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One goal of experimentation is to identify which design parameters most significantly influence

the mean performance of a system. Another goal is to obtain good parameter estimates for a

response model that quantifies how the mean performance depends on influential parameters. Most

experimental design techniques focus on one goal at a time. This paper proposes a new entropy-

based design criterion for follow-up experiments that jointly identifies the important parameters

and reduces the variance of parameter estimates. We simplify computations for the normal linear

model by identifying an approximation that leads to a closed form solution. The criterion is applied

to an example from the experimental design literature, to a known model and to a critical care

facility simulation experiment.

(Design of Experiments; Model discrimination; Parameter estimation; Entropy; Simulation)

1. Introduction

A common purpose of many experiments is to obtain an adequate mathematical model of the un-

derlying system, including the functional form, and precise estimates of the model’s parameters.

Response models that describe the relationship between inputs to a system and the output can be

useful for design decisions, and much focus has gone into selecting inputs in a way that improves

the estimate of the response model [9, 29, 30, 40]. Response models can be used in iterative pro-

cesses to identify design parameters (e.g., number of servers, production line speeds) that optimize

some expected reward criterion (e.g., mean monthly revenue, average output), or to provide intu-

ition about how input factors influence aggregate system behavior. In simulation, response models

can relate the parameters of stochastic models (e.g., demand arrival rates, infection transmission

parameters) to system performance [2, 13, 24, 25, 32, 35].
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A number of design criteria are available to select design factors (or inputs) for experiments.

Several authors [6, 16, 26] use the expected gain in Shannon information (or decrease in entropy)

as an optimal design criterion to select values for the experiment’s design factors. Bernardo [6] and

Smith and Verdinelli [38] adopted this approach and looked at how to plan experiments to ensure

precise estimates of the model’s parameters. However, many experiments aim to identify which

factors most influence the system response. Identifying the subset of most important parameters

can be phrased as a model selection problem [34]. Box and Hill [10] used Shannon information to

develop theMD design criterion for discriminating among multiple candidate models.

Hill [21] stressed the importance of experimental design for the joint objective of model dis-

crimination and parameter inference in his review of design procedures. But most design criteria

focus either on identifying important parameters or improving estimates of response parameters,

but not both. Exceptions are Hill et al. [22], whose joint criterion requires certain model parame-

ters to be estimated or known, and Borth [8], whose entropy-based criterion can be challenging to

compute.

This paper describes a new joint criterion for experimental design that selects designs to simul-

taneously identify important factors and to reduce the variance of the response model parameter

estimates. The new criterion is shown to simplify to a closed form for the standard linear re-

gression model with normal observation errors, and is computationally more efficient than Borth’s

criterion. Our criterion does not require initial estimates of the model parameters and incorporates

prior information and data from preliminary experiments. It is flexible for use in either starting

or follow-up experiments, particularly if results remain inconclusive about which factors most in-

fluence the system response, and when the parameters are still poorly understood after an initial

response surface experiment has been completed. We consider designs with a given numbern of

observations, and do not describe how to balance initial runs with follow-up runs.

Section 2 describes the mathematical formulation for the design space and response models. It

also describes a Bayesian formulation to quantify input model and parameter uncertainty, as well

as the new entropy based design criterion. Three numerical experiments in Section 3 show that

optimal designs depend heavily on the criterion selected, and highlight the benefits and tradeoffs

of the new joint criterion over individual model discrimination and parameter estimation criteria,

as well as existing joint criteria. The examples stress the need for balancing the two types of

entropy measures of the joint criterion. For the examples considered, we also find that the weights

in our criterion are robust to misspecification. The new criterion does well at both identifying

important factors and reducing parameter uncertainty, and is computationally more efficient than
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Borth’s joint criterion.

2. Formalism

The design criterion is applied to a finite, but perhaps large, set of potential factors in a finite

numbern of runs, wheren is selected by the experimenter. The design space and class of regression

models is described before the new entropy-based design criterion and computational issues.

2.1 Design Space and Regression Models

Experiments often involve several factors. Here we consider representing the performance of the

systems by the usual linear model. We consider a finite numberq of real-valued factor inputs,

x1, . . . , xq, each of which may be chosen to take on a finite set of different values. These factors

can be combined algebraically to generate a finite number,p, of predictors,y1, . . . , yp, each of

which is some function of the input factors.

We follow the formulation of Raftery et al. [34] to identify the most important of thep predic-

tors. That is, we presume the existence ofs = 2p candidate response models in a model spaceM

that are linear in some subset of the predictors. Assuming the`-th candidate response model, the

outputzi of thei-th run is presumed to be of the form

zi = β0 + β1yi,(1) + β2yi,(2) + · · ·+ βtyi,(t) + ζi, (1)

whereyi,(1), . . . , yi,(t) are thet predictors present in thè-th model, the values of theβj may depend

upon`, andζi is a zero mean noise term. The selection of a candidate response model identifies

the important predictors, relative to the size of the noise in the response. See also George [20].

LetD be the (finite) design space of all possible legal combinations of the inputs for each of the

n runs. A designx ∈ D can be represented as ann× q matrix whosei-th row contains the values

of the factors for thei-th run. If modelM` hast predictors, the design matrix can be converted to

ann × (t + 1) predictor matrixy` = y`(x) whose rows contain the values of predictors for each

run, and the first column corresponds to the intercept. Letz be the column vector ofn outputs.

2.2 Entropy-Based Formulation

The problem is to choose a designx that in some sense is effective at identifying the most important

predictors (i.e., selects the most appropriate model inM), and estimate regression parameters.
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We assess uncertainty about response model selection and parameter estimation with probability

distributions. The design that most improves an entropy-based criterion is then selected.

2.2.1 Uncertainty Assessment

One Bayesian approach to quantify the joint uncertainty about model form and parameter values is

to assign a prior distribution to each of the modelsM` ∈ M, then assign a conditional probability

distribution for the parameter vectorβ`, givenM`. The identity of the best response model and pa-

rameter is then inferred by Bayes’ rule, using the prior distributions and the probability distribution

of the output, given the model and input parameters. This is the approach taken by [14, 28, 34].

