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One goal of experimentation is to identify which design parameters most significantly influence
the mean performance of a system. Another goal is to obtain good parameter estimates for a
response model that quantifies how the mean performance depends on influential parameters. Most
experimental design techniques focus on one goal at a time. This paper proposes a new entropy-
based design criterion for follow-up experiments that jointly identifies the important parameters
and reduces the variance of parameter estimates. We simplify computations for the normal linear
model by identifying an approximation that leads to a closed form solution. The criterion is applied

to an example from the experimental design literature, to a known model and to a critical care
facility simulation experiment.
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1. Introduction

A common purpose of many experiments is to obtain an adequate mathematical model of the un-
derlying system, including the functional form, and precise estimates of the model’s parameters.
Response models that describe the relationship between inputs to a system and the output can be
useful for design decisions, and much focus has gone into selecting inputs in a way that improves
the estimate of the response model [9, 29, 30, 40]. Response models can be used in iterative pro-
cesses to identify design parameters (e.g., number of servers, production line speeds) that optimize
some expected reward criterion (e.g., mean monthly revenue, average output), or to provide intu-
ition about how input factors influence aggregate system behavior. In simulation, response models
can relate the parameters of stochastic models (e.g., demand arrival rates, infection transmission
parameters) to system performance [2, 13, 24, 25, 32, 35].
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A number of design criteria are available to select design factors (or inputs) for experiments.
Several authors [6, 16, 26] use the expected gain in Shannon information (or decrease in entropy)
as an optimal design criterion to select values for the experiment’s design factors. Bernardo [6] and
Smith and Verdinelli [38] adopted this approach and looked at how to plan experiments to ensure
precise estimates of the model’'s parameters. However, many experiments aim to identify which
factors most influence the system response. ldentifying the subset of most important parameters
can be phrased as a model selection problem [34]. Box and Hill [10] used Shannon information to
develop theM/ D design criterion for discriminating among multiple candidate models.

Hill [21] stressed the importance of experimental design for the joint objective of model dis-
crimination and parameter inference in his review of design procedures. But most design criteria
focus either on identifying important parameters or improving estimates of response parameters,
but not both. Exceptions are Hill et al. [22], whose joint criterion requires certain model parame-
ters to be estimated or known, and Borth [8], whose entropy-based criterion can be challenging to
compute.

This paper describes a new joint criterion for experimental design that selects designs to simul-
taneously identify important factors and to reduce the variance of the response model parameter
estimates. The new criterion is shown to simplify to a closed form for the standard linear re-
gression model with normal observation errors, and is computationally more efficient than Borth’s
criterion. Our criterion does not require initial estimates of the model parameters and incorporates
prior information and data from preliminary experiments. It is flexible for use in either starting
or follow-up experiments, particularly if results remain inconclusive about which factors most in-
fluence the system response, and when the parameters are still poorly understood after an initial
response surface experiment has been completed. We consider designs with a givenmnoimber
observations, and do not describe how to balance initial runs with follow-up runs.

Section 2 describes the mathematical formulation for the design space and response models. It
also describes a Bayesian formulation to quantify input model and parameter uncertainty, as well
as the new entropy based design criterion. Three numerical experiments in Section 3 show that
optimal designs depend heavily on the criterion selected, and highlight the benefits and tradeoffs
of the new joint criterion over individual model discrimination and parameter estimation criteria,
as well as existing joint criteria. The examples stress the need for balancing the two types of
entropy measures of the joint criterion. For the examples considered, we also find that the weights
in our criterion are robust to misspecification. The new criterion does well at both identifying
important factors and reducing parameter uncertainty, and is computationally more efficient than
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Borth’s joint criterion.

2. Formalism

The design criterion is applied to a finite, but perhaps large, set of potential factors in a finite
numbem of runs, where: is selected by the experimenter. The design space and class of regression
models is described before the new entropy-based design criterion and computational issues.

2.1 Design Space and Regression Models

Experiments often involve several factors. Here we consider representing the performance of the
systems by the usual linear model. We consider a finite numladrreal-valued factor inputs,
x1,...,2, €ach of which may be chosen to take on a finite set of different values. These factors
can be combined algebraically to generate a finite numbesf predictors,y, ..., y,, each of
which is some function of the input factors.

We follow the formulation of Raftery et al. [34] to identify the most important of gh@edic-
tors. That is, we presume the existence ef 2P candidate response models in a model spdce
that are linear in some subset of the predictors. Assuming-theandidate response model, the

outputz; of thei-th run is presumed to be of the form

2 = Bo + Biyi) + Bolie) + -+ By + Gis (1)

wherey; (1), - . ., yi,+) are thet predictors present in thieth model, the values of the; may depend
upon/, and(; is a zero mean noise term. The selection of a candidate response model identifies
the important predictors, relative to the size of the noise in the response. See also George [20].
Let D be the (finite) design space of all possible legal combinations of the inputs for each of the
n runs. A desigrx € D can be represented as#arx ¢ matrix whose-th row contains the values
of the factors for the-th run. If modelM/, hast predictors, the design matrix can be converted to
ann x (¢t + 1) predictor matrixy, = y,(x) whose rows contain the values of predictors for each
run, and the first column corresponds to the interceptzlbet the column vector of outputs.

2.2 Entropy-Based Formulation

The problem is to choose a desigithat in some sense is effective at identifying the most important
predictors (i.e., selects the most appropriate modéVli;) and estimate regression parameters.



We assess uncertainty about response model selection and parameter estimation with probability
distributions. The design that most improves an entropy-based criterion is then selected.

