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Abstract

Subjective probability and Bayesian methods provide a unified approach to handle
not only randomness from stochastic sample-paths, but also uncertainty about in-
put parameters and response metamodels. The chapter surveys some basic concepts,
principles and techniques useful for a subjective Bayesian approach to uncertainty
analysis, data collection plans to reduce input uncertainty, response surface mod-
eling, and expected value-of-information approaches to experimental designs for
selection procedures. Some differences from the classical technique are identified.

If simulation is defined to be the analysis of stochastic processes through the
generation of sample paths of the process, then Bayesian and subjective prob-
ability methods apply in several ways for the modeling, design and analysis
of simulation experiments. By Bayesian methods, we refer here to parameter
inference through repeated observations of data with Bayes’ rule. Examples in
simulation are input parameter inference using field data or the inference of
metamodel parameters from simulation replications. The Bayesian approach
entails postulating a ‘prior probability’ model that describes a modeler’s ini-
tial uncertainty about parameters, a likelihood function that describes the
distribution of data, given that a parameter holds a specific value, and Bayes’
rule, which provides a coherent method of updating beliefs about uncertainty
when data becomes available. By subjective probability, we refer to probabil-
ity assessments for all unknown quantities, including parameters that can be
inferred with Bayes’ rule, as well as unknown quantities for which parame-
ters cannot be inferred from repeated sampling of data (e.g. one-shot deals
like the total potential market size for a particular new product from a sim-
ulated manufacturing facility). By frequentist, we mean methods based on
sampling statistics from repeated observations, such as maximum likelihood
(MLE) methods to fit input parameters, or ranking and selection procedures
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that provide worst-case probability of correct selection guarantees based on
repeated applications of the procedure. The chapter describes applications
of Bayesian and subjective probability methods in simulation, and identifies
some ways that the Bayesian approach differs from the frequentist approach
that underlies much of simulation theory.

In the simulation community, Glynn (1986) first suggested Bayesian appli-
cations of uncertainty analysis for statistical input parameter uncertainty. In
that paper, the traditional role of estimating α = h(E[Y ]) is extended to
account for statistical input parameter uncertainty, so α(θ) = h(E[Y | θ]) de-
pends upon unknown parameters with distribution p(θ) that can be updated
with data from the modeled system. Three questions he poses are (i) how to
estimate the distribution of α(Θ) induced by the random variable Θ, (ii) how
to estimate the mean E[α(Θ)], and (iii) estimation of credible sets, e.g. finding
a, b so the probability Pr(α(Θ) ∈ [a, b]) equals a prespecified value, like 0.95.
Chick (1997) provided a review of the few works to that date that applied
Bayesian ideas to simulation, then suggested a broader range of application
areas than uncertainty analysis, including ranking and selection, response sur-
face modeling, and experimental design.

The basic goal is to understand how uncertainty and decision variables affect
system performance, so that better decisions can be made. The premise in this
chapter is that representing all uncertainty with probability can aid decision-
makers that face uncertainty. Stochastic uncertainty, the randomness in simu-
lation models that occurs even if all parameters are known, is already widely
modeled with probability. The subjective Bayesian approach also models input
parameter and response surface uncertainty with probability distributions, a
practice that has been less common in stochastic process simulation.

Probabilistic models for uncertainty are increasingly employed for at least
three reasons. One, doing so allows the modeler to quantify how parameter
uncertainty influences the performance of a simulated system. Parameters of
models of real systems are rarely known with certainty. The Bayesian approach
for uncertainty analysis overcomes some limitations of the classical approach
for parameter and model selection (Chick, 2001; Barton and Schruben, 2001;
Draper, 1995). Two, simulation experiments can be designed to run more ef-
ficiently (Chick and Inoue, 2001a; Santner et al., 2003). And three, Bayesian
and subjective probability methods are not new but are increasingly imple-
mented due to the development of improved computing power and Markov
Chain Monte Carlo (MCMC) methods (Gilks et al., 1996).