We make a standard assumption of jointly independent, normally distributed errors,ζ` ∼
Normal(0, σ2), so if modelM` is the model,β` is the parameter,x is the design with predic-

tor matrixy` = y`(x), then the outputZ has an multivariate normal distribution,

p(Z | M`,β`, σ
2,x) ∼ Normal

(
y`β`, σ

2In

)
,

whereIn is the identity matrix. For prior distributions, we presume a conjugate prior distribution

[5] for the unknownθ` = (β`, σ
2), conditional on thè-th modelM`,

π(β` | M`, σ
2) ∼ Normal

(
β` | µ`, σ

2V`

)
(2)

π(σ2 | M`) ∼ InvertedGamma

(
σ2 | ν

2
,
νλ

2

)
,

where the conditional prior mean vectorµ` and covariance matrixσ2V` for β may depend on the

modelM`. The parametersν andλ are selected by the modeler. The InvertedGamma(x | α, β)

distribution has pdfx−(α+1)e−β/xβα/Γ(α) and meanβ/(α− 1). Raftery et al. [34] suggest values

of µ`, V`, ν andλ that minimize the influence of the priors in numerical experiments.

The distributions in Eq. (2) can either be based on prior information alone, or can include

information gained during initial stages of experimentation. Dataz0 from an initial stage ofn0

observations with predictor matrixy0 is straightforward to incorporate because of the conjugate

form [5]. Replace the meanµ` with µ′
` =

(
V−1

` + y
T

0 y0

)−1 (
V−1

` µ` + y
T

0 z0

)
; replaceV` with

(
V−1

` + y
T

0 y0

)−1

; replaceν/2 with (ν + n0)/2; and replaceνλ/2 with (νλ + (z0 − y0µ
′
`)

T

z0 +

(µ` − µ′
`)

T

V−1
` µ`)/2.

Choices used here for the prior distribution ofM` include the discrete uniform (p(M`) = 1/s)

and the independence priorp(Mi) = ωti(1− ω)p−ti, whereti is the number of predictors in model

i, (i = 1, . . . , s), andω is the prior probability that a predictor is active. Raftery et al. [34] provide

closed form formulas to update the probabilitiesp(M` | z0,y0).
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In the rest of the paper, the prior distribution for the follow up stage is based on a prior dis-

tribution from Eq. (2) in combination with data from an initial stage. The optimal balance of the

amount of initial stage data versus the amount of follow-up data is beyond the scope of this paper.

2.2.2 Modelling Remarks

Considering posterior probabilities is a useful way to assess the relative merits of the models [20].

Selecting models according top(M`|Z) is consistent in that if one of the entertained models is

actually the true model, then it will select the true model if enough data is observed. When the

true model is not among those being considered, Bayesian model selection chooses the candidate

that is closest to the true model in terms of Kullback-Leibler divergence [4, 5, 18]. In practice, the

true model is typically not known and is potentially not inM. Despite this, careful selection of a

class of approximating models is important in the understanding of many problems. Here we seek

a model within the class that is approximately correct (containing only significant predictors) and

that approximates the parameters of the true underlying response model with low variance [9].

Atkinson [1] raises several concerns about inference for regression models. Our prior proba-

bility framework avoids by design his concern about improper prior distributions for models. A

concern about nesting, so that two models may be true, is resolved by noting that the simpler model

will be identified as more data is collected, and that simpler models are more desirable explanations

[19, 28]. Atkinson [1] also indicates that if two response models are compared, the true model and

an incorrect model with fewer parameters, then asymptotically the correct model will be selected,

but that for finite numbers of samples the posterior probabilities may support the incorrect model

in the absence of strong evidence from the data. This is a cause for care, but is not a violation

of the likelihood principal, and negative consequences for selecting a model when the data do not

provide enough evidence is a problem for any selection criterion. A goodness-of-fit test may be

useful to provide furtherpost hocvalidation.

2.2.3 Entropy-Based Criteria

Several authors [6, 16, 26] proposed the use of the expected gain in Shannon information (or

decrease in entropy) given by an experiment as an optimal design criterion. This expected gain

is a natural measure of the utility of an experiment. The choice of design influences the expected

gain in information as the predictive distribution of future outputZ is determined by the designx,

modelM`, and the prior distribution in Eq. (2)

p(Z | M`, σ
2,x) ∼ Normal

(
yµ`, σ

2
[
yV`y

T

+ In

])
. (3)
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The marginal distribution ofZ givenM`,y, obtained by integrating outσ2, is a multivariatet dis-

tribution. Entropy is different for discrete (model selection) and continuous (parameter estimation)

random variables, so each is discussed in turn.

For model selection, Box and Hill [10] use the expected increase in Shannon informationJ

as a design criterion. The criterion was derived from information theory where the information

(entropy) was used as a measure of uncertainty for distinguishing thes candidate models.

J = −
s∑

`=1

p(M`) log p(M`) +

∫ (
s∑

`=1

p(M` | Z,y`) log p(M` | Z,y`)

)
p(Z | y`)dZ (4)

=
s∑

`=1

p(M`)

∫
log

p(Z | M`,y`)∑s
l=1 p(Z | Ml,y`)p(Ml)

p(Z | M`,y`)dZ

An explicit solution is unknown in general, soJ may be evaluated numerically or approximated.

Alternately, Box and Hill [10] gave an upper bound approximation, the expected gain in Shannon

information between the predictive distributions of each pair of candidate modelsMi andMl. This

approximation was originally named theD-criterion, but we use the notationMD, as in [28].

MD =
∑

0≤i6=l≤s

p(Mi)p(Ml)

(∫
p(Z | Mi,yi) log

p(Z | Mi,yi)

p(Z | Ml,yl)
dZ

)
(5)

The MD criterion is effective in practice and popular with research workers [21]. We useMD

for the model discrimination portion of our joint criterion. For the normal linear model, Meyer

et al. [28] show thatMD reduces to a closed form if a noninformative prior1/σ on σ and a

conditionally normal prior forβ givenσ are assumed. A closed form also results if the conjugate

prior is assumed.