2.2.1 Uncertainty Assessment

One Bayesian approach to quantify the joint uncertainty about model form and parameter values is
to assign a prior distribution to each of the models € M, then assign a conditional probability
distribution for the parameter vectgy, givenM,. The identity of the best response model and pa-
rameter is then inferred by Bayes’ rule, using the prior distributions and the probability distribution
of the output, given the model and input parameters. This is the approach taken by [14, 28, 34].
We make a standard assumption of jointly independent, normally distributed efrors,
Normal(0, 2), so if model M/, is the model,3, is the parameterx is the design with predic-

tor matrixy, = y,(x), then the outpuZ has an multivariate normal distribution,
p(Z | My, By, 0%,x) ~ NOI’ma|(yg,3€,021n),

wherel,, is the identity matrix. For prior distributions, we presume a conjugate prior distribution
[5] for the unknowng, = (3,, o%), conditional on theé-th model7,,

m(B¢ | M, 0%) ~ Normal(B, | py, 0°Vy) (2)
v

A
m(o? | My) ~ InvertedGamm{a2 | > %>’

where the conditional prior mean vectey and covariance matrix*V, for 3 may depend on the
model M,. The parameters and\ are selected by the modeler. The InvertedGartumax, 3)
distribution has pdf~(**Ye=%/7 32 /T'() and mears/(a — 1). Raftery et al. [34] suggest values
of u,, V4, v and that minimize the influence of the priors in numerical experiments.

The distributions in Eq. (2) can either be based on prior information alone, or can include
information gained during initial stages of experimentation. Dgt&rom an initial stage o
observations with predictor matrgx, is straightforward to incorporate because of the conjugate
form [5]. Replace the mean, with p, = <V;1 + ygy()) - (V;lug + ygz()); replaceV, with
(Vgl + ygy()) _1; replacev /2 with (v + ng)/2; and replace’\/2 with (v )\ + (z¢ — yop,;)T Zo +
(10— 1) V1) /2.

Choices used here for the prior distribution/d} include the discrete uniformp(M,) = 1/s)
and the independence pripf};) = w' (1 —w)?~", wheret, is the number of predictors in model
1, (i=1,...,s), andw is the prior probability that a predictor is active. Raftery et al. [34] provide
closed form formulas to update the probabilitigd/, | zo, yo).
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In the rest of the paper, the prior distribution for the follow up stage is based on a prior dis-
tribution from Eq. (2) in combination with data from an initial stage. The optimal balance of the
amount of initial stage data versus the amount of follow-up data is beyond the scope of this paper.

2.2.2 Modelling Remarks

Considering posterior probabilities is a useful way to assess the relative merits of the models [20].
Selecting models according igM/,|Z) is consistent in that if one of the entertained models is
actually the true model, then it will select the true model if enough data is observed. When the
true model is not among those being considered, Bayesian model selection chooses the candidate
that is closest to the true model in terms of Kullback-Leibler divergence [4, 5, 18]. In practice, the
true model is typically not known and is potentially nothh. Despite this, careful selection of a
class of approximating models is important in the understanding of many problems. Here we seek
a model within the class that is approximately correct (containing only significant predictors) and
that approximates the parameters of the true underlying response model with low variance [9].

Atkinson [1] raises several concerns about inference for regression models. Our prior proba-
bility framework avoids by design his concern about improper prior distributions for models. A
concern about nesting, so that two models may be true, is resolved by noting that the simpler model
will be identified as more data is collected, and that simpler models are more desirable explanations
[19, 28]. Atkinson [1] also indicates that if two response models are compared, the true model and
an incorrect model with fewer parameters, then asymptotically the correct model will be selected,
but that for finite numbers of samples the posterior probabilities may support the incorrect model
in the absence of strong evidence from the data. This is a cause for care, but is not a violation
of the likelihood principal, and negative consequences for selecting a model when the data do not
provide enough evidence is a problem for any selection criterion. A goodness-of-fit test may be
useful to provide furthepost hocvalidation.

2.2.3 Entropy-Based Criteria

Several authors [6, 16, 26] proposed the use of the expected gain in Shannon information (or
decrease in entropy) given by an experiment as an optimal design criterion. This expected gain
is a natural measure of the utility of an experiment. The choice of design influences the expected
gain in information as the predictive distribution of future outus determined by the design

model M,, and the prior distribution in Eq. (2)

P(Z | My, 0% x) ~ Normal (ypay, o® |yViy" + 1] ). 3)
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The marginal distribution oF given M,, y, obtained by integrating out?, is a multivariatet dis-
tribution. Entropy is different for discrete (model selection) and continuous (parameter estimation)
random variables, so each is discussed in turn.

For model selection, Box and Hill [10] use the expected increase in Shannon inforrjation
as a design criterion. The criterion was derived from information theory where the information
(entropy) was used as a measure of uncertainty for distinguishingdéwedidate models.

J = =Y p(M,)logp(M,) +/ (ZP(Me | Z,ye¢)log p(M, | Z,Ye)) p(Z | ye)dZ (4)

p(z | Mzz,}’e)
Elszl p(Z | My, ye)p(M)

= > p(My) [ log p(Z | My, y.)dZ
=1

An explicit solution is unknown in general, sbmay be evaluated numerically or approximated.
Alternately, Box and Hill [10] gave an upper bound approximation, the expected gain in Shannon
information between the predictive distributions of each pair of candidate mbfjelad ;. This
approximation was originally named thie-criterion, but we use the notatial D, as in [28].

MD = 3 s ( [ 92133210 Y Mhyl)dz) )

The M D criterion is effective in practice and popular with research workers [21]. Welli5e

for the model discrimination portion of our joint criterion. For the normal linear model, Meyer
et al. [28] show thatV/ D reduces to a closed form if a noninformative priofc on ¢ and a
conditionally normal prior for3 giveno are assumed. A closed form also results if the conjugate
prior is assumed.