This chapter describes the subjective Bayesian formulation for simulation.
Section 1 presents the basics of subjective probability and Bayesian statistics
in the context of quantifying uncertainty about one statistical input parame-
ter. Section 2 summarizes the main ideas and techniques for addressing three
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main challenges in implementing Bayesian inference: maximization, integra-
tion, and sampling variates from posterior distributions. Section 3 addresses
input distribution selection when multiple candidate distributions exist. Sec-
tion 4 presents a joint formulation for input and output modeling, and reviews
applications for data collection to reduce input uncertainty in a way that re-
duces output uncertainty, and for response surface modeling and simulation
experiments to reduce response surface uncertainty. Section 5 describes ap-
plications of Bayesian expected value of information methods for efficiently
selecting the best of a finite set of simulated alternatives.

Simulation research with Bayesian methods has grown rapidly since the mid to
late 1990s. A partial reference list is Chen and Schmeiser (1995); Chen (1996);
Scott (1996); Nelson et al. (1997); Chen et al. (1999); Cheng (1999); Lee and
Glynn (1999); Andradóttir and Bier (2000); Chick and Inoue (2001a,b); Chick
(2001); Cheng and Currie (2003); Steckley and Henderson (2003); Chick et al.
(2003); Zouaoui and Wilson (2003, 2004); Ng and Chick (2002), as well as ap-
plications to insurance, finance, waterway safety, civil engineering and other
areas described in the Winter Simulation Conference Proceedings. Work on
deterministic simulation with potentially important implications for stochas-
tic simulation includes O’Hagan et al. (1999); Kennedy and O’Hagan (2001);
Craig et al. (2001); Santner et al. (2003). Excellent references for subjective
probability and Bayesian statistics in general, not just in simulation, include
Lindley (1972); Berger (1985); Bernardo and Smith (1994), with special men-
tion for de Finetti (1990), Savage (1972), and de Groot (1970).

1 Main Concepts

A stochastic simulation is modeled as a deterministic function of several in-
puts,

Yr = g(θp,θe, θc; U r), (1)

where Yr is the output of the r-th replication. The vector of statistical input
parameters θp = (θ1, θ2, . . . , θnp) describes np sources of randomness whose val-
ues can be inferred from field data. For example, θ1 may be a two-dimensional
parameter for lognormally distributed service times, and θ2 may be defect
probabilities inferrable from factory data. Environmental parameters θe are
beyond the control of a decision maker, and no data is available for inference.
Examples are the total potential market size for a new product, the general
economic climate for a high-level model, or the actual climate for a produc-
tion process influenced by temperature or humidity. The vector θc represents
all control parameters (decision variables) under direct control of the deci-
sion maker, such as production capacity, supply chain operating procedures,
scheduling policies, and the number of servers at each node in a service system.
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Fig. 1. Simulation Takes Multiple Types of Inputs and Metamodels Predict Outputs
for Unsimulated Input Values

Random output Yr for replication r can be generated even for the same inputs
(θcr,θpr,θer) by sampling different portions of a random number stream ur,
to obtain random variates xrij (the j-th simulated variate using input param-
eter θi during replication r), as in the top row of Figure 1. We use upper case
for random variables, lower case for realizations, and bold-face to emphasize
that a quantity is a vector. We may suppress the r, as in Xij, to describe data
collected from the actual system being simulated. That data would be used
to infer the parameters of the statistical distributions to describe the system.

One reason a simulation experiment may be run is to estimate the function
g() because its exact form is not known. Metamodels can be used to predict
the output of a simulation model (or the simulated system) when a full sim-
ulation takes a long time to run. Section 4 describes some Bayesian methods
to describe uncertainty about the parameters ψ of a metamodel.

A subjective probabilist represents all uncertain quantities with probability
distributions. Uncertainty about statistical input parameters and environmen-
tal parameters are described as random quantities by the subjective Bayesian
framework; we use a prior distribution π(θp, θe) for the random quantity
(Θp,Θe). The specification of prior distributions and Bayesian inference with
data are discussed in Section 1.1. Loss functions and the expected value of
information follow in Section 1.2, with uncertainty analysis in Section 1.3.

1.1 Bayesian Modeling

An important simulation design issue is the selection of appropriate input dis-
tributions to characterize the stochastic behavior of the modeled system (see
Chapter 6). Failure to select appropriate input distributions can result in mis-
leading simulation output, and therefore poor system design decisions. This
section reviews basic ideas and important theorems for inferring statistical
parameters θp from data with the Bayesian formalism. To simplify the discus-
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sion, we focus on selecting a single statistical parameter θ for a given, fixed
candidate model for input into a computer simulation. A candidate model
could be, for example, a Bernoulli distribution. We therefore drop the extra
subscripts from Equation (1) in this subsection. The subscripts are needed in
later sections. Section 3 explores multiple candidate models for a given source
of randomness.