Proposition 1. Assume the conjugate normal gamma prior in Eq. (2). Letẑ` = y`µ`, andV∗` =[
y`V`y

T

` + I
]
. Then for the linear model,MD simplifies to

MD =
∑

0≤i6=l≤s

1

2
p(Mi)p(Ml)

[
−n + tr(V∗−1

l V∗i ) +
1

λ
(ẑi − ẑl)

T

V∗−1
l (ẑi − ẑl)

]
(6)

Proof. See Appendix A.1

For parameter estimation, Bernardo [6] and Smith and Verdinelli [38] adopted an entropy based

method to ensure precise estimates for parameters that have already been identified as important.

They choose the design that maximizes the expected gain in Shannon information (or equivalently,
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maximizes the expected Kullback-Leibler distance) between the posterior and prior distributions

of the parametersθ = (β, σ2).

BD =

∫ ∫
p(Z)p(θ | Z) log

[
p(θ | Z)

p(θ)

]
dθdZ (7)

Eq. (7) simplifies considerably for the normal linear model into a form known as the Bayesian

D-optimal criterion (hence the choice of nameBD).

Proposition 2. For a linear modelM` of the form Eq. (1), the prior probability model Eq. (2), and

a given designy`,

BD =
1

2
log

∣∣∣yT

` y` + V−1
`

∣∣∣− 1

2
log

∣∣V−1
`

∣∣

Proof. See Appendix A.2.

Following Borth [8], the entropy criterionSP for parameter uncertainty generalizes when there

are multiple candidate models.

SP = −
s∑

`=1

p(M`)

∫
p(θ` | M`) log p(θ` | M`)dθ` (8)

+

∫ s∑

`=1

p(M` | Z)

∫
p(θ` | Z,M`) log p(θ` | Z, M`)dθ`

s∑

l=1

p(Ml)p(Z | Ml)dZ

Proposition 3. For the normal linear model,SP simplifies to

SP =
s∑

`=1

p(M`)

2
log

∣∣∣yT

` y` + V−1
`

∣∣∣ + K (9)

for someK that does not depend on the design.

Proof. See Appendix A.3.

2.2.4 Joint Criterion

In order to account for both model discrimination and parameter estimation simultaneously, Hill

et al. [22] proposed a joint criterion that adds a weighted measure of discrimination and precision,

C = w1D0 + w2E0, (10)

whereD0 is some measure of discrimination andE0 is some measure of precision in parameter

estimation. A nonunique choice ofD0 andE0 they suggest is the model discrimination criterion
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proposed by Box and Hill [10], and the determinant of the regression matrix for estimating the

parameters for modeli.

C = w
MD

MD∗ + (1− w)
s∑

i=1

p(Mi)
Ei

E∗
i

, (11)

whereMD∗ andE∗
i are the maximum values ofMD andEi over the design region, andw is a

nonnegative weight placed on model discrimination. They assumed thatσ2 is known or can be

estimated when computingC. As the two criteria are summed together and weighted byw, the

maximaMD∗ andE∗
i may be less relevant than the range of the criteria over the design space.

Borth [8] treated the two objectives using the idea of the change in total entropy. He showed

that it decomposed into the model discrimination termJ and parameter estimation termSP . We

denote Borth’s criterion asB hereafter. The scale for entropy for continuous random variables

(parameters) may not be well-calibrated with entropy for a discrete random variable (model se-

lection): their range may differ when evaluated throughout the design space. Borth’s method also

requires computationally expensive numerical integration.

Here we also use the idea of the expected gain in entropy of an experiment, but normalizeJ

andSP over their range of values, and simplify the weight factor. Instead of numerically evaluating

theJ criterion, we approximate it with theMD criterion. So an upper bound approximation of the

joint criterion for model discrimination and parameter estimation is

SQ = w
MD −MDmin

MDmax −MDmin

+ (1− w)
SP − SPmin

SPmax − SPmin

, (12)

whereMDmin,MDmax, SPmin
, SPmax are the smallest and largestMD values and the smallest

and largestSP values respectively over all designs inD, andw ∈ [0, 1] is a weight factor. This is

similar in form to criterionC, but reduces to a closed form if the prior setup in Eq. (2) is used, as a

result of Eq. (6) and Eq. (9). Eq. (12) does not requireσ2 to be known (see the propositions above

for linear models, and comments below for nonlinear models), and incorporates prior information

and data from initial experiments.

The weightw should be selected based on the results of the initial experiments and the focus

of the follow-up experiment. If the initial experiment was insufficient to identify the important

parameters, then more weight should be placed on model discrimination. If the model is reasonably

determined, then more focus can be placed on parameter estimation. Hill et al. [22] suggested

w =
[

s
s−1

(1− p(Mmax))
]ξ

whereMmax is thea priori most probable model. Another choice is

w = [(1− (p(Mmax)− p(Mmax2))]
ξ, whereMmax2 is the second most probable model. Small

values ofξ places more weight on model discrimination. To equally balance the two calibrated
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entropy measures,w can also be set at1/2. The numerical examples in Section 3 use both the

weighting function of Hill et al. [22] andw = 1/2. Examples 1 and 2 assess the dependence upon

the optimal design on the weight. The examples show that rescaling the entropies can be important,

but that the final design may be somewhat insensitive to a misspecification inw.

To achieve the joint objectives of model discrimination and parameter estimation, we seek a

designx ∈ D that maximizesSQ in Eq. (12). For normal linear models,SQ simplifies to a closed

form through Eq. (6) and Eq. (9). The criterion is also applicable to nonlinear models. When

a nonlinear model can be approximated by a linear model in the neighborhood ofθ0, SQ can be

applied by substituting the initial estimates of the parameters [12]. For non-normal models,SQ

requires numerically integrating Eq. (5) and Eq. (7). For generalized linear and nonlinear models,

Bayesian methods [3, 17] can be used to approximate the terms in Eq. (5) and Eq. (7).

