therefore address the following generalization of (4).

V π∗(m,Θt) = max
{
m,−c+∆E[V π(m,Θt+1) |Θt, t 6= T ], (1−∆)E[X(Θt)]+∆V π∗(Θt)

}
= max{m,−c+∆E[V π(m,Θt+1) |Θt, t 6= T ], E[X(Θt)]} . (12)
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Several results follow directly from the structure of (12) and the results of the previous subsections. First,

since an optimal policy is reasonable, V π∗(m,Θt) = V π∗(Θt) for all m ≤ −c/δ. We therefore focus on

m > −c/δ. Second, we can develop a diffusion approximation B(m,yt, t) to V π∗(m,Θt) for the case of

normally distributed outputs with a known variance. By examining one-stage policies that run ß replications

and then select a reward of max{m,−c/δ, y
t0+ß/(t0 + ß)}, we obtain the following analog of Lemma 3:

B(m,yt0 , t0)≥ sup
ß≥0

e−δß
(

m+
(

σ2ß
t0(t0 + ß)

)1/2

Ψ

[
−
(

yt0

t0
−m

)(
σ2ß

t0(t0 + ß)

)−1/2
])

. (13)

Third, a better bound than (13) might be found by noting that the diffusion approximation for (12) is the

same as in (6) in the continuation set Cm. The boundary conditions change from (7) to

B(m,y, t) = D(m,y, t) ∆= max{m,y/t,−c/δ}, and By(m,y, t) = Dy(m,y, t), on ∂Cm. (14)

The continuation set Cm is indexed by m as it may, in principal, differ from C.

We define the m-diffusion problem to be the free boundary problem that is determined by the heat equation

in (6) and the free boundary condition in (14). The lower bound for the solution to the m-diffusion problem

in Theorem 4 is based upon the following stopping rule: do not continue sampling if one would stop if the

mean were max{y/t,m}. With this rule, the maximum number of replications that one should be willing to

make is db−1(m)e− t0 before one stops either to implement the simulated alternative or to take m.

THEOREM 4. For a fixed m, let B(m,y, t) solve the m-diffusion problem given by (6) and (14). Let

B(y, t) be the solution to (6)-(7) in (11), with boundary b(t) = β−1b1(1/δt)− c/δ and continuation set

C = {(y, t) : y < b(t)}, where β, δ, b1 are as above. Set t̃(t) = tb−1(m)/(b−1(m)− t) and t̃0 = t̃(t0).

If m≤−c/δ, then B(m,yt0 , t0) = B(yt0 , t0). If m >−c/δ, then b−1(m) is finite and

B(m,yt0 , t0)≥B(m,yt0 , t0)
∆=

{
max{yt0/t0,m} if t0 ≥ b−1(m)
m+β−1B1

(
β(yt0

t0
−m),1/δt̃0

)
if t0 < b−1(m). (15)

The second alternative of (15) depends upon c, as expected, because t̃0 is a function of b−1(m), and

b(t) = β−1b1(1/δt)− c/δ depends upon c. Note that B(m,y, t) is an easily computable function of B1.

An interesting question that we leave for future work is whether or not B(m,y, t) = B(m,y, t). This

hypothesis was not rejected by our Monte Carlo tests in §5.
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4.4. Should I Develop A Simulation Tool for One Alternative?

The analysis of the previous subsections assumes that the cost of the simulation tools is sunk and that the

tools are immediately available for use. Now suppose that the simulation tools have not yet been developed,

but that the manager has good estimates of the time and cost required to develop them (setting project scope,

data collection, programming, validation, etc.), as well as an estimate of the run times of the simulation

replications themselves (e.g., from prior experience with similar projects).

In particular, suppose that u0 ≥ 0 years and $g0 ≥ 0 are required to develop the underlying simulation

platform that enables the k = 1 alternative to be simulated. Let δyr be the annual discount rate. Then the

NPV of having the option to simulate or implement the alternative is:

V̄(Θ0) = max
{
E[X(Θ0)],−g0 + e−δyru0V π∗(Θ0)

}
. (16)

The first maximand in (16) is the expected reward from implementing the alternative without building the

associated simulation tool, and the second term combines the NPV of developing the simulation tool with

the discounted value of the OEDR of the simulation selection problem in §3. The value of V π∗(Θ0), in turn,

can be approximated by the diffusion results on the far right side of (11), which are valid for c≥ 0, if there

is no choice but to simulate or to implement the simulated alternative, or by (15) if there is an option to stop

to implement either the simulated alternative or to select a known deterministic NPV of m.