For a Bayesian, the idea of exchangeability is preferred to the idea of inde-
pendent and identically distributed (i.i.d.) random variables. Exchangeability
is weaker than the i.i.d. assumption and plays a role in specifying proba-
bility models. Let XN = (X1, X2, . . . , XN) be a generic vector of random
variables on an outcome space Ω. A probability p on Ω is exchangeable if
it is invariant with respect to permutations of the coordinates (e.g. p(xn) =
p(x1, x2, . . . , xn) = p(xh1 , xh2 , . . . , xhn) for permutations h on {1, 2, . . . , n} for
arbitrary n ≤ N .

Simulation is often concerned with conceptually infinite (N →∞) exchange-
able sequences, e.g. no conceptual bound on the number of data observations or
simulation replications. A key theorem (de Finetti, 1990; Bernardo and Smith,
1994) for infinite exchangeable sequences of Bernoulli random variables says
that outcomes are conditionally independent, given the limiting fraction of
heads, Θ = limN→∞

∑N
i=1 Xi/N , with some mixture distribution π(θ),

lim
N→∞

p(xn) =
∫ {

n∏

i=1

f(xi | θ)
}

dπ(θ), (2)

where p(xi | θ) = f(xi | θ) = θxi(1 − θ)1−xi is viewed as a conditional proba-
bility when considered as a function of xi and as a likelihood when written as
a function of θ. A mixture written in the form of Equation (2) for an arbitrary
parameter θ, distribution π(θ) and likelihood model f is called a de Finetti-
type representation. The notation anticipates the convention of writing a
prior distribution as π(·), representing the a priori belief that the parame-
ter takes on a given value. Equation (2) is the basis for inference of statistical
input parameter θ from data xn = (x1, . . . , xn) via Bayes’ rule,

p(θ | xn) =
π(θ)p(xn | θ)

p(xn)
=

π(θ)
∏n

i=1 f(xi | θ)∫
p(xn | θ)dπ(θ)

(3)

The first equality of Equation (3) is Bayes’ rule and applies in general. The
second equality follows from conditional independence. The posterior prob-
ability p(θ | xn) of θ given xn, summarizes uncertainty about θ via the
likelihood model, the prior distribution and the data xn.

Bayesian methods require probability distributions to quantify initial uncer-
tainty before data is observed. The selection of a prior distribution is
controversial. Bruno de Finetti (1990) argues that a prior distribution is a
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subjective expression of uncertainty, and that You (yes, You) may justifiably
specify a different distribution than I, since we may have different beliefs about
the likelihood of a given event. Savage (1972) suggests a process for eliciting
a prior distribution from a modeler through the evaluation of ‘fair bets’ (as
opposed to limiting frequencies). Kahneman et al. (1982) illustrate potential
pitfalls with eliciting probability judgments and present techniques to counter
them. While this may seem ‘too subjective’ and open to biases (Edwards,
1984), the ability to include prior information provides important flexibility
and can be considered an advantage of the approach. Frequentist methods
apply only with data, and problems remain (e.g. see Section 3).

To avoid the impression of subjectivity, several ‘automated’ mechanisms have
nonetheless been proposed to support the selection of a prior distribution.
When a lot of data is available, the likelihood function is the dominant term
in Bayes’ rule, rather than the prior distribution, so these methods may be
helpful. The first approach is to obtain a prior distribution for a parameter
through an indifference judgment. For example, for the unknown probability θ
of a Bernoulli outcome, this would give a uniform[0, 1] distribution, the prior
probability model used by Laplace (1812) to assess his prior probability that
the sun would come up tomorrow. That approach is coordinate dependent
(e.g. indifference over θ or log θ).

Jeffreys (1946) suggested π(θ) ∝ |H(θ)|1/2dθ, where H is the expected infor-
mation in one observation,

H(θ) = E

[
−∂2log p(X | θ)

∂θ2

∣∣∣∣∣
θ

]
, (4)

because it has the attractive property of being invariant with respect to coor-
dinate changes in θ. It is ‘uniform’ with respect to the natural metric induced
by the likelihood function (Kass, 1989). Jeffreys’ prior for Bernoulli sampling
is a beta(1/2, 1/2) distribution. For some models, Jeffreys’ prior is improper
(does not integrate to one), but may be useful if the data results in a proper
posterior after Bayes’ rule is formally applied.