Proposition 1. Assume the conjugate normal gamma prior in Eq. (2). 4et y,p,y, andV; =
[Yngy; + I} . Then for the linear model\/ D simplifies to

1 .. 1 /a4
MD = Z §p(]\/[i)p(Ml) [—n +tr (Vi) + X (z; — ZZ)T Vi (2 — ) (6)
0<i#£l<s
Proof. See Appendix A.1 O

For parameter estimation, Bernardo [6] and Smith and Verdinelli [38] adopted an entropy based
method to ensure precise estimates for parameters that have already been identified as important.
They choose the design that maximizes the expected gain in Shannon information (or equivalently,



maximizes the expected Kullback-Leibler distance) between the posterior and prior distributions

/ / p(0|Z)1o {(Z(l))z)]dedz )

Eq. (7) simplifies considerably for the normal linear model into a form known as the Bayesian

of the parameter@ = (3, 0?).

D-optimal criterion (hence the choice of narB&).

Proposition 2. For a linear model)M, of the form Eqg. (1), the prior probability model Eq. (2), and
a given desigtyy,
1 T _ 1 _
BD = §log‘y£yg +V, 1‘ — Elog }Ve 1}

Proof. See Appendix A.2. O

Following Borth [8], the entropy criteriof» for parameter uncertainty generalizes when there
are multiple candidate models.

— _Zp (M) / (8, | My)log p(0, | My)d6, (8)

=1

Proposition 3. For the normal linear model$» simplifies to

— p(M,) ™ -
Sp:; 5 log‘yeyg—i—vel + K 9)
for someK that does not depend on the design.
Proof. See Appendix A.3. O

2.2.4 Joint Criterion

In order to account for both model discrimination and parameter estimation simultaneously, Hill
et al. [22] proposed a joint criterion that adds a weighted measure of discrimination and precision,

C= w1D0 + UJQEU, (10)

where D, is some measure of discrimination afg is some measure of precision in parameter
estimation. A nonunique choice @}, and E, they suggest is the model discrimination criterion



proposed by Box and Hill [10], and the determinant of the regression matrix for estimating the
parameters for model

C = w@Jr 1—w Zp (11)

M D+ E*’
where M D* and E; are the maximum values d\ﬂD andEi over the design region, andis a
nonnegative weight placed on model discrimination. They assumed-thatknown or can be
estimated when computing. As the two criteria are summed together and weightea bthe
maximal/ D* and E¥ may be less relevant than the range of the criteria over the design space.

Borth [8] treated the two objectives using the idea of the change in total entropy. He showed
that it decomposed into the model discrimination tefrand parameter estimation tersi. We
denote Borth’s criterion a® hereafter. The scale for entropy for continuous random variables
(parameters) may not be well-calibrated with entropy for a discrete random variable (model se-
lection): their range may differ when evaluated throughout the design space. Borth’s method also
requires computationally expensive numerical integration.

Here we also use the idea of the expected gain in entropy of an experiment, but notmalize
andSp over their range of values, and simplify the weight factor. Instead of numerically evaluating
the J criterion, we approximate it with th&/ D criterion. So an upper bound approximation of the
joint criterion for model discrimination and parameter estimation is

MD — MD,,;», Sp—Sp,
pr— 1 min 12
SQ wMDmaz - Mszn * ( )SPmaz - SPmm ( )

where M D,in, M Do, Sp,... » Sp,... are the smallest and largedfD values and the smallest
and largestSp values respectively over all designsIih andw € [0, 1] is a weight factor. This is
similar in form to criterionC, but reduces to a closed form if the prior setup in Eq. (2) is used, as a
result of Eq. (6) and Eq. (9). Eq. (12) does not requitéo be known (see the propositions above
for linear models, and comments below for nonlinear models), and incorporates prior information
and data from initial experiments.

The weightw should be selected based on the results of the initial experiments and the focus
of the follow-up experiment. If the initial experiment was insufficient to identify the important
parameters, then more weight should be placed on model discrimination. If the model is reasonably
determined, then more focus can be placed on parameter estimation. Hill et al. [22] suggested
w = [s_il (1 —p(MmgC))}5 whereM,,.. 1S thea priori most probable model. Another choice is
w = [(1 = (p(Minag) — p(Mimaz2))]¢, WhereM,,..- is the second most probable model. Small
values of¢ places more weight on model discrimination. To equally balance the two calibrated



entropy measuresy can also be set dt/2. The numerical examples in Section 3 use both the
weighting function of Hill et al. [22] andv = 1/2. Examples 1 and 2 assess the dependence upon
the optimal design on the weight. The examples show that rescaling the entropies can be important,
but that the final design may be somewhat insensitive to a misspecificatian in

To achieve the joint objectives of model discrimination and parameter estimation, we seek a
designx € D that maximizesS in Eq. (12). For normal linear modelS, simplifies to a closed
form through Eq. (6) and Eq. (9). The criterion is also applicable to nonlinear models. When
a nonlinear model can be approximated by a linear model in the neighborhdgd%f can be
applied by substituting the initial estimates of the parameters [12]. For non-normal mégels,
requires numerically integrating Eq. (5) and Eq. (7). For generalized linear and nonlinear models,
Bayesian methods [3, 17] can be used to approximate the terms in Eq. (5) and Eq. (7).

Shannon information is not the only possible approach to develop a joint model selection and
parameter estimation design criterion. Bingham and Chipman [7] propose a weighted average of
Hellinger distances between predictive densities of all possible pairs of competing models as a
criterion for model discrimination. A linear combination of Bingham and Chipman [7]'s criterion
and a weighted average of the Hellinger distances between the prior and posterior distributions
of each model’'s parameters can also be used as a joint criterion. For the prior setup in Eq. (2),
this reduces to a closed form. The weighting functions described above can be used to weight the
importance of each objective. The upper bound on the Hellinger distances for each individual term
can be useful for rescaling, but the maximum values of each term for a particularifimié® be
quite far from the upper bound and rescaling each term by its upper bound may not be appropriate.
We do not consider that combined criterion further here.