Shannon information is not the only possible approach to develop a joint model selection and

parameter estimation design criterion. Bingham and Chipman [7] propose a weighted average of

Hellinger distances between predictive densities of all possible pairs of competing models as a

criterion for model discrimination. A linear combination of Bingham and Chipman [7]’s criterion

and a weighted average of the Hellinger distances between the prior and posterior distributions

of each model’s parameters can also be used as a joint criterion. For the prior setup in Eq. (2),

this reduces to a closed form. The weighting functions described above can be used to weight the

importance of each objective. The upper bound on the Hellinger distances for each individual term

can be useful for rescaling, but the maximum values of each term for a particular finiten, can be

quite far from the upper bound and rescaling each term by its upper bound may not be appropriate.

We do not consider that combined criterion further here.

2.3 Some Computational Issues

Although SQ simplifies to a closed form for the normal linear model, there are computational

challenges. We consider three here. First, the number of models grows exponentially in the number

of predictors. Second, the min and max values of the two entropy measures that compriseSQ are

required. Third, the number of designs grows combinatorially in the number of candidate runs.

To address the first issue, the summands forMD andSP are computed by using only the most

likely models. There are typically far fewer thans = 2p different models whose probabilityp(M`)

lead it to be a competitor for the ‘best’ after the initial stage of experimentation. By considering

only the most likely models, Eq. (12) becomes tractable. There are several ways one can chose a

subset of probable models: (i) Pick all modelsh so thatp(Mh) ≥ E, (ii) Pick theh most likely
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models, whereh is the smallest integer so thatp(M(1)) + p(M(2)) + · · · + p(M(h)) ≥ F . Raftery

et al. [34] take a similar approach to model averaging. Examples 2 and 3 of Section 3 use (i) with

E = 0.02. The top models have higher posterior probabilities, so we setE = 0.02. In Section 3.1,

no model clearly stands out after the initial runs, so we useE = 0.008.

When direct enumeration is not computationally feasible, these ‘more important’ models can

be identified heuristically by using Markov Chain Monte Carlo methods like MC3 (Markov Chain

Monte Carlo Model Composition) [27] to estimate thep(M`). The state space for MC3 is the set

of s models, and a sample path visits a sequence of different models,M`. Candidate states for

transitions are chosen from the set of models with one more or one fewer active predictors. The

relative probabilities for the current and candidate states, needed to implement the Metropolis-

Hastings step of MC3, can be computed from closed-form formulas in Raftery et al. [34]. The

number of times a model is visited during MC3 divided by the number of iterations of MC3 is a

consistent estimate of the model’s posterior probability. Chipman et al. [15] and Ng [31] discuss

some practicalities of Markov chain Monte Carlo methods for model selection.

Second, we use an optimization heuristic to estimateMDmin,MDmax, SPmin
, SPmax. We use

thek-exchange algorithm of Johnson and Nachtsheim [23] to search for the maximum and min-

imum values. Thek-exchange algorithm was first proposed to construct D-optimal designs, but

because it is a general algorithm, it can be used to select from a finite set of designs as long as an

optimality criterion is given. Numerical results [23, 33] show that it is efficient and effective in

constructing optimal designs, and the algorithm has been widely used. In the numerical examples

we considered, thek-exchange algorithm was very efficient in identifying the optimal designs. In

addition to increasingk as suggested in [23], we also found that for thek-exchange algorithm,

increasing the number of starting designs from scattered points in the design space improves the

search for the optimal. Alternatively, the branch and bound algorithm in [39], or nested partitions

[37] can be used to find the global optima.

Third, we generalize thek-exchange algorithm (Appendix A.4) to identify a design with a high

value ofSQ to improve the scaling of the entropy measures. The algorithm is a greedy algorithm

that swaps in and out design points one at a time.

More work on computational issues is an avenue for future research.
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3. Numerical Results

Three numerical experiments compare the new criterion,SQ, with the two other joint criteria in the

literature, as well as theMD andSP criteria. The optimalSQ follow-up designx∗(w, z0) depends

upon the weightw and previous observationsz0. Let x∗(z0) = {x∗(w, z0) : w ∈ [0, 1]} be the set

of designs that theSQ criterion identifies, givenz0.

3.1 Chemical Reactor Experiment

Box et al. [11, p. 377] gave data for a chemical-reactor experiment that used a25 full factorial

design. From this data, we extracted runs that correspond to five columns of a Plackett-Burman

12 run (PB12) design. We treated those runs (see Table 1) as an initial experiment. The follow-up

design was simulated by extracting the remaining runs from the complete experiment.

Table 1: PB12 design and data extracted from the full25 reactor experiment
Runi A B C D E zi

1 1 1 -1 1 1 77
2 1 -1 1 1 1 42
3 -1 1 1 1 -1 95
4 1 1 1 -1 -1 61
5 1 1 -1 -1 -1 61
6 1 -1 -1 -1 1 63
7 -1 -1 -1 1 -1 69
8 -1 -1 1 -1 1 59
9 -1 1 -1 1 1 78
10 1 -1 1 1 -1 60
11 -1 1 1 -1 1 67
12 -1 -1 -1 -1 -1 61

We considered fifteen predictors (five factors and their two factor interactions) to get215 distinct

linear models in the model spaceM, each differing by the absence or presence of each predictor.

We used the equal probability prior for model uncertainty,p(M`) = 2−15, and the prior for param-

eters suggested by Raftery et al. [34]. Table 2 shows the probabilities for the top 8 models, given

that prior distribution and the PB12 data. No model clearly stands out, but the model identified in

the original analysis of all 32 runs [11], with factors (B, D, E, BD, DE), is ranked best.

To distinguish between the top eight models,n = 3 additional runs were selected from the

remaining 20 runs. The best designs for each joint criterion (SQ with w = 0.5; B; andC with

ξ = 2 as in [22]) were computed by evaluating the criteria over each possible design. The joint
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Table 2: Probability of the eight most probable models after 12 runs
Model Posterior Probability
B, D, E, BD, DE 0.0483
B, C, D, E, BD, DE 0.0206
B, D, E, BC, BD, DE 0.0195
B, D, E, BD, BE, DE 0.0106
A, B, D, E, BD, DE 0.0105
B, D, E, AE, BD, DE 0.0101
B, D, E, AC, BD, DE 0.0085
B, D, E, BD, CD, DE 0.0083

Table 3: Posterior probability (Post.) of the three most probable models with PB12, + 3 runs
determined by the best design obtained from full enumeration of theSQ, B, andC criteria.