A third approach that is mathematically convenient is to assume a conjugate
prior distribution, meaning that the posterior distribution has the same func-
tional form as the prior distribution. For Bernoulli(θ) sampling, the beta(α, β)
distribution with probability density function (pdf) f(θ) ∝ θα−1(1 − θ)β−1 is
a conjugate prior. If data xn is observed, with sn =

∑n
i=1 xi, then the pos-

terior pdf is f(θ | xn) ∝ θα+sn−1(1 − θ)β+n−sn−1, a beta(α + sn, β + n − sn)
distribution. Conjugate prior distributions exist for all members of the regu-
lar exponential family (Bernardo and Smith, 1994), which includes the expo-
nential, normal, gamma, lognormal, Wishart, Bernoulli, geometric, and Pois-
son distributions, and linear regression models with normally distributed er-
ror, among others. The uniform[0, 1] distribution is in the conjugate fam-
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ily for Bernoulli sampling—it is a beta(1, 1) distribution. Prior distributions
selected in this way are often selected to be as noninformative as possible,
meaning that probability is spread ‘evenly’ over the space of parameters. Al-
though ‘evenly’ is subjectively defined, heuristics are available for members
of the regular exponential family, whose likelihood function can be written
p(x | θ) = a(x)h0(θ) exp

[∑d
j=1 cjφj(θ)hj(x)

]
for some a(·), h0(·), cj, φj(·), hj(·).

The conjugate prior is p(θ) = [K(t)]−1[h0(θ)]
n0 exp

[∑d
j=1 cjφj(θ)tj

]
, where

t = (t1, t2, . . . , td) is a hyperparameter. The posterior distribution given n
conditionally independent data points then has parameters n0 + n and the
sum of t and the sufficient statistics (Bernardo and Smith, 1994). The pa-
rameter n0 is therefore interpreted by some to be the ‘strength’ of the prior,
measured in terms of the number of samples. In that case, evenly spreading
probability can be taken to mean selecting n0 close to 0, while insuring that
the prior is still proper.

Jaynes (1983) suggests a fourth approach that is common in image and signal
processing: maximum entropy methods define ‘diffuse’ priors with respect to
a background measure, subject to moment constraints on the parameters.
Berger (1994) and Kass and Wasserman (1996) comment further on default
prior distributions and sensitivity analysis with respect to them.

Probability modeling is inherently subjective—even so-called ‘objective’ meth-
ods require the subjective specification of a likelihood model. One standard
Bayesian practice is to use a slightly informative conjugate distribution for
the unknown mean, by choosing it to be proper but diffuse (Gilks et al., 1996).
For example, the conjugate prior for an unknown mean of a normal distribu-
tion is also a normal distribution. A diffuse prior would be Normal

(
0, σ2

big

)

for some large σ2
big. Conjugate prior distributions are mathematically conve-

nient, but care is still required with their use, as with any statistical analysis,
Bayesian or otherwise.

Classical asymptotic theorems (laws of large numbers, LLN; central limit the-
orems, CLT; e.g. Billingsley 1986) have Bayesian interpretations when con-
sidered to be conditional on the mean and standard deviation of an infinite
exchangeable sequence. A Bayesian extension of the LLN allows for a sample
average to converge to an ‘unknown’ mean (random variable) rather than to
a ‘true’ mean.

Theorem 1 (Bayesian LLN) Let Xi be an exchangeable sequence of ran-
dom variables, and let X̄n and Ȳm be the averages of n and m of the Xi,
respectively. If Var[X1] < ∞, then the probability that

∣∣∣X̄n − Ȳm

∣∣∣ > ε

may be made arbitrarily small by taking n and m sufficiently large (de Finetti,
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1990, p. 216).

Although the mode of a posterior distribution may not be the true mean, an
asymptotic normality property holds for posterior distributions of parameters.