2.3 Some Computational Issues

Although S simplifies to a closed form for the normal linear model, there are computational
challenges. We consider three here. First, the number of models grows exponentially in the number
of predictors. Second, the min and max values of the two entropy measures that cafppaise
required. Third, the number of designs grows combinatorially in the number of candidate runs.

To address the first issue, the summands\ifdp and.Sp are computed by using only the most
likely models. There are typically far fewer than= 27 different models whose probabilipy M)
lead it to be a competitor for the ‘best’ after the initial stage of experimentation. By considering
only the most likely models, Eg. (12) becomes tractable. There are several ways one can chose a
subset of probable models: (i) Pick all modélso thatp(M;,) > FE, (ii) Pick the h most likely
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models, wheré: is the smallest integer so that)/(,)) + p(M)) + --- + p(M@)) > F. Raftery

et al. [34] take a similar approach to model averaging. Examples 2 and 3 of Section 3 use (i) with
E = 0.02. The top models have higher posterior probabilities, so wé&'set0.02. In Section 3.1,

no model clearly stands out after the initial runs, so we#ise 0.008.

When direct enumeration is not computationally feasible, these ‘more important’ models can
be identified heuristically by using Markov Chain Monte Carlo methods like’ K\Markov Chain
Monte Carlo Model Composition) [27] to estimate thgZ,). The state space for MQs the set
of s models, and a sample path visits a sequence of different madelsCandidate states for
transitions are chosen from the set of models with one more or one fewer active predictors. The
relative probabilities for the current and candidate states, needed to implement the Metropolis-
Hastings step of M& can be computed from closed-form formulas in Raftery et al. [34]. The
number of times a model is visited during M@ivided by the number of iterations of MGs a
consistent estimate of the model’s posterior probability. Chipman et al. [15] and Ng [31] discuss
some practicalities of Markov chain Monte Carlo methods for model selection.

Second, we use an optimization heuristic to estinMdt®,,;,,, M D,,.., Sp, ..., Sp,...- We use
the k-exchange algorithm of Johnson and Nachtsheim [23] to search for the maximum and min-
imum values. The&-exchange algorithm was first proposed to construct D-optimal designs, but
because it is a general algorithm, it can be used to select from a finite set of designs as long as an
optimality criterion is given. Numerical results [23, 33] show that it is efficient and effective in
constructing optimal designs, and the algorithm has been widely used. In the numerical examples
we considered, the-exchange algorithm was very efficient in identifying the optimal designs. In
addition to increasing as suggested in [23], we also found that for thexchange algorithm,
increasing the number of starting designs from scattered points in the design space improves the
search for the optimal. Alternatively, the branch and bound algorithm in [39], or nested partitions
[37] can be used to find the global optima.

Third, we generalize the-exchange algorithm (Appendix A.4) to identify a design with a high
value of S, to improve the scaling of the entropy measures. The algorithm is a greedy algorithm
that swaps in and out design points one at a time.

More work on computational issues is an avenue for future research.
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3. Numerical Results

Three numerical experiments compare the new critefignwith the two other joint criteria in the
literature, as well as th&/ D andSp criteria. The optimab,, follow-up designx*(w, z,) depends
upon the weightv and previous observations. Let x*(zy) = {x*(w, zo) : w € [0,1]} be the set
of designs that thé, criterion identifies, givem,.

3.1 Chemical Reactor Experiment

Box et al. [11, p. 377] gave data for a chemical-reactor experiment that ugetLl factorial

design. From this data, we extracted runs that correspond to five columns of a Plackett-Burman
12 run (PB12) design. We treated those runs (see Table 1) as an initial experiment. The follow-up
design was simulated by extracting the remaining runs from the complete experiment.

Table 1: PB12 design and data extracted from the2futeactor experiment
Runi A B C D E z
1 1 -1 1 1 77
1 -1 1 1 1 42
-1 1 1 1 -1 95
1 1 1 -1 -1 61
1 1 -1 -1 -1 61
1 -1 -1 -1 1 63
-1 -1 -1 1 -1 69
-1 -1 1 -1 1 59
-1 1 -1 1 1 78
1 -1 1 1 -1 60
-1 1 1 -1 1 67
-1 -1 -1 -1 -1 61

el
NEBO©O~NO U AWN R

We considered fifteen predictors (five factors and their two factor interactions) 28 gkistinct
linear models in the model spadd, each differing by the absence or presence of each predictor.
We used the equal probability prior for model uncertaipty/,) = 2%, and the prior for param-
eters suggested by Raftery et al. [34]. Table 2 shows the probabilities for the top 8 models, given
that prior distribution and the PB12 data. No model clearly stands out, but the model identified in
the original analysis of all 32 runs [11], with factors (B, D, E, BD, DE), is ranked best.

To distinguish between the top eight models= 3 additional runs were selected from the
remaining 20 runs. The best designs for each joint criterfonwith w = 0.5; B; andC' with
¢ = 2 as in [22]) were computed by evaluating the criteria over each possible design. The joint
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Table 2: Probability of the eight most probable models after 12 runs

Model Posterior Probability
B, D, E, BD, DE 0.0483
B, C,D, E,BD, DE 0.0206
B, D, E, BC, BD, DE 0.0195
B, D, E, BD, BE, DE 0.0106
A, B, D, E, BD, DE 0.0105
B, D, E, AE, BD, DE 0.0101
B, D, E, AC, BD, DE 0.0085
B, D, E, BD, CD, DE 0.0083

Table 3: Posterior probability (Post.) of the three most probable models with PB12, + 3 runs
determined by the best design obtained from full enumeration ofthés, andC criteria.
New S, Criterion Borth's B Criterion Hill's C Criterion
Post.| Mode
D, DE 0.132
, BD, DE 0.082
BD, DE 0.051

Post.
DE 0.189
BD, DE 0.053
D,DE 0.045

Post.
DE 0.166
BD, DE 0.065
BE, DE 0.04

D,
D,
D

I

E,
E,
E

BD,
BC,
BD

BD,
BC,
E

B
E
E

criterion Sq, results in different designs than tiieandC criteria. The posterior probabilities of all
models were then recomputed using all 15 runs, and the top 3 models are shown in the left portion
of Table 3. All three designs identified the same top model identified in the original analysis of all
32 runs.Sy discriminated in favor of the top model more than critefiandC'. Table 4 indicates

that Sy reduced the parameter generalized variance (the determinant of the posterior covariance
matrix of the parameter estimat¢®,(3)|) of the top model more thaB andC.