If V̄(Θ0) < 0, then one would neither invest in developing the simulation tools, nor implement the alterna-

tive under consideration. If V̄(Θ0) > 0 and V̄(Θ0) equals the second maximand of (16), then it is economically

optimal to implement the simulation tool. If V̄(Θ0) > 0 and V̄(Θ0) equals the first maximand of (16), then

it is economically optimal to implement the alternative without developing a tool to simulate it.

5. Sample Simulation Selection Problems

This section applies our results to several illustrative examples with one alternative. Example 1 demonstrates

that the optimal stopping rule is more complex than existing stopping rules in ranking and selection. Exam-

ple 2 shows that positive marginal sampling costs imply a finite amount of time that one should be willing

to simulate. These two examples assume that the development cost of the simulation tool is sunk.
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Two other examples illustrate the economic value of the approach. Example 3 analyzes whether or not

it is optimal to invest in simulation tools in the first place. Example 4 demonstrates the economic value of

having a flexible stopping time for simulation, as opposed to a rigid deadline for simulation analysis.

Example 1 examines how large a simulation’s output mean must be before one stops to implement

a system. Assume that a firm uses a discount rate of 10%/year, that replications of a single simulated

alternative have standard deviation σ = $107 and require η = 20 minutes to run at no marginal cost (c = 0),

so that the results of §4.2.1 apply. The simulation time makes the discount rate per replication equal to

δ = 20× 0.10/365/24/60, so 1/δ = 2.63× 105 replications are required to obtain a scaled time of τ = 1.

The solid line in Figure 1 indicates the boundary between stopping and continuation regions. The first

replication at which the sample mean crosses above the stopping boundary is the point at which one stops to

implement the proposed system. If the sample mean never were to cross above the stopping boundary, then

one would simulate forever.

We examine this stopping boundary further before we compare it to the stopping criteria of some other

procedures. For example, our results indicate that simulation should stop after t = 14 replications if, at that

point, the sample mean is yt/t ≥ $107 (corresponding to a z-score of z = yt/t

σ/
√

t
= 3.7). If the simulated

system is implemented (with yt/t > 0), then the posterior probability of incorrect selection (PICS) is the

probability that the unknown mean NPV is less than the value of not implementing any system (which has

NPV = 0). Recall that the posterior probability for the unknown mean is Normal (yt/t,σ2/t), with density

pt(θ) =
√

t√
2πσ2

e−(θ−yt/t)2t/2σ2
. If z = 3.7 when t = 14, then PICS =

∫ 0

−∞ pt(θ)dθ = Φ[−z] = 1×10−4. If the

simulated system is selected as best, but the mean turns out to be θ < 0, then the opportunity cost is 0−θ, and

the posterior expected opportunity cost of potentially incorrect selection is EOC =
∫ 0

−∞(0−θ)pt(θ)dθ = 69.

Note that, as one moves along the stopping boundary, the PICS and EOC change. If one stops after

663 replications (9.2 days) with yt/t≥ $106 (z = 2.57, then PICS = 5.0× 10−3 and EOC = 615.6. If one

stops after and after 1973 replications (274 days) with yt/t≥ $105 (z = 1.4) then PICS = 9.6× 10−2 and

EOC = 2584. In this example, then, a greater potential upside means that one is willing to “stop simulating

and start building” sooner, but a more stringent level of evidence for correct selection is required (a higher

z-score, meaning a lower PICS).
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These results allow us to compare our stopping policy with highly effective Bayesian procedures that do

not account for discounting in Branke et al. (2007). Those earlier procedures specify a given fixed number

of replications, or a fixed PICS or EOC threshold, that determines when stopping should occur. But this

example shows that the optimal number of replications, PICS and EOC are not constant thresholds; they

change as the simulation results accumulate. Thus, these previous approaches are not optimal for E[NPV].

We also note that the optimal stopping boundary to maximize the E[NPV] of a selection differs from the

shapes (e.g., triangular) of stopping regions for several frequentist IZ procedures.

Example 2 shows that the inclusion of marginal costs for sampling compels the analysis to end. Suppose

that the variable cost per simulation run is $3/hour (e.g. for computer time), and all other parameters are as

in Example 1. The cost per replication c = $3×20/60 = $1. We presume that the alternative to stop and “do

nothing” is available, with m = 0, so that the results of §4.2.2 and §4.3 apply.