NewSQ Criterion Borth’sB Criterion Hill’s C Criterion
Model Post. Model Post. Model Post.
B, D, E, BD, DE 0.189 B, D, E, BD, DE 0.132 B, D, E, BD, DE 0.166
B, D, E, BC, BD, DE 0.053 B, C, D, E, BD, DE 0.082 B, D, E, BC, BD, DE 0.065
A, B, D, E, BD, DE 0.045 A, B, D, E, BD, DE 0.051 B, D, E, BD, BE, DE 0.04

criterionSQ results in different designs than theB andC criteria. The posterior probabilities of all

models were then recomputed using all 15 runs, and the top 3 models are shown in the left portion

of Table 3. All three designs identified the same top model identified in the original analysis of all

32 runs.SQ discriminated in favor of the top model more than criteriaB andC. Table 4 indicates

that SQ reduced the parameter generalized variance (the determinant of the posterior covariance

matrix of the parameter estimates,|V (β)|) of the top model more thanB andC.

To compare the computational burden, each criterion was evaluated for all possible designs for

one, two, three and four additional runs using Maple8 (slow, because it is interpreted, but relative

CPU times are illustrative). Table 5 shows the computation times for theSQ andB criterion. The

computation times forSQ andC were similar. The curse of dimensionality made quadrature an

inefficient approach for the numerical integrations required byB.

Table 6 shows the posterior probabilities of the top three models with the model discrimina-

Table 4: Parameter generalized variance|V (β)| for thea posterioritop model (B, D, E, BD, DE),
given PB12 + 3 runs, based on theSQ, B andC criteria.

Criterion |V (β)|
SQ 3.62× 10−12

B 4.81× 10−12

C 4.74× 10−12
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Table 5: CPU time for computingSQ, C andB (hours).
Additional runs SQ andC B

1 0.005 0.007
2 0.04 0.86
3 0.33 55.4
4 1.87 453

Table 6: Posterior probability (Post.) of the three most probable models with PB12 + 3 runs
determined by the best design obtained by full enumeration forSQ, MD, andSP .

SQ Criterion MD Criterion SP Criterion
Model Post. Model Post. Model Post.
B, D, E, BD, DE 0.189 B, D, E, BD, DE 0.156 B, D, E, BD, DE 0.124
B, D, E, BC, BD, DE 0.053 B, D, E, BD, BE, DE 0.048 B, C, D, E, BD, DE 0.072
A, B, D, E, BD, DE 0.045 B, C, D, E, BD, DE 0.038 A, B, D, E, BD, DE 0.032

tion MD and parameter estimationSP criteria. As expected,MD did a better job thanSP at

distinguishing the top model from the others, and Table 7 indicates thatSP outperformedMD at

reducing the parameter generalized variance of the top model.SQ on the other hand outperformed

MD in favoring the top model, and was only slightly poorer thanSP in parameter estimation.

This example also illustrates the importance of normalizing that we suggest, as one of the

subcriteria would be ignored without recalibration. With the equal probability prior for each model,

the range of uncalibratedMD scores over the design space ranged from0.034 to 0.062, while the

uncalibratedSP scores range from0.88 to 0.90. Without recalibration, the joint criterion would

have selected the bestSP design, and ignored the model discrimination objective.

We tested the sensitivity to the prior distribution by rerunning the experiment with the in-

dependence priorp(M`) = ωt`(1 − ω)p−t` , wheret` is the number of predictors in model`,

(` = 1, . . . , 215), with ω = 0.25. The model with factors (B, D, E, BD, DE) is ranked third

when only 12 runs are used, but theSQ criterion again identified (B, D, E, BD, DE) as the most

probable model after then = 3 run follow up was completed.

To test the sensitivity of the designs to the weights,w was varied from 0 to 1. In this example,

Table 7: Parameter generalized variance|V (β)| for thea posterioritop model (B, D, E, BD, DE),
given PB12 + 3 runs, based on theSQ, MD andSP criteria.

Criterion |V (β)|
SQ 3.62× 10−12

MD 4.74× 10−12

SP 2.13× 10−12
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the topSQ design is robust over a range of weights. There were only three different top designs

obtained asw was varied from0 to 1. When0 ≤ w < .27, the topSP design is obtained. The same

design obtained forSQ whenw = 0.5 is obtained when0.27 ≤ w < 0.78. The topMD design

is obtained whenw ≥ .78. For the weighting function suggested in [22], the bestMD design is

selected whenξ gets small,ξ ≤ 4, and the bestSP design is selected whenξ gets large,ξ > 27,

and the same design selected for anyξ in between. In this example, small changes inw or ξ do not

significantly change the optimal design.

The Entropy Balancingk-Exchange Algorithm in Appendix A.4 was implemented to evaluate

its effectiveness to find good designs in this problem. The best design is known for this problem

because an exhaustive evaluation of all 1140 designs is possible. The Entropy Balancing algorithm

consists of two steps. In the initial step of the algorithm, the maximum and minimum values of

MD andSp are estimated using thek-Exchangemax andk-Exchangemin algorithms. In the second

step, thek-Exchangemax algorithm is used to search for a goodSQ design. We first evaluated how

well the initial step performs in determining the maximum and minimum values. We varied the

numberr of initial random designs to start the algorithm,r = 100 andr = 200, and conducted

10 independent replications of the algorithm for eachr (each replication samples an independent

set ofr design points). Whenr = 100, the estimates of (MDmax,MDmin, SPmin
, SPmax) were

all equal to the actual value 70% of the time. Whenr = 200, all four estimates were correct

80% of the time. In the remaining cases, only one of the four actual values was not obtained, but

the estimate was close to the actual value. We next tested the how well the second step of the

algorithm identifies the known best optimalSQ design. The known best optimalSQ design was

identified 70% of the time withr = 100, and 90% of the time withr = 200. The remaining

nonoptimal designs selected were among the top 8 designs.