To compare the computational burden, each criterion was evaluated for all possible designs for
one, two, three and four additional runs using Maple8 (slow, because it is interpreted, but relative
CPU times are illustrative). Table 5 shows the computation times fafgh@nd B criterion. The
computation times fo5, andC were similar. The curse of dimensionality made quadrature an
inefficient approach for the numerical integrations requiredby

Table 6 shows the posterior probabilities of the top three models with the model discrimina-

Table 4: Parameter generalized variafice3)| for thea posterioritop model (B, D, E, BD, DE),
given PB12 + 3 runs, based on thg, 5 andC criteria.

Criterion V(8)]
SQ 3.62 x 10712
B 4.81 x 10712
C 4.74 x 10712
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Table 5: CPU time for computin§g, C' and B (hours).
Additional runs S andC B

1 0.005  0.007
2 0.04 0.86
3 0.33 55.4
4 1.87 453

Table 6: Posterior probability (Post.) of the three most probable models with PB12 + 3 runs
determined by the best design obtained by full enumeratio§for\/ D, and.Sp.

Sq Criterion M D Criterion Sp Criterion
Model Post.| Model Post.| Model Post.
B, D, E, BD, DE 0.189 B, D, E, BD, DE 0.156| B, D, E, BD, DE 0.124
B, D, E,BC,BD,DE 0.053 B, D, E, BD, BE, DE 0.048 B, C, D, E,BD, DE 0.072
A, B,D,E,BD,DE 0.045 B,C,D,E,BD,DE 0.038 A,B,D, E,BD, DE 0.032

tion M D and parameter estimatiofy criteria. As expected) D did a better job tharbpr at
distinguishing the top model from the others, and Table 7 indicatesSthautperformed\/ D at
reducing the parameter generalized variance of the top mSgein the other hand outperformed
M D in favoring the top model, and was only slightly poorer titgnin parameter estimation.

This example also illustrates the importance of normalizing that we suggest, as one of the
subcriteria would be ignored without recalibration. With the equal probability prior for each model,
the range of uncalibratetl/ D scores over the design space ranged féaif4 to 0.062, while the
uncalibratedSy scores range from.88 to 0.90. Without recalibration, the joint criterion would
have selected the beSt design, and ignored the model discrimination objective.

We tested the sensitivity to the prior distribution by rerunning the experiment with the in-
dependence priop(M,) = w'(1 — w)P~*, wheret, is the number of predictors in modé
(¢ = 1,...,2%), with w = 0.25. The model with factors (B, D, E, BD, DE) is ranked third
when only 12 runs are used, but thg criterion again identified (B, D, E, BD, DE) as the most
probable model after the = 3 run follow up was completed.

To test the sensitivity of the designs to the weightsyas varied from 0 to 1. In this example,

Table 7: Parameter generalized variaficé3)| for thea posterioritop model (B, D, E, BD, DE),
given PB12 + 3 runs, based on thg, M D andSp criteria.
Criterion V(B)|
Sg  3.62x 1077
MD 4.74 x 10712
Sp 2.13 x 10712
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the topSg, design is robust over a range of weights. There were only three different top designs
obtained asv was varied front to 1. When0 < w < .27, the topSp design is obtained. The same
design obtained fof, whenw = 0.5 is obtained whe.27 < w < 0.78. The topM D design
is obtained whenv > .78. For the weighting function suggested in [22], the he&D design is
selected whel gets small¢ < 4, and the besbp design is selected whengets largeg > 27,
and the same design selected for &y between. In this example, small changesior £ do not
significantly change the optimal design.

The Entropy Balancing-Exchange Algorithm in Appendix A.4 was implemented to evaluate
its effectiveness to find good designs in this problem. The best design is known for this problem
because an exhaustive evaluation of all 1140 designs is possible. The Entropy Balancing algorithm
consists of two steps. In the initial step of the algorithm, the maximum and minimum values of
M D andsS, are estimated using thieExchange,,, andk-Exchangg,;,, algorithms. In the second
step, thek-Exchangg,,. algorithm is used to search for a goSg design. We first evaluated how
well the initial step performs in determining the maximum and minimum values. We varied the
numberr of initial random designs to start the algorithm= 100 andr = 200, and conducted
10 independent replications of the algorithm for eagleach replication samples an independent
set ofr design points). When = 100, the estimates ofM D, ..., M Dnin, Sp,.,,. s SP,a.) WETE
all equal to the actual value 70% of the time. When= 200, all four estimates were correct
80% of the time. In the remaining cases, only one of the four actual values was not obtained, but
the estimate was close to the actual value. We next tested the how well the second step of the
algorithm identifies the known best optiméy4, design. The known best optim&}, design was
identified 70% of the time withr = 100, and 90% of the time withr = 200. The remaining
nonoptimal designs selected were among the top 8 designs.