Figure 2 shows the original stopping boundary from Figure 1 as a line with long dashes. The solid stopping

boundary, drawn c/δ ≈ $263K below it, accounts for sampling costs. (To allow for negative values, the

y-axis is not in log-scale.) That the stopping boundary with c≥ 0 falls below that for c = 0 reflects the fact

that one is willing to simulate for a shorter time: if yt/t = $106, then 6.3 days instead of Example 1’s 9.2

days; if yt/t = $105, then 44.2 days instead of Example 1’s 274 days ).

Thus, a larger c means a willingness to run fewer replications. A larger σ pushes the stopping boundary

proportionally higher above the base −c/δ. Appendix D.1 further discusses how σ, c and δ interact to

determine the continuation region in the context of stationary simulations.

The figure’s horizontal dash-dot line corresponds to the “do nothing” option with a deterministic NPV of

m = 0. It intersects the stopping line at 5120 replications (71.1 days), the most that one would rationally

simulate this system if the goal were to maximize E[NPV]. Beyond that number of replications, one would

take the zero option if the posterior mean were yt/t < 0, and one would implement if yt/t > 0.

The dotted line in Figure 2 represents the contour B(y, t) = 0. Below that line, the OEDR B(y, t) from

(11) is negative. One would lose money by being forced to simulate a poor system if the 0 option were not

available. As estimated with (15), the OEDR when the 0 option is available exceeds 0 in that region. There

is a positive expected value to sample up to the point where one would stop if the mean were 0.
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Figure 1 One stops simulating to implement if the

sample mean exceeds a stopping boundary (σ = $107;

δ = 5.71× 10−6, or 10% per year; c = 0).
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Figure 2 One stops sampling earlier in favor of

implementing when the marginal cost of sampling is

$1/hour (σ = $107; δ = 5.71× 10−6, or 10% per year).
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Example 3 uses §4.4 to assess whether a simulation tool should be developed, assuming that it does not

already exist. A manager is considering a system redesign (k = 1) as an alternative to continuing with an

existing system (the “zero option”, which brings no additional revenue beyond the status quo). A validated

tool that could simulate the new alternative would require 3 months (u0 = 0.25 years) of time and g0 = $250K

to develop. The output of the tool would be the simulated net improvement of the alternative over the mean

NPV of continued operation of the current system. The marginal cost of simulation runs is assumed to

be negligible (c = 0). The firm uses an annual discount rate of δyr = 10%. Based upon past simulation

experience, a simulation run is predicted to take η = 20 min, and experience with the existing system leads

to an estimate σ = $10Mil for the standard deviation of the simulated NPV of the alternative.

Should a manager invest time and money in developing the simulation platform? An application of (16)

indicates that the answer depends upon the manager’s a priori assessment of how much better or worse

the alternative might be. Suppose that the manager believes that the unknown E[NPV] has, a priori, a

Normal (µ0, σ
2
0) distribution. For instance, if the manager believes that the alternative has an equal chance

of being better or worse, then µ0 = 0. If the realized difference between the current and the proposed system

is of a scale equal to the random noise in the NPV of the existing system, then σ2 = σ2
0 and t0 = σ2/σ2

0 = 1.

A value of t0 = 4 corresponds to specifying σ0 = σ/2 = $5Mil in this example.
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Figure 3 plots three main policy regions for this example in Θ0 = (t0, µ0) coordinates. The boundary

of each region depends on the expected value, −g0 + e−δyru0V π∗(Θ0), of building the simulation tool, as

well as an application of the simulation selection procedure to learn more before deciding whether or not to

implement. The contours represent the absolute value of the difference between−g0 + e−δyru0V π∗(Θ0) and

the expected benefit of second policy, which never simulates. The policy to never simulate, and to immediately

implement the alternative if and only if the alternative appears favorable, has E[NPV] = max(µ0,0).

Below the lower bold line with the “◦” characters, which is defined by −g0 + e−δyru0V π∗(Θ0) = 0, the

zero option is more valuable than either maximand in the right hand side of (16). In this region, the manager

should therefore not simulate and continue to operate the existing system. The contours in this policy region

show the expected loss of simulating, rather than immediately rejecting the alternative.