3.2 Finding a Known Model

To determine how well the criteria performs in detecting a known model, and how the bestSQ

model depends uponw in repeated samples, we ran 50 replications of an experiment using the

SQ criterion on a known model with 4 potential factors (A, B, C, D), namelyZ = 10A + 15B +

6AB +7AC +ζi, whereζi ∼ Normal(0, 5). For each replicationi, we ran an initial24−1 fractional

factorial design to generate preliminary dataz0,i, which was then used to create a prior distribution

for a follow-up design withn = 3 runs as described in Fig. 1. In each replication, the true (known)

model was among the top eight candidate models after the initial24−1 = 8 runs but was com-

pletely confounded with three other models. The three additional runs selected bySQ dealiased
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Figure 1: Algorithm to assess the identification of a known model in Section 3.2

For i = 1, 2, . . . , 50:
1. Generate independent preliminary dataz0,i with a24−1 factorial design.
2. Update the distributions for the unknown models and parameters as in Section 2.2.1.
3. Determine the bestSQ designx∗(w, z0,i) for n = 3 additional runs, as a function ofw.
4. Run the best follow-up design,x∗(w, z0,i), for eachw.
5. Compute the posterior probability and ordinal rank of each model, as a function ofw.

End for loop

the confounded effects and distinguished between the top competing models.

In each replication, three different designs were obtained (|x∗(z0,i)| = 3) asw varied between 0

and 1. The bestSQ designx∗(w, z0,i) was the topSP design (x∗(0, z0,i)) for smallw. For a certain

range between 0 and 1, a unique topSQ design was obtained that balances model discrimination

and parameter estimation. For largerw, the bestSQ design was the bestMD design (x∗(1, z0,i)).

In 70% of the replications, the same three designsx∗(z0,i) were selected and the sameSQ was

selected forw in approximately the range (0.1, 0.55). The other30% of the replications resulted

in 3 other sets ofSQ designs with the same qualitative features: the designs withw in the range of

about 0.1 up to 0.4-0.8 balanced model discrimination and parameter estimation.

In 49 out of 50 replications, the true model was identified as the best model when theSQ

design with intermediate values ofw was used to balance discrimination and estimation. In the

remaining replication, the true model had the third highest posterior probability. Averaging over

50 replications, the probability that the true model was best improved from 0.04 after the initial

stage (8 runs), to 0.21 (after the 3 follow-up runs). The average range ofMD was 7.42, the average

range ofSP was 0.59, andMDmax > SPmax for all replications. If the individual measures were

not recalibrated by their ranges, theSQ criterion would have selected the bestMD design and

ignored parameter estimation unless a very small weight were placed on model discrimination.

This experiment gave the same qualitative conclusions as Section 3.1. Borth’s criterion took

orders of magnitude more time to compute due to numerical integration issues (curse of dimen-

sionality). Rebalancing the entropy measures was important for assuring a balance between dis-

crimination and estimation. The optimal design was not highly sensitive to the choice ofw.

3.3 Critical Care Facility

The critical care facility illustrated in Fig. 2 was originally studied by Schruben and Margolin

[36]. Patients arrive according to a Poisson process and are routed through the system depending
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Figure 2: Estimated fraction of patients routed through the units of a critical care facility.

upon their specific health condition. Stays in the intensive care (ICU), coronary care (CCU), and

intermediate care facilities are presumed to be lognormally distributed. This section comparesSQ

with C and the individual criteria,MD andSP . Borth’s criterionB took too much time to evaluate

and was therefore not compared. We initially ran a 64 run design using the Bayesian model average

to sample uncertain input parameters [32]. We considered twelve input parameters, resulting in212

distinct linear models in the model spaceM, each differing by the absence and presence of each

predictor. Table 8 shows the posterior probabilities for the top 5 models. The model identified in a

128 run study in [32] is ranked fifth here.

Schruben and Margolin [36] studied how to allocate random number streams to reduce variabil-

ity in response surface parameter estimates. Their response model predicts the expected number

of patients per monthE[Z] that are denied entry to the facility as a function of the number of beds

in the ICU, CCU, and intermediate care facilities. They presume fixed point estimates fork = 6

input parameters, one per source of randomness, to describe the patient arrival process (Poisson

arrivals, mean̂λ = 3.3/day), ICU stay duration (lognormal, mean3.4 and standard deviation3.5

days), intermediate ICU stay duration (lognormal, mean15.0, standard deviation7.0), intermediate

CCU stay duration (lognormal, mean17.0, standard deviation3.0), CCU stay duration (lognormal,

mean3.8, standard deviation1.6), and routing probabilities (multinomial,̂p1 = 0.2, p̂3 = 0.2,

p̂4 = 0.05). Some parameters are multivariate, and there are a total of1 + 4 ∗ 2 + 3 = 12 dimen-

sions of parameters. For the lognormal service times, the log of the service times has meanµ and

precisionλ = 1/σ2. Subscripts distinguish the parameters of each service type (e.g.,µicu, µiicu,

µiccu, µccu, λicu). The analysis here presumes a linear response model in these 12 parameters.

The actual system parameters are not known with certainty, and the estimated system perfor-

mance will be in error if the actual parameter values differ from their point estimates. As in Ng and
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Table 8: The five most probable models after 64 runs.
Model Post. Prob.
λsys, µiicu, λiicu, p1, p4 0.43298
λsys, µiicu, λiicu, p1, p3, p4 0.20019
λsys, µiicu, λiicu, λiccu, p1, p4 0.0682
λsys, µiicu, λiicu, µiccu, p1, p4 0.0516
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.0296

Table 9: The most probable models with 64+32 runs determined bySQ with w = 0.55.
Model Post. Prob.
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.407
λsys, µiicu, λiicu, p1, p3, p4 0.215
λsys, µiicu, λiicu, p1, p4 0.110

Chick [32], who used naive Monte Carlo sampling for unknown inputs to do an uncertainty analy-

sis, we fix the number of beds in each of the three units (14 in ICU, 5 in CCU, 16 in intermediate

care), and study how the expected number of patients per month that are denied entry depends on

the unknown parameters. Design points for the unknown parameter values could take on values

of the MLE± one standard error. The approach of Raftery et al. [34] was used to obtain prior

distributions for the unknown response parameters.