3.2 Finding a Known Model

To determine how well the criteria performs in detecting a known model, and how th&best
model depends upom in repeated samples, we ran 50 replications of an experiment using the
So criterion on a known model with 4 potential factors (A, B, C, D), namély= 104 + 158 +
6AB+7AC + ¢;, where(; ~ Normal(0, 5). For each replication we ran an initia*~! fractional
factorial design to generate preliminary daga, which was then used to create a prior distribution
for a follow-up design witln = 3 runs as described in Fig. 1. In each replication, the true (known)
model was among the top eight candidate models after the iitidl = 8 runs but was com-
pletely confounded with three other models. The three additional runs selectgg tyaliased
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Figure 1: Algorithm to assess the identification of a known model in Section 3.2

For +=1,2,...,50:
1. Generate independent preliminary dafawith a2*~* factorial design.
2. Update the distributions for the unknown models and parameters as in Section 2.2.1.
3. Determine the besf, designx*(w, z, ;) for n = 3 additional runs, as a function af.
4. Run the best follow-up desigr;(w, z; ), for eachw.
5. Compute the posterior probability and ordinal rank of each model, as a functien of
End forloop

the confounded effects and distinguished between the top competing models.

In each replication, three different designs were obtaihedz, ;)| = 3) asw varied between 0
and 1. The best designx*(w, z;) was the topSp design &*(0, z, ;)) for smallw. For a certain
range between 0 and 1, a unique teyp design was obtained that balances model discrimination
and parameter estimation. For largerthe bestS, design was the best/ D design &*(1, zy ;)).

In 70% of the replications, the same three desigrigz, ;) were selected and the sarfg was
selected forw in approximately the range (0.1, 0.55). The otBé¥: of the replications resulted
in 3 other sets of, designs with the same qualitative features: the designswiththe range of
about 0.1 up to 0.4-0.8 balanced model discrimination and parameter estimation.

In 49 out of 50 replications, the true model was identified as the best model whefythe
design with intermediate values of was used to balance discrimination and estimation. In the
remaining replication, the true model had the third highest posterior probability. Averaging over
50 replications, the probability that the true model was best improved from 0.04 after the initial
stage (8 runs), to 0.21 (after the 3 follow-up runs). The average rangdbivas 7.42, the average
range ofSp was 0.59, and\/ D,,,.. > Sp, . for all replications. If the individual measures were
not recalibrated by their ranges, tig criterion would have selected the begtD design and
ignored parameter estimation unless a very small weight were placed on model discrimination.

This experiment gave the same qualitative conclusions as Section 3.1. Borth’s criterion took
orders of magnitude more time to compute due to numerical integration issues (curse of dimen-
sionality). Rebalancing the entropy measures was important for assuring a balance between dis-
crimination and estimation. The optimal design was not highly sensitive to the chaice of

3.3 Ciritical Care Facility

The critical care facility illustrated in Fig. 2 was originally studied by Schruben and Margolin
[36]. Patients arrive according to a Poisson process and are routed through the system depending
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Figure 2: Estimated fraction of patients routed through the units of a critical care facility.

upon their specific health condition. Stays in the intensive care (ICU), coronary care (CCU), and
intermediate care facilities are presumed to be lognormally distributed. This section coipares
with C and the individual criteria)/ D andSp. Borth’s criterionB took too much time to evaluate

and was therefore not compared. We initially ran a 64 run design using the Bayesian model average
to sample uncertain input parameters [32]. We considered twelve input parameters, res@ling in
distinct linear models in the model spalbg, each differing by the absence and presence of each
predictor. Table 8 shows the posterior probabilities for the top 5 models. The model identified in a
128 run study in [32] is ranked fifth here.

Schruben and Margolin [36] studied how to allocate random number streams to reduce variabil-
ity in response surface parameter estimates. Their response model predicts the expected number
of patients per montl'|[Z] that are denied entry to the facility as a function of the number of beds
in the ICU, CCU, and intermediate care facilities. They presume fixed point estimates=fa@r
input parameters, one per source of randomness, to describe the patient arrival process (Poisson
arrivals, meam = 3.3/day), ICU stay duration (lognormal, meani and standard deviatioh5
days), intermediate ICU stay duration (lognormal, m&an, standard deviatioin.0), intermediate
CCuU stay duration (lognormal, meaf.0, standard deviatiod.0), CCU stay duration (lognormal,
mean3.8, standard deviation.6), and routing probabilities (multinomial; = 0.2, p3 = 0.2,
ps = 0.05). Some parameters are multivariate, and there are a totat-of « 2 + 3 = 12 dimen-
sions of parameters. For the lognormal service times, the log of the service times hag amshn
precision\ = 1/02. Subscripts distinguish the parameters of each service type (g.g- iiicy»

Kiccw Hccu Ajgy)- The analysis here presumes a linear response model in these 12 parameters.

The actual system parameters are not known with certainty, and the estimated system perfor-
mance will be in error if the actual parameter values differ from their point estimates. As in Ng and
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Table 8: The five most probable models after 64 runs.

Model Post. Prob.
ASys Hiicus Miicus P1s P4 0.43298
ASys Hiicus Aiicus P1s P3s Pa 0.20019
Asys Hiicu- Aicus Miccws Py P4 0.0682
Asys Liicys Aiicu: Hiccur P+ P 0.0516

Asys Hiicus Aiicus Miccw P1,P3, P4 0.0296

Table 9: The most probable models with 64+32 runs determinethyith w = 0.55.

Model Post. Prob.
Asys Hiicu: Aiicus Micow P13 P 0.407
ASys Hiicus Niicus P1s P3s P4 0.215
Asys Liicu: Aiicus P1s P4 0.110

Chick [32], who used naive Monte Carlo sampling for unknown inputs to do an uncertainty analy-
sis, we fix the number of beds in each of the three units (14 in ICU, 5 in CCU, 16 in intermediate
care), and study how the expected number of patients per month that are denied entry depends on
the unknown parameters. Design points for the unknown parameter values could take on values
of the MLE + one standard error. The approach of Raftery et al. [34] was used to obtain prior
distributions for the unknown response parameters.