Above the upper bold line with the “*” characters, the first maximand of (16), which evaluates to µ0,

exceeds both the second maximand and 0. Here, immediately implementing the alternative is preferable to

implementing the simulation tool: if t0 = 1, this happens when µ0 > $12Mil; if t0 = 4, this happens when

µ0 > $5.1Mil. The contours in this upper policy region represent the expected improvement in NPV obtained

by immediately implementing the alternative, rather than investing in simulation.

In the middle band of Figure 3, where the alternative is believed to be neither a clear winner nor a serious

loser, it is worth the time and investment to develop simulation tools for the analysis. Contours in that

band represent the expected benefit of simulating, rather than immediately implementing or rejecting the

alternative. For instance, if the manager represents uncertainty about the expected net improvement of the

alternative with µ0=$4Mil and t0 = 4 (a fair bit of uncertainty), then the improvement in E[NPV] obtained

by assessing the alternative optimally with simulation is−g0 +e−δyru0V π∗(µ0, t0)−µ0 =$250K, relative to

blindly implementing the alternative. If µ0=$0 and t0 = 4, the gain is $1.7Mil. The more certain the manager

is about the mean performance of the alternative (the larger t0), the narrower the policy region for building

the simulation.

Example 4 presumes that the simulation tool from Example 3 has been fully developed. The manager faces

a second question – how should the simulation analysis be performed? We consider two ways to perform that

analysis. One way is to simulate nonstop until reaching a deadline for a planned decision-making meeting
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Figure 3 If the mean performance of the alternative is believed to be too low, one rejects the alternative; if

the mean performance is believed to be high, one directly implements. In a middle range, one simulates.
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(after, say, a time td = 60 days), followed by a decision to implement the alternative if the estimated E[NPV]

is positive, and to reject the alternative otherwise. Since c = 0, the E[NPV] of that plan is

E[NPV with fixed deadline] = e−γr

(
σ2r

t0(t0 + r)

)1/2

Ψ

[
−µ0/

(
σ2r

t0(t0 + r)

)1/2
]

, (17)

where r = td× 24× 60/η is the number of replications that can be run by the deadline (cf. Lemma 3).

Another way to analyze the alternative would be to use the simulation selection procedure developed

above: simulate while in the continuation region; if the stopping boundary is reached, then stop to implement

the alternative; or reject the alternative if a deterministic fall back of value m were available. Here we set

m = 0. The alternative is assumed to be implementable two weeks (tp = 1/26 years) after the moment it is

selected. This time delay represents coordination time required after the flexible-length analysis, and results

in a discounting factor of e−δyrtp times the value of the simulation selection option, V (µ0, t0).

Figure 4 shows the value of a flexible stopping time, relative to that of a rigid decision deadline. For

example, if the manager’s prior distribution for the unknown E[NPV] has µ0 = $0 and t0 = 4, then Figure 4

shows a value of $25K for flexible stopping out of $1.7Mil for the value of the simulation analysis option (as

at the end of Example 3), for an expected net benefit of 1.5%. When µ0 =$4Mil and t0 = 4, that percentage

increases to 55K/250K = 22% (cf. Example 3). The value of a simulation analysis with a flexible stopping

time, relative to rigid deadlines, increases both with the belief that the alternative is better (larger µ0), and

with uncertainty about the mean NPV (larger σ2
0 = σ2/t0).
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Figure 4 The value of flexible stopping for simulation selection, rather than a rigid completion deadline.
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6. Multiple Simulated Alternatives

Many simulation studies consider either a small, finite set of distinct systems, or a combinatorially large

number of alternatives (e.g., that represent different parameter inputs into a system design structure). This

section broadens the scope of our analysis to consider problems with k > 1 simulated alternatives.

We begin by recalling the link between simulation selection problems and the multi-armed bandit literature

and highlight a difficulty of establishing a so-called Gittins-index result that would greatly simplify the

simulation selection problem. Given the lack of such a simplifying result, we then develop bounds for

the optimal expected discounted reward of the simulation selection problem. The bounds can be used to

determine whether or not simulation tools should be developed. Thus, these results extend the analysis of

Example 3 in §5 to problems with k > 1 alternatives. We then adapt Chick and Inoue (2001) to develop a

sequential sampling algorithm for the simulation selection problem and numerically show that it can deliver

near-optimal expected rewards in a timely manner.