Theorem 2 (Posterior Normality) For each n, let pn(·) be the posterior
pdf of the d-dimensional parameter θn given xn = (x1, . . . , xn), let θ̃n be its
mode, and define the d× d Bayesian observed information matrix Σ−1

n by

Σ−1
n = −L

′′
n(θ̃n), where L

′′
n(ϑ) =

∂2log pn(θ | xn)

∂θ2

∣∣∣∣∣
θ=ϑ

. (5)

Then φn = Σ−1/2
n (θn − θ̃n) converges in distribution to a standard (multivari-

ate) normal random variable, if 3 technical conditions hold: (c1) ‘Steepness’:
limn→∞ σ̄2

n → 0, where σ̄2
n is the largest eigenvalue of Σn, (c2) ‘Smoothness’:

Let Bδ(θ̃n) = {ϑ :
∣∣∣ϑ− θ̃n

∣∣∣ < δ}. For any ε > 0, there exists N and δ > 0

such that, for any n > N and ϑ ∈ Bδ(θ̃n), the derivatives in Equation (5)

exist and satisfy I −A(ε) ≤ L
′′
n(ϑ)

{
L
′′
n(θ̃n)

}−1 ≤ I + A(ε), where I is a d× d

identity matrix and A(ε) is a d × d symmetric positive semidefinite matrix
whose largest eigenvalue tends to 0 as ε → 0, (c3) ‘Concentration’: For any δ,∫
Bδ(θ̃n) pn(θ)dθ → 1 as n →∞. (Bernardo and Smith, 1994, Prop 5.14).

Theorem 2 asserts that uncertainty about the value of the unknown param-
eter value can be approximated asymptotically with a normal distribution.
The Bayesian observed information Σ−1

n is a measure of precision of the pos-
terior distribution of θ, and behaves asymptotically like the frequentist ob-
served information (which ignores the prior distribution) under rather gen-
eral conditions, but the interpretation differs somewhat. The classical analog
of Theorem 2 asserts that the MLE is asymptotically normally distributed
about a ‘true’ parameter θ0 (Law and Kelton, 2000), rather than describing
uncertainty about θ. The mode θ̃n is often called a MAP (maximum a poste-
riori probability) estimator. Conditions (c1-c2) basically insure that the the
posterior mode is asymptotically shaped like a normal distribution, and (c3)
insures that probability outside a neighborhood of θ̃n is negligible. Bernardo
and Smith (1994) also discuss alternate conditions.

The above results apply to conceptually infinite exchangeable sequences that
can be used to infer statistical parameters, θp. Environmental parameters θe

do not have such sequences to help inference, but the subjective probability
methods of de Finetti (1990); Savage (1972); Kahneman et al. (1982) still
apply for assessing prior distributions. Exchangeability is relevant if a finite
exchangeable sequence exists to help inference for θe.

Here are facts that link finite and infinite exchangeable sequences that are
not used further in this paper, but are useful for further subjective probabil-
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ity work. One, exchangeability is weaker than even conditional independence
for finite sequences. For example, let Ω = {0, 1}N model N = 3 Bernoulli
outcomes, and let θN =

∑
i=1 Xi/N . The subjective probability assessment

p((1, 0, 0)) = p((0, 1, 0)) = p((0, 0, 1)) = 1/3 is an exchangeable Bernoulli
model, but not independent, because X1 + X2 + X3 = 1. Similarly, X1 and
X2 are not conditionally independent, given θN = 1/3 (This model is an
atypical subjective assessment for coin flips, but matches well the ‘hide a
coin under a shell’ game.) Two, suppose that each of the finite set of alter-
natives θN ∈ {0/N, 1/N, . . . , (N − 1)/N, 1} is judged equally likely for each
N , then limN→∞ p(θN) converges in distribution to Laplace’s (1812) contin-
uous uniform[0, 1] prior distribution for θ = limN→∞ θN . Three, de Finetti
(1990) derives Equation (2) as a consequence of having a conceptually in-
finite exchangeable sequence of Bernoulli outcomes, as opposed to directly
assuming conditional independence. Four, judgments stronger than exchange-
ability, such as invariance to sums or to an `p-norm, may be required to jus-
tify de Finetti-type representations for other random variables (Barlow and
Mendel, 1992; Chick and Mendel, 1998).