We used the5, criterion withw = 0.55 (or £ = 1) to avoid focusing on parameter estimation
too early. The design points of a full factorial for the 12 parameters were candidates for the 32
run follow-up design. The number of possible 32 run designs from‘theandidate runs is large,
we used thes-exchange algorithm to search for the b8stdesign ¢ = 50, £ = 5), then ran
the critical care simulations again with that design. The posterior probabilities for the top three
models, given the data from the combined design (64+32), are shown in Table 9. The top model
is the same model identified in the 128 runs analysis in [32], buStheriterion identified this
model with fewer runs. We also used thexchange algorithm-(= 50 andk = 5) to determine a
goodC design. Table 10 shows the posterior probabilities after running the simulations with the
design. The' design identified the same model&sg, butS, did slightly better in discriminating
the top two models.

The best designs fab/ D and Sp are different than the best, design withw = 0.55. The
M D design identified the same top model as$edesign, and discriminated between the top two
models slightly better than th, design (Table 9 and Table 11). Table 12 indicates that de&jgn
did a better job thad' and M D at reducing the parameter generalized variance of the top model.
The S criterion withw = 0.75 (or £ = 0.5) resulted in better model discrimination than with
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Table 10: Most probable models with 64+32 runs with ¢heriterion.

Model Post. Prob.
Asys Liicu: Aiicus Miccw P13 P4 0.359
ASYS Hiicus Aiicus P1s P3s P4 0.232

Asys Hiicus Aiicua )\iccua P1,P3, P4 0.077

Table 11: Most probable models with 64+32 runs with M criterion.

Model Post. Prob.
Asys Hiicu> )‘iiCLh Hiccu P1-P3; P4 0.438
Asys Hiicu» Aiicus Miccw Aiccus P1s P3s Pa 0.125
AsyS Hiicus ANiicus Miccw P1s P3> P4 0.109

w = 0.55 at the cost of slightly less effective parameter estimation (in this ¢aSe, ;)| > 3).

The top two models identified in the- design were the same models identified in the original
64 run analysis, and the top model identified by $yeand M/ D design is only ranked fourth when
the Sp design is used. Th&p criterion focused on designs that had good parameter estimation
primarily for models with higher posterior probability. Using te criterion too early in the
experimentation process can prematurely focus the design and experimentation on a few models
that may or may not be good approximations to the system (because of the small number of runs),
an issue raised by Atkinson [1]. An early focus dhD can better distinguish competitors for the
best model, but at the expense of poorer parameter estintafdmlanced both of those needs.

4. Discussion and Conclusions

The purpose of many experiments is to distinguish between likely mathematical models and obtain
precise estimates for the model parameters. The three joint design criteria examined here each
use an additive measure for entropy measures or bounds for model and parameter uncertainty. Our

Table 12: Parameter generalized varian®g3)| after 64+32 runs for the model with
Asys Hiicu: Aiicu: Hiccu P1 P3, Pa-
Runs Criterion  |V(8)|
96 Sp 4.63 x 1072
96 S, 05 4.69x 1078
96  Sg,_oms 533 x107%

96 C 5.70 x 10728
96 MD 5.71 x 10728
64 — 9.46 x 10726
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proposal for the nev$,, criterion to normalize each entropy measure by the amount each varies
over the design space provides an insight that the other joint criteria do not: It indicates how rich
the design space is for improving each entropy measure. If the range for one of the component
— Sp

max

criteria is much smaller than for the other (e D, . — M D,,;, >> Sp

min

), or if
the number of potentially optimal designs; (z,)|, is small, then a richer design space might be
considered.

So Is computationally more efficient than Borth’s joint criterion especially when the planned
follow-up designs get larger. In the first two examples, $edesign performs as well as Borth’s
criterion, but it is computationally more efficient and practicsl, extends theC' criterion as
it considers the relevant range of the individual criteria, does not require initial estimates of the
variance, and accounts for available prior information. These two examples also show that there
are 3 different designs fdf, asw varies from 0 to 1. The optimum/ D design is selected when
the model discrimination term is heavily weighted and the optinsijrdesign is selected when the
parameter estimation term is heavily weighted. For each experimenigtdesign that balances
both objectives is shown to be insensitive to a range,oénd this best design selected performs
more efficiently than the other criteria.

Three numerical experiments illustrated the compromise between model discrimination and
parameter estimation obtained when using the joint critefign Compared with the individual
criteria, the balanced design was about as good as theD design for model discrimination,
and was almost as good as the design for parameter estimation. TheD design fared less well
for parameter estimation, and the design was least effective for model discrimination.

Although S, is easier to compute for the linear model than Borth’s criterion, the large number
of matrix calculations required to compute thg criterion may need to be balanced against the
cost of actually running the experiments. In a simulation context, CPU cycles might be better
spent running replications rather than computtiagif the simulations run quickly. For expensive
industrial experiments or complex simulations with long run times,Shecriterion may be an
effective mechanism to balance the needs of factor identification and parameter estimation.