6.1. Simulation Selection and the Multi-Armed Bandit Problem

In the multi-armed bandit problem, a decision-maker repeatedly chooses among a fixed set of k independent

Markov chains (“arms”), the selected chain alone making a state transition and providing a state-dependent

reward. (For a precise definition see Appendix A.) Given certain technical conditions, the problem has an

optimal solution with an appealing property: at any time one can calculate a state-dependent index for each

chain – called an allocation index or a Gittins index – that is independent of that of the other chains, and
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it is always optimal to play the chain with the highest index. The simplicity of this type of index rule has

attracted significant attention (Gittins 1989) and would be desirable for simulation selection problems.

In fact, the simulation selection problem defined in §1 is similar to that of the multi-armed bandit. Both

have discrete-time discounting, independent projects, and Markovian state transitions. At the same time,

the simulation selection problem includes a stopping time, T , that is not part of the multi-armed bandit

formalism. If, as in the simulation selection problem, a “zero” arm is included, then the multi-armed bandit

problem has k+1 actions available for all t = 0,1, . . . . In contrast, for t≤ T the simulation selection problem

has 2k +1 actions available – decide t < T and choose arm i(t)∈ {1,2, . . . , k} to simulate, or decide t = T

and choose an arm I(t)∈ {0,1, . . . , k} to implement – and for t > T no actions are available.

The added stopping decision makes the simulation selection problem an example of what Glazebrook

(1979) calls a stoppable family of alternative bandit processes. The fact that the simulation selection problem

is such a “stoppable bandit” problem complicates the question of whether or not an index rule is optimal.

One intuitive solution to the problem with k > 1 systems follows a two-step hierarchical structure. First,

use the results of §4 to identify an optimal stopping policy for each of the k projects when considered alone.

Once these optimal stopping policies are applied, each of k simulated systems behaves as a Markov chain.

Then given these k Markov chains, obtained via the fixed application of the k optimal stopping rules, apply

the Gittins-index result to sequentially select which system to simulate or implement at a given stage.

Glazebrook (1979, Theorem 3) identified a sufficient condition for such a two-step hierarchical policy to

be optimal for stoppable bandit problems. In the context of this paper, that sufficient condition requires that,

when each of the k alternatives is in its stopping set when considered individually, the optimal policy for the

simulation selection problem with k alternatives, considered together, would also stop.

In Appendix A.3, we construct a simple counter-example to show that Glazebrook’s sufficient condition

does not hold. In that example, each alternative has statistics that, when considered in isolation, place it

barely into the stopping set, so the above two-step hierarchical policy would stop simulating and implement

an alternative. Nevertheless, we construct an alternative policy which continues to sample and provides a

larger E[NPV]. Thus, the question of whether or not there is an optimal allocation index for the simulation
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selection problem, and the value of the optimal expected reward, remains open. We therefore take a different

tack.

6.2. Should I Develop A Simulation Platform for k > 1 Alternatives?

As in §4.4, suppose that a simulation platform can be developed with a monetary cost of $g0 over u0 units of

time. Further suppose that, once developed, each of k > 1 alternatives can be simulated on this platform. This

corresponds to the different system designs being specified by different inputs to the simulation platform.

The choice of whether or not to implement the simulation tools depends upon the cost and development time

of the tools, as well as the expected reward from selecting a system based upon the simulation output. This

expected reward is a function of the simulation selection policy.

While we cannot explicitly assess the expected value of the optimal simulation selection policy, we know

that, by definition, it is at least as large as that of any other policy, including policies that allocate a fixed

number of samples in one stage of sampling. In fact, we can easily develop bounds for the OEDR of one-

stage policies. Therefore, in a setting in which we want to decide whether or not it is economical to develop

simulation tools at all, the economic value of a one-stage allocation policy can be used to evaluate the

optimal policy: if the one-stage allocation policy is valuable, then an optimal allocation will be as well. This

subsection describes how we evaluate the economic benefit of using one-stage policy, as well as how we use

one-stage policies to decide whether or not to build a simulation tool.