1.2 Loss and Value of Information

The fact that input uncertainty is described by probability distributions al-
lows the modeler to (1) assess the expected value of information (EVI)
of additional data collection, and (2) to perform an uncertainty analysis. The
EVI is useful in experimental design. It measures the value of resolving uncer-
tainty with respect to a loss function L(d, ω) that describes the loss when
a decision d is chosen and the state of nature is ω. Experiments can bring
information about ω, so the expected improvement in the loss given by the
experiment is a Bayesian experimental design criterion.

The value of information idea directly leads to the selection procedures in
Section 5. A simplified version of that problem adapted from de Groot (1970,
Sec. 11.8-9) illustrates the key concepts. Suppose we must decide whether or
not the unknown mean W of a normal distribution is smaller (decision d = 1)
or larger (d = 2) than w0. Assume the variance σ2 is known. Conditionally
independent samples Xn = (X1, X2, . . . , Xn), with p(Xi) ∼ Normal (w, σ2)
given W = w, can be used to infer the value of the mean. The decision maker
designs a sampling experiment (chooses n) to balance the cost of sampling,
cn, and the expected penalty if the wrong answer is chosen. Here the penalty
for incorrect selection is the opportunity cost L (d, w), the difference between
the actual value of w and w0 when the wrong answer is selected, and 0 if the
right answer is selected. Hence,
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L (1, w) =





0 if w ≤ w0

w − w0 if w > w0,
and L (2, w) =





w0 − w if w ≤ w0

0 if w > w0.

Since the mean is not known exactly, there is a potential penalty for incorrectly
specifying whether W is smaller or larger than w0. We model uncertainty about
W with a Normal (µ, 1/τ) prior distribution, which is conjugate for normal
sampling with an unknown mean and known variance (de Groot, 1970). Here
τ is the precision in our uncertainty about W . Observing Xn = xn would
reduce the uncertainty and result in the posterior distribution

p(w | xn)∼ Normal
(
z, τ−1

n

)
,

where

z = posterior mean of W = E[W | xn] =
τµ + nx̄n/σ

2

τ + n/σ2

τn = posterior precision of W = τ + n/σ2.

The variance τ−1
n equals the posterior variance approximation Σn in Equa-

tion (5) because Σn is based on a normal distribution approximation.

The posterior mean z influences the decision, but it depends upon n, which
must be selected before Xn is observed. We therefore need the predictive
distribution p(z) of the posterior mean Z = E[W | Xn] = (τµ+nX̄n/σ2)/τn

to see how n samples influences the decision d. The conditional distribution
of X̄n given w is Normal (w, σ2/n). Mixing over the prior distribution of W
implies that the predictive distribution for Z is Normal (µ, τ−1

z ), where

τz = τ(τ + n/σ2)/(n/σ2). (6)

The variance τ−1
z of Z is 0 as n → 0 (no new information). If n →∞ (perfect

information about w), then Var[Z] → τ−1, the prior variance of W .

The experimental design that minimizes risk (the cost of sampling plus ex-
pected losses due to a potentially incorrect decision) is the n that minimizes a
nested expectation, the inner expectation corresponding to the expected loss
after Xn = xn is observed, the outer expectation averaging over Xn.

ρ(n) = cn + E[E[L(d(Xn),W ) | Xn]] (7)

A general technique for determining E[L(d(Xn),W ) | Xn] is to obtain an
auxiliary loss function L∗ that has the same optimal decision, but simplifies
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the loss function by making the loss of one of the decisions equal to 0. Adding
a function of w does not change the optimal decision (de Groot, 1970). Set
L∗(d, w) = L(d, w)−L(1, w), which is 0 if d = 1 and is w0−w if d = 2. Then

E[L∗(d(Xn),W ) | Xn] =





0 if d(Xn) = 1

w0 − Z if d(Xn) = 2.
(8)

The decision that minimizes the loss in Equation (8) is to assert d(Xn) = 2
(‘bigger’) if the posterior mean exceeds the threshold, Z > w0, and to assert
d(Xn) = 1 (‘smaller’) if Z ≤ w0.

The expectation over the outcomes of this experiment can be determined
with well-known tables because the decision depends upon Xn only through
Z, and Z has a normal distribution. Define φ(·) and Φ(·) to be the pdf and cdf
of a standard normal random variable, respectively. The expected loss can be
determined from the standard normal loss function Ψ[s] =

∫∞
s (t− s)φ(t)dt =

φ(s)−s(1−Φ(s)) for expected lost sales in the newsvendor problem if demand
is normally distributed (e.g. Nahmias, 2000, standardized loss p. 262).