Sequential designs and criteria based on the Hellinger distance are avenues for further research.
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A. Mathematical Details

A.1 Proof of Prop. 1

Conditioning ono2, the MD criterion can be rewritten

x * o(Z | Miys,o®) .,
MD= S p(Mp(M) / p(0?) / P(Z | Mi,ys,0%) log izZdo® (13)
Ogiz;él:gs l 0 - p(Z ’ Ml?Yl702)

Meyer et al. [28] substituted the predictive distribution of the normal form in Eq. (3) into Eq. (13)
and integrated with respect t¢Z | M;, o) to obtain:

*
l

MD = " p(M)p(M)- UOOO”("Q)E log (K:) - 2%2

0<i#l<s

x (MQ — (VW) — (2 — ) VI (2 — zl))} daﬂ

We now isolate the dependence on the noninformative prior.

wo - oo () [ 3

0<i£l<s

X (na2 — o2t (VITWVE) — (2 — 7)) Vi (2 — zl)) W(UQ)dJQ}

= Z %p(M) (M) - [bg <:x€:> —n+tr(V;VY)
0<i#I<s
+(z; — il)T V}*—l (z; — 2y) /0 012 (0?)do } (14)

The double sum means that pait$ can be matched to make the log terms cancel out. And

I° Em(oh)do? = [(v/2)/(vA/2)] [} InvertedGamméo? | (¥ + 1), % )do? = 1/A. Substitute

this into Eq. (14) to justify the claim in Eq. (6).

A.2 Proof of Prop. 2

Condition on model\/, and letd = (3, o2).

BD = // p(0 | Z)log {%]d@dz

_ / / (0| 2) log[ (0|Z)]d0dZ— / / p(Z)p(6 | Z)log [p(@)}d@dz
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The second term on the right hand side of this last equation simplifies using Fubini’'s theorem and
Bayes’ theorem, assuming the integrals exist, and is independent of the design.

// 0|Zlog[(9)1d0dz _ // zpo|21og[<e)]dzcze
= [ 105 v®)] o) [ piz | izt
_ / log {p(@)]p(@)d@
So
BD = / / (0] 2) log[ ) Z)]dOdZ— / log {p(@)}p(@)dﬂ. (15)

Condition now on both/, ands? and focus on the inner integral in the left hand term of the last
equation. It is well known that the conditional distribution®fjivenz, o2 is a normal distribution
with variancea_Q(y;f yi + V;1) (e.g. see [5]). Call the posterior meah First integrate ou,
with o2 handled after.

/ p(B | Z, M, 0*) log p(B | Z. M. 0%)d3
- / o 2(ylyi + V| P (@2m) 7 exp [—% (B-1) (o v/ yi+ Vi) (B~ u’>]

log’ Yz yi +V;, )‘ - (t; + 1) log 2 B (B — M’)T o2 (yiTyi +V;1) (B— Nl)] i3

2 2 2

log‘ (y;yi +Vy )’ (ti +1)log 27 (U‘Q(nyﬁVZl) ’0‘2(yiTyz-+V51)
2 B 2 a 2
1 T 1 1
= —(ti+1)loga+§log vy, Vi +V,; 2(t,-+1)10g27r—§.

Similarly,
2 2 1 1 1 1
p(B | Mi,0%)logp(B | M;,0°)dB = —(t; + 1) logo + §log Vit - §(ti +1)log 2m — 5

The difference inB D therefore has several terms that cancel out, justifying the claimed relation-

1
BD = //ilog

1
= 3 (108 [y v+ v,

ship.

1
y;ryi + Vit — 3 log ’V;1|dZd02

— log ’V;1|>
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A.3 Proof of Prop. 3

Substituten(M; | Z) = p(Z | M;)p(M;)/ =5, p(Z | M;)p(M;) into Eq. (8), to obtain
Sp = —Zp ) [ 06: | )10 (e | M)de
/ = 1p p Z | M)
> o1 P(M;)p(Z | M;)

/(9|ZM)1ogp(0\ZMdezp )p(Z | M;)dZ

7j=1

= —Zp / (8, | M;)logp(; | M;)d6
—l—Zp / (Z | M)/p(ei | Z, M;)log p(0; | Z, M;)d6,;dZ

= Zp [ / (8, | M;)logp(; | M;)d6
+/p(Z y Mi)/p(Oi | Z, M;)log p(6; | Z,Mi)deidz]

By Prop. 2,

S

Sp = Zp(MZ) Blog

i=1

= Z p(gﬂ) log

i=1

y, vi + Vit

1 _
5 log ’Vi 1|]

yZ-TyZ-JrV;l + K

where K is independent of, as claimed.

A.4 Variant of k-Exchange Algorithm

In the following, letz,, be thea!” row of the design matrix, and let a prime’} denote an estimate
of the primed variable. Define

MD — MD,, Sp—Sp

min

MDma:c’ - MDmm’ SPmaz/ - SP in! .

min

SQ/ -

Let S¢ (z,) be Sy evaluated with the design matmi«), with row =, removed fronx. A generic
maximumk-exchange algorithm for an arbitrary criteriéh follows. An algorithm for the mini-
mum is similar.
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k-Exchange,,.. Algorithm

1. Order then design points according to theit. () valuesz ), z(2), . . ., 7(n), SO thate < 3
impliesC,(z,) < C(2g).

2. Fora = 1to k: deletex(,, from design matrix, addz* from the list of all available design
points wherer* maximizesC,» when added to desig(«).

3. Repeat (reorder and replace points) until no improveme@t.ican be found.

Entropy Balancing k£ Exchange Algorithm
1. Estimate the range of entropy scores in order to calibrate them.

(a) Selectr randomn run designs.
(b) EstimateM D, .
i. For each of the designs, implement &exchangg, . for criterion M/ D.
ii. LetR € D be the set of designs obtained from 1(b)i. $&D,, ., = maxer(M D)

(c) Similarly estimateSp ,, M D, Sp, .,
2. For each of the designs, implement the-exchangg,,, algorithm for criterionS/Q

The algorithm does not guarantee optimality, but applying Steps 1 and 2 to each-oatigomly
selected designs provides some protection against getting stuck in a local extrema.

For faster execution of the algorithima should be chosen small. However, Johnson and Nacht-
sheim [23] noted that a larger value/ofeads to greater D-efficiency. A good choicekdb search
for good S, designs depends on the number of predictors, the number of starting random designs
r, and the number of additional runs
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