Formally, a one-stage allocation r = (r1, r2, . . . , rk) maps a given sampling budget of ß≥ 0 replications

to the k systems, with a total of ri = ri(ß)≥ 0 replications to be run for alternative i, so that
∑k

i=1 ri = ß. For

example, the equal allocation sets ri = ß/k (relaxing the integer constraint if needed). After observing those

samples, the one-stage allocation policy selects the alternative with the largest posterior expected reward, if

that reward exceeds

µ00
∆= max{m,−ci/δ : i = 1,2, . . . , k}, (18)

and otherwise selects the alternative that maximizes the right hand side of (18). (Recall that−ci/δ corresponds

to simulating alternative i forever and that m is the NPV of a known alternative, such as ‘doing nothing’ for

m = 0.)
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Suppose further that samples are normally distributed with known variance σ2
i , but unknown mean whose

distribution is Normal (µ0i, σ
2
i /t0i), with µ0i = y0i/t0i, following the notation in §4. Then the posterior mean

that will be realized after the future sampling is done is the random variable (cf. (17))

Zi ∼ Normal

(
µ0i,

σ2
i ri

t0i(t0i + ri)

)
. (19)

If we consider the allocation to be a function of ß and vary ß over all possible sampling budgets, we obtain

the following lower bound for the OEDR that generalizes Lemma 3 to k > 1 projects.

LEMMA 4. Let V π∗ (Θ) maximize (2), and let r be a one-stage allocation. Then

V π∗ (Θ)≥OEDR(Θ) ∆= sup
ß≥0

e−γßE[max{µ00,Z1,Z2, . . . ,Zk}]−
k∑

i=1

rici. (20)

The expectation on the right hand size of (20), in turn, has some easy-to-compute bounds. The bound

refers to the order statistics (i) for i = 0,1, . . . , k such that µ0(0) ≤ µ0(1) ≤ . . .≤ µ0(k).

LEMMA 5. Let r be a one-stage allocation, let Ψ[s] be as in Lemma 3, let σ2
Z,0= 0, σ2

Z,i=
σ2

i ri

t0i(t0i+ri)
, and

σ2
Z,i,(k)= σ2

Z,i +σ2
Z,(k). Then

E[max{µ00,Z1,Z2, . . . ,Zk}] ≥ µ0(k) + max
i:i 6=(k)

σZ,i,(k)Ψ
[
(µ0(k)−µ0i)/σZ,i,(k)

]
(21)

E[max{µ00,Z1,Z2, . . . ,Zk}] ≤ µ0(k) +
∑

i:i 6=(k)

σZ,i,(k)Ψ
[
(µ0(k)−µ0i)/σZ,i,(k)

]
. (22)

With perfect information and no discounting or sampling costs, the expected reward of r is

OEDR(Θ) ∆= E[max{µ00,Z1,Z2, . . . ,Zk}] . (23)

Observe that if −g0 + e−γu0OEDR(Θ) > µ0(k), then it would be optimal to invest in the simulation tools

that are required to simulate the k alternatives in question and to evaluate those alternatives, before selecting

a project (including the 0 arm). That is because the expected reward from developing the simulation tool and

using the allocation ri(ß), with the choice of ß that determined OEDR(Θ), would exceed 0.

If −g0 + e−γu0OEDR(Θ) < µ0(k), however, it would be better to not implement the simulation tools. In

this case, even a simulator that could run replications infinitely fast at no cost would not provide enough

information about the system performance, in expectation, to compensate for the time and cost of developing

the simulation tools. Rather one should immediately implement project (k).
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6.3. Fully Sequential Algorithm with k > 1

We now presume that a platform used to simulate the k > 1 alternatives has been built, and we seek an effective

sequential simulation selection policy. Section 6.1 noted the difficulty of finding the optimal sequential

policy. We therefore appeal to another class of one-stage policies to determine whether or not it is valuable

to continue simulating, and if so, which alternative to simulate. Those one-stage policies seek to maximize

the expected (undiscounted) reward over a finite horizon.

In particular, we examine the one-stage LL allocation of Chick and Inoue (2001) that is designed to

minimize a bound on the expected opportunity cost (EOC) of a potentially incorrect selection. Gupta and

Miescke (1996) showed that minimizing the EOC is equivalent to maximizing the posterior mean that is

realized once a finite total number of samples is observed. Thus, the LL allocation seeks to maximize the

expected undiscounted reward over a finite horizon. Branke et al. (2007) showed that a sequential version

of the one-stage LL allocation is efficient for a variety of selection problems.

Appendix F adapts and extends the LL allocation to the current context, in which both discounting

and sampling costs are included. The resulting sequential procedure assumes that samples are normally

distributed with a known variance that may differ for each alternative.