E[E[L∗(d(Xn),W ) | Xn]] =−
∫ ∞

w0

(z − w0)p(z | Xn)dz

=−τ
−1
2

z Ψ[τ
1
2
z (w0 − µ)]

The expected loss of the original loss function is recovered by adding back
E[L(1,W )], using the prior distribution of W for the expectation.

E[E[L(d(Xn),W ) | Xn]] = τ
−1
2 Ψ[τ

1
2 (w0 − µ)]− τ

−1
2

z Ψ[τ
1
2
z (w0 − µ)] (9)

The EVI for m samples is the difference between Equation (9) when n → 0 and

when n = m (τz depends on n). If w0 > µ, the EVI simplifies to τ
−1
2

z Ψ[τ
1
2
z (w0−

µ)]. Combine Equation (9) with Equations (6-7), note that dΨ/ds = Φ(s)− 1
and dτz/dn = −τ 2σ2/n2, and take the derivative with respect to n (relaxing
the integer assumption) to obtain an optimality condition for the sample size.

∂ρ

∂n
=

1

2
τ
− 3

2
z φ[τ

1
2
z (w0 − µ)] · −τ 2σ2

n2
+ c = 0

For diminishing costs c → 0, the sample size is large. Since τz → τ as n →∞,
the optimal sample size n is approximately

n∗ =


τ

1
2 σ2φ[τ

1
2 (w0 − µ)]

2c




1
2

. (10)
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This argument illustrates the basic ideas of loss functions, and the use of
predictive distributions for future samples to infer the EVI of sampling. The
technique of adding functions of the unknowns can be useful to simplify the
derivation of the optimal solution. Asymptotic approximations are a further
tool to identify criteria-based sampling plans. Extensions of this basic argu-
ment justify the value of information based selection procedures of Section 5.1
and Chick and Inoue (2001a,b, 2002).

An alternate mechanism to approximate the effect of information on param-
eter uncertainty is based on a thought experiment for the posterior prob-
abilities of parameters. For members of the regular exponential family, the
asymptotic variance approximation Σn in Equation (5) simplifies to the form
H−1(θ)/(n0 + n), where H is the expected information from one observa-
tion (Equation (4)), when a canonical conjugate prior distribution is used
(Bernardo and Smith, 1994). To approximate the effect of collecting m ad-
ditional samples on the parameter uncertainty, one could presume that the
posterior distribution changes from Normal

(
θ̃n, Σn

)
to

Normal
(
θ̃n, Σn(n0 + n)/(n0 + n + m)

)
. (11)

This transformation reflects an appropriate scaling of the posterior precision,
and the idea is used in a frequentist context for estimating how many repli-
cations are required to achieve a confidence interval of a given size (Law and
Kelton, 2000). Chen (1996) uses this type of approximation for the Bayesian
posterior distribution of the unknown means of several simulated systems in
order to motivate a class of ranking and selection procedures called the OCBA.
Ng and Chick (2001, 2004) use the idea to plan experiments to reduce input
uncertainty in a way that reduces output uncertainty.

1.3 Uncertainty Analysis

The fact that uncertainty about inputs is described with probability distri-
butions allows a modeler to engage in uncertainty analysis, in addition to
sensitivity analysis. A sensitivity analysis tests how the mean simulation out-
put depends upon one or more input parameters as that parameter is varied
(estimating E[g(θ) | E ] as a function of θ, given all information E). Uncertainty
analysis entails propagating input parameter uncertainty about Θ through to
uncertainty about outputs Y . Even if a simulation has no random number
stream, a distribution on unknown inputs means that the output is random.