We used theSQ criterion withw = 0.55 (or ξ = 1) to avoid focusing on parameter estimation

too early. The design points of a full factorial for the 12 parameters were candidates for the 32

run follow-up design. The number of possible 32 run designs from the212 candidate runs is large,

we used thek-exchange algorithm to search for the bestSQ design (r = 50, k = 5), then ran

the critical care simulations again with that design. The posterior probabilities for the top three

models, given the data from the combined design (64+32), are shown in Table 9. The top model

is the same model identified in the 128 runs analysis in [32], but theSQ criterion identified this

model with fewer runs. We also used thek-exchange algorithm (r = 50 andk = 5) to determine a

goodC design. Table 10 shows the posterior probabilities after running the simulations with theC

design. TheC design identified the same model asSQ, butSQ did slightly better in discriminating

the top two models.

The best designs forMD andSP are different than the bestSQ design withw = 0.55. The

MD design identified the same top model as theSQ design, and discriminated between the top two

models slightly better than theSQ design (Table 9 and Table 11). Table 12 indicates that designSQ

did a better job thanC andMD at reducing the parameter generalized variance of the top model.

The SQ criterion with w = 0.75 (or ξ = 0.5) resulted in better model discrimination than with
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Table 10: Most probable models with 64+32 runs with theC criterion.
Model Post. Prob.
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.359
λsys, µiicu, λiicu, p1, p3, p4 0.232
λsys, µiicu, λiicu, λiccu, p1, p3, p4 0.077

Table 11: Most probable models with 64+32 runs with theMD criterion.
Model Post. Prob.
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.438
λsys, µiicu, λiicu, µiccu, λiccu, p1, p3, p4 0.125
λsys, µiicu, λiicu, µiccu, p1, p3, p4 0.109

w = 0.55 at the cost of slightly less effective parameter estimation (in this case,|x∗(z0,i)| > 3).

The top two models identified in theSP design were the same models identified in the original

64 run analysis, and the top model identified by theSQ andMD design is only ranked fourth when

the SP design is used. TheSP criterion focused on designs that had good parameter estimation

primarily for models with higher posterior probability. Using theSP criterion too early in the

experimentation process can prematurely focus the design and experimentation on a few models

that may or may not be good approximations to the system (because of the small number of runs),

an issue raised by Atkinson [1]. An early focus onMD can better distinguish competitors for the

best model, but at the expense of poorer parameter estimates.SQ balanced both of those needs.

4. Discussion and Conclusions

The purpose of many experiments is to distinguish between likely mathematical models and obtain

precise estimates for the model parameters. The three joint design criteria examined here each

use an additive measure for entropy measures or bounds for model and parameter uncertainty. Our

Table 12: Parameter generalized variance|V (β)| after 64+32 runs for the model with
λsys, µiicu, λiicu, µiccu, p1, p3, p4.

Runs Criterion |V (β)|
96 SP 4.63× 10−28

96 SQw=0.55 4.69× 10−28

96 SQw=0.75 5.33× 10−28

96 C 5.70× 10−28

96 MD 5.71× 10−28

64 – 9.46× 10−26
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proposal for the newSQ criterion to normalize each entropy measure by the amount each varies

over the design space provides an insight that the other joint criteria do not: It indicates how rich

the design space is for improving each entropy measure. If the range for one of the component

criteria is much smaller than for the other (e.g.MDmax − MDmin >> SPmin
− SPmax), or if

the number of potentially optimal designs,|x∗(z0)|, is small, then a richer design space might be

considered.

SQ is computationally more efficient than Borth’s joint criterion especially when the planned

follow-up designs get larger. In the first two examples, theSQ design performs as well as Borth’s

criterion, but it is computationally more efficient and practical.SQ extends theC criterion as

it considers the relevant range of the individual criteria, does not require initial estimates of the

variance, and accounts for available prior information. These two examples also show that there

are 3 different designs forSQ asw varies from 0 to 1. The optimumMD design is selected when

the model discrimination term is heavily weighted and the optimumSp design is selected when the

parameter estimation term is heavily weighted. For each experiment, theSQ design that balances

both objectives is shown to be insensitive to a range ofw, and this best design selected performs

more efficiently than the other criteria.

Three numerical experiments illustrated the compromise between model discrimination and

parameter estimation obtained when using the joint criterionSQ. Compared with the individual

criteria, the balancedSQ design was about as good as theMD design for model discrimination,

and was almost as good as theSP design for parameter estimation. TheMD design fared less well

for parameter estimation, and theSP design was least effective for model discrimination.

AlthoughSQ is easier to compute for the linear model than Borth’s criterion, the large number

of matrix calculations required to compute theSQ criterion may need to be balanced against the

cost of actually running the experiments. In a simulation context, CPU cycles might be better

spent running replications rather than computingSQ if the simulations run quickly. For expensive

industrial experiments or complex simulations with long run times, theSQ criterion may be an

effective mechanism to balance the needs of factor identification and parameter estimation.

Sequential designs and criteria based on the Hellinger distance are avenues for further research.
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A. Mathematical Details

A.1 Proof of Prop. 1

Conditioning onσ2, the MD criterion can be rewritten

MD =
∑

0≤i6=l≤s

p(Mi)p(Ml)

∫ ∞

0

p(σ2)

∫ ∞

−∞
p(Z | Mi,yi, σ

2) log
p(Z | Mi,yi, σ

2)

p(Z | Ml,yl, σ2)
dZdσ2 (13)

Meyer et al. [28] substituted the predictive distribution of the normal form in Eq. (3) into Eq. (13)

and integrated with respect top(Z | Mi, σ
2) to obtain:

MD =
∑

0≤i6=l≤s

p(Mi)p(Ml) ·
[∫ ∞

0

π(σ2)

[
1

2
log

( |V∗
l |

|V∗
i |

)
− 1

2σ2

×
(
nσ2 − σ2tr(V∗−1

l V∗
i )− (ẑi − ẑl)

T

V∗−1
l (ẑi − ẑl)

)]
dσ2

]

We now isolate the dependence on the noninformative prior.