The general idea of our sequential sampling procedure is simple. At each stage of sampling, the procedure

first tests whether or not to continue sampling. It does this by checking if there exists some one-stage LL

allocation of ß samples, for some ß≥ 1, that leads to an expected discounted reward that exceeds the value

of stopping immediately. If there is value to continuing, then one replication is run for the alternative that

LL suggests would most warrant an additional replication. After that replication is run, the statistics for that

system are updated, with the posterior distribution from the current stage becoming the prior distribution for

the next stage. If there is no value to continuing for any ß≥ 1, then the procedure stops.

The development of §6.2 immediately suggests a mechanism to formalize whether or not there is value

to additional sampling. One should continue to sample if OEDR(Θ) > µ0(k). This will happen if there is a

one-stage allocation of size ß that leads to value for continuing to simulate. Unfortunately, the sequential

recalculation of OEDR(Θ) that would be required by such a procedure is computationally burdensome.
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Fortunately, there is an easy to compute substitute. Substituting the right hand side of (21) for the expectation

in the right hand side of (20) leads to an easily computable and analytically justifiable bound.

Stopping rule EOCγ
1 (with implicit one-stage allocation ri = ri(ß)≥ 0 such that

∑k

i=1 ri = ß): Continue

sampling if and only if there is a budget ß≥ 1 such that

e−γß
(

µ0(k) + max
i:i 6=(k)

{
σZ,i,(k)Ψ

[
(µ0(k)−µ0i)/σZ,i,(k)

]})
−

k∑
i=1

rici > µ0(k). (24)

In practice, EOCγ
1 may not be as effective as hoped. It may sample less than is optimal because EOCγ

1

accounts for only a subset of the economic value of sampling. In numerical experiments, the expected

discounted reward is greater if one samples somewhat more than is optimal, as compared to sampling

somewhat less than is optimal. The next stopping rule, which may be less justifiable analytically, increases

sampling slightly by plugging the right hand side of the upper bound in (22) into the expectation of (20).

Stopping rule EOCγ
k Continue sampling if and only if there is a budget ß≥ 1 such that

e−γß

µ0(k) +
∑

i:i 6=(k)

σZ,i,(k)Ψ
[
(µ0(k)−µ0i)/σZ,i,(k)

]− k∑
i=1

rici > µ0(k). (25)

Appendix F fully specifies how these stopping rules are used with theLL allocation to solve the simulation

selection problem. Depending upon the stopping rule, we refer to Procedure LL(EOCγ
1) or LL(EOCγ

k). We

note that the left-hand sides of (24) and (25) are not monotonic in ß, so procedures that use these inequalities

must be tested for ß≥ 1, and not for ß = 1 alone.

6.4. Numerical Results

We now extend the numerical examples of §5 by allowing for k > 1 alternatives.

Example 5. We extend Examples 1 and 3 by assuming there are k ≥ 1 projects, each with the same

i.i.d. prior distribution for the unknown mean: Normal (µ0, σ
2
i /t0) for all i. We assume that the simula-

tion output for each project is normally distributed with known variance σi = 106, a cpu time of η = 20

min/replication, an annual discount rate of 10%, and no marginal cost for simulations: ci = 0.

The top rows of Table 1 display the values of OEDR(Θ) and OEDR(Θ) as functions of the number of

alternatives, when µ0 = 0 and t0 = 4. These values of OEDR(Θ) and OEDR(Θ) can be compared with the



Chick and Gans: Simulation Selection Options
28 Management Science 00(0), pp. 000–000, © 0000 INFORMS

time and cost required to develop a simulation platform, to decide if a platform warrants building or not, as

in §6.2. The data show that the bounds are relatively close for this range of k.

Example 6. Suppose now that the simulation platform has been built, but that the problem is otherwise

the same as in Example 5. Table 1 also shows the expected NPV of using Procedure LL(EOCγ
1) or Pro-

cedure LL(EOCγ
k) to identify the best alternative. Each LL(EOCγ

1) or LL(EOCγ
k) cell is based on 6000

i.i.d. problem instances in which a set of unknown means is sampled from their Normal (µ0, σ
2
i /t0) prior

distributions (except for k = 1, which is based upon 105 samples, and where the simulation results match

the PDE solution with E[NPV]= B(µ0, t0) = 1.99×106). For Table 1, each procedure was modified slightly

to stop after a maximum of 75 days of sampling, or if the stopping rule is satisfied, whichever comes first.

The top portion of Table 1 shows thatLL(EOCγ
k) andLL(EOCγ

1) provide estimates of the expected NPVs

that are in the range from OEDR(Θ) to OEDR(Θ), or within two standard errors of that range. There is a

slight advantage for LL(EOCγ
k) over LL(EOCγ

1), as expected, since it samples somewhat more.