An unbiased estimator of the mean output E[Y | E ] with both stochastic (from
u) and systemic (or parameter) uncertainty accounted for is obtained from
the Bayesian model average (BMA) in Figure 2, which averages over random
inputs sampling according to the distribution p(θ | E) (Draper, 1995; Chick,
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2001). Zouaoui and Wilson (2003) explore the relative magnitude of stochastic
and systemic uncertainty with variations on the BMA, and discuss how to
update the estimate should new data become available (so the algorithm need
not be rerun from scratch). Importance sampling (cf. Chapter 11) techniques
can reweight estimates accordingly (with likelihood ratio determined as the
ratio of the ‘new’ posterior divided by the ‘old’ distribution). Andradóttir and
Glynn (2004) examine the estimation of E[Y | E ] when there may be bias in the
estimates of Y given θ, when quasi-random sequences are used in place of the
pseudo-random sequences assumed by Figure 2, or when numerical techniques
like Simpson’s rule are employed to select values of θ. Another goal is to
estimate the distribution of the conditional expectation E[Y | Θ, E ]. When Y
is a deterministic function of Θ, then naive Monte Carlo simulation can be
used with traditional kernel estimation techniques to assess the distribution
of Y (Θ). When the simulation is stochastic (depends on u), then E[Y | θ, E ]
is imperfectly estimated for any given θ. Given several technical conditions
(e.g. univariate continuous-valued θ, monotonic mean response), Steckley and
Henderson (2003) derive asymptotically optimal ways of selecting by cleverly
selecting r and n in Figure 2 to produce a kernel density estimator based on
the output. Their work builds upon Lee and Glynn (1999), which estimated
the distribution function of E[Y | Θ, E ] for discrete θ.

2 Computational issues

Three basic computational issues for implementing a Bayesian analysis are
maximization (e.g. find the MLE θ̂, or MAP θ̃ estimators for a posterior distri-
bution); integration, either to find a marginal distribution (e.g. find p(θ1 | xn)
from p(θ1, θ2 | xn)) or constant of proportionality for a posterior distribution
(e.g. find c−1 =

∫
f(xn | θ)dπ(θ)); and simulation (e.g. sample from p(θ | xn)

in order to estimate E[g(θ) | xn]). Techniques to address these issues are de-
scribed in a variety of sources (e.g. Naylor and Smith, 1982; Evans and Swartz,
1995; Tanner, 1996; Gilks et al., 1996; The Mathworks, 2002).

for r = 1, . . . , r replications
sample parameter θr from p(θ | E)
for i = 1, 2, . . . , n

generate simulation output yri given input θr

end loop
end loop
Estimate E[Y | E ] with ȳ =

∑R
r=1

1
R

∑n
i=1 yri/n.

Fig. 2. Bayesian Model Average (BMA)
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For maximization, a number of methods are available including gradient-
based methods (e.g. Newton-Raphson), gradient-free methods (e.g. Nelder-
Mead), and simulation-based methods. The expectation-maximization (EM)
algorithm is a technique for finding the MAP or MLE when there is miss-
ing data or nuisance parameters are to be integrated out (e.g. the MAP of
p(θ1 | xn) when it is ‘messy’ but p(θ1, θ2 | xn) is easier to manipulate).

For integration, five general techniques apply (Evans and Swartz, 1995) when
analytical results (e.g. conjugate priors) are not available: quadrature, asymp-
totic methods, Markov chain methods, importance sampling, adaptive impor-
tance sampling. Quadrature is useful when the number of dimensions is not
too large. The Laplace method is an interesting asymptotic approximation for
integrals

∫
g(θ)f(θ | xn)dπ(θ). The Laplace method applies even if f(θ | xn) is

only a likelihood when the constant of proportionality for the posterior is un-
known, and can work well for integrating out nuisance parameters if regularity
conditions hold. The method is based on asymptotic normality approximations
like those used for Equation (5), and therefore require a large n. Another ef-
fective technique for approximating the density p(θ1 | xn) (not just the MLE
or MAP) when it is ‘messy’ but p(θ1 | θ2,xn) and p(θ2 | θ1,xn) are easy to ma-
nipulate is data augmentation, often called the IP algorithm (for imputation,
posterior algorithm). The IP algorithm is a nice alternative to other kernel
estimation methods, and is closely related to the Markov Chain Monto Carlo
(MCMC) methods mentioned below. Importance sampling (IS) remains one
of the more powerful methods for efficient integration. See Chapter 11.

For simulation of variates, classical methods for generating independent vari-
ates from posterior distributions may apply (see Chapter 4). Posterior dis-
tributions are often known only up to a constant of proportionality (the nu-
merator of Bayes’ rule is easy to write, but the denominator may be hard to
compute). It is therefore important to have a method to simulate variates for
arbitrary functions proportional to posterior distributions. MCMC is