MD =
∑

0≤i 6=l≤s

p(Mi)p(Ml) ·
[
1

2
log

( |V∗
l |

|V∗
i |

)
−

∫ ∞

0

1

2σ2

×
(
nσ2 − σ2tr

(
V∗−1

l V∗
i

)− (ẑi − ẑl)
T

V∗−1
l (ẑi − ẑl)

)
π(σ2)dσ2

]

=
∑

0≤i 6=l≤s

1

2
p(Mi)p(Ml) ·

[
log

( |V∗
l |

|V∗
i |

)
− n + tr(V∗−1

l V∗
i )

+ (ẑi − ẑl)
T

V∗−1
l (ẑi − ẑl)

∫ ∞

0

1

σ2
π(σ2)dσ2

]
(14)

The double sum means that pairsi, l can be matched to make the log terms cancel out. And
∫∞
0

1
σ2 π(σ2)dσ2 = [(ν/2)/(νλ/2)]

∫∞
0

InvertedGamma
(
σ2 | (ν

2
+ 1

)
, νλ

2

)
dσ2 = 1/λ. Substitute

this into Eq. (14) to justify the claim in Eq. (6).

A.2 Proof of Prop. 2

Condition on modelM` and letθ = (β, σ2).

BD =

∫ ∫
p(Z)p(θ | Z) log

[
p(θ | Z)

p(θ)

]
dθdZ

=

∫ ∫
p(Z)p(θ | Z) log

[
p(θ | Z)

]
dθdZ−

∫ ∫
p(Z)p(θ | Z) log

[
p(θ)

]
dθdZ
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The second term on the right hand side of this last equation simplifies using Fubini’s theorem and

Bayes’ theorem, assuming the integrals exist, and is independent of the design.
∫ ∫

p(Z)p(θ | Z) log

[
p(θ)

]
dθdZ =

∫ ∫
p(Z)p(θ | Z) log

[
p(θ)

]
dZdθ

=

∫
log

[
p(θ)

]
p(θ)

∫
p(Z | θ)dZdθ

=

∫
log

[
p(θ)

]
p(θ)dθ

So

BD =

∫ ∫
p(Z)p(θ | Z) log

[
p(θ | Z)

]
dθdZ−

∫
log

[
p(θ)

]
p(θ)dθ. (15)

Condition now on bothM` andσ2 and focus on the inner integral in the left hand term of the last

equation. It is well known that the conditional distribution ofβ givenz, σ2 is a normal distribution

with varianceσ−2(y
T

i yi + V−1
i ) (e.g. see [5]). Call the posterior meanµ′. First integrate outβ,

with σ2 handled after.
∫

p(β | Z,Mi, σ
2) log p(β | Z,Mi, σ

2)dβ

=
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T
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∣∣∣
1
2
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Similarly,
∫

p(β | Mi, σ
2) log p(β | Mi, σ

2)dβ = −(ti + 1) log σ +
1

2
log

∣∣V−1
i

∣∣− 1

2
(ti + 1) log 2π − 1

2
.

The difference inBD therefore has several terms that cancel out, justifying the claimed relation-

ship.

BD =

∫ ∫
1

2
log

∣∣∣yT

i yi + V−1
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2
log
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A.3 Proof of Prop. 3

Substitutep(Mi | Z) = p(Z | Mi)p(Mi)/
∑s

j=1 p(Z | Mj)p(Mj) into Eq. (8), to obtain

SP = −
s∑

i=1

p(Mi)

∫
p(θi | Mi) log p(θi | Mi)dθi

+

∫ ∑s
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×
∫
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s∑
j=1

p(Mj)p(Z | Mj)dZ
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=
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By Prop. 2,
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[
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log
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=
s∑

i=1

p(Mi)

2
log
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∣∣∣ + K

where K is independent ofx, as claimed.

A.4 Variant of k-Exchange Algorithm

In the following, letxα be theαth row of the design matrixx, and let a prime (′) denote an estimate

of the primed variable. Define

SQ′ =
MD −MDmin′

MDmax′ −MDmin′
+

SP − SPmin′

SPmax′ − SPmin′
.

Let SQ′(xα) beSQ′ evaluated with the design matrixx(α), with rowxα removed fromx. A generic

maximumk-exchange algorithm for an arbitrary criterionCr follows. An algorithm for the mini-

mum is similar.
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k-Exchangemax Algorithm

1. Order then design points according to theirCr′(x) values,x(1), x(2), . . . , x(n), so thatα < β

impliesCr′(xα) ≤ Cr′(xβ).

2. Forα = 1 to k: deletex(α) from design matrixx, addx∗ from the list of all available design

points wherex∗ maximizesCr′ when added to designx(α).

3. Repeat (reorder and replace points) until no improvement inCr′ can be found.

Entropy Balancing k Exchange Algorithm

1. Estimate the range of entropy scores in order to calibrate them.

(a) Selectr randomn run designs.

(b) EstimateMDmax′

i. For each of ther designs, implement ak-exchangemax for criterionMD.

ii. LetR ∈ D be the set of designs obtained from 1(b)i. SetMDmax′ = maxd∈R(MD)

(c) Similarly estimateSPmax′ , MDmin′ , SPmin′ .

2. For each of ther designs, implement thek-exchangemax algorithm for criterionS
′
Q

The algorithm does not guarantee optimality, but applying Steps 1 and 2 to each of ther randomly

selected designs provides some protection against getting stuck in a local extrema.

For faster execution of the algorithm,k should be chosen small. However, Johnson and Nacht-

sheim [23] noted that a larger value ofk leads to greater D-efficiency. A good choice ofk to search

for goodSQ designs depends on the number of predictors, the number of starting random designs

r, and the number of additional runsn.
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