The middle portion of Table 1 shows that, on average, both of the sequential LL procedures require

much less time than that required by the optimal one-stage procedure that maximizes OEDR(Θ). Proce-

dure LL(EOCγ
k) tends to sample more than LL(EOCγ

1), as expected by the construction of the stopping

rules. There is no corresponding time duration for OEDR(Θ), since that figure assumes perfect information

instantaneously at no cost.

The bottom portion of Table 1 shows the frequentist probability of correct selection for these procedures,

estimated by the fraction of times the “true” best alternative was selected by the procedure. With respect to

this criterion, LL(EOCγ
k) again beats LL(EOCγ

1), which in turn beats the optimal one-stage allocation.

For the range of k tested, more systems means more opportunity to obtain a good system, which means

better expected performance. We did not study combinatorially large k here.

7. Discussion and Conclusions

This paper responds to the question of how to link financial measures, such as a firm’s discount rate and the

marginal cost of simulations, to the optimal control of simulation experiments that are designed to inform

operational decisions. It provides a theoretical foundation, analytical results, and numerical solutions to
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E[NPV]×106 k = 3 4 5 6 7 8 9 10
OEDR(Θ) 4.44 5.23 5.85 6.35 6.77 7.12 7.42 7.69
OEDR(Θ) 4.42 5.20 5.81 6.31 6.72 7.06 7.36 7.62
LL(EOCγ

k) 4.43 5.20 5.87 6.39 6.78 7.08 7.41 7.66
LL(EOCγ

1) 4.50 5.18 5.78 6.30 6.75 7.09 7.36 7.60
E[Days]

OEDR(Θ) 17.4 20.0 22.4 24.5 26.4 28.3 30.0 31.6
LL(EOCγ

k) 10.1 8.3 6.6 6.2 6.4 6.3 6.2 6.1
LL(EOCγ

1) 10.2 8.2 6.4 6.1 5.9 5.2 5.4 5.4
PCSiz

OEDR(Θ) 0.945 0.935 0.925 0.917 0.909 0.902 0.895 0.889
LL(EOCγ

k) 0.967 0.955 0.945 0.938 0.930 0.921 0.916 0.914
LL(EOCγ

1) 0.965 0.950 0.943 0.934 0.923 0.905 0.904 0.889
Table 1 The expected discounted reward and average time until selecting a project as a function of the

number of independent projects, k, allocation policy and stopping criterion.

answer following questions: Should a manager invest time and money to develop simulation tools? For how

long should competing systems be simulated before an alternative is selected, or all alternatives are rejected?

This work therefore provides a first link between a managerial perspective on simulation for project

selection and the statistical simulation optimization literature. It treats the ability to develop simulation tools,

as well as the ability to simulate to gather more information about alternatives, as real options to gather

information before committing resources to a design alternative.

The diffusion analysis for a simulation option with k = 1 alternative assumes normally distributed output

with a known variance. For k≥ 1 alternatives, we extend earlier ranking and selection work (that minimizes

the expected opportunity cost of potentially incorrect selections) to adapt to the current context, that of

maximizing the expected discounted NPV of a decision made with simulation. Our results assume that each

alternative has a common simulation runtime. Appendix D indicates how these results can be extended to

handle autocorrelated output that allows for batch mean analysis, as well as different runtime durations for

each system, albeit at a price in terms of optimality. For both of these extensions, further empirical work is

needed to assess the quality of the associated approximations, and further theory is needed to assess which

assumptions are necessary and sufficient.

The paper also raises several other issues for future study. From a business perspective, we do not address

the issue of first-mover advantage or penalties for late implementation of projects due to simulation-analysis

induced delays. From a simulation perspective, we do not account for common random numbers (CRN)
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across systems, a technique that can help sharpen contrasts between systems. Section 3 accounts for unknown

variances, but §4 does not. We reserve CRN and unknown variances for future work.

Much current research on simulation optimization focuses on guarantees for the probability of correct

selection (PCS) or results for asymptotic convergence. While these are useful properties, this paper suggests

that an alternative approach may also be useful: that of maximizing the expected discounted NPV of decisions

based on simulation analysis, even at the expense of a potentially incorrect selection. Even with the limitations

enumerated above, this new approach to simulation selection accounts for a much fuller accounting of the

financial flows that are important to managers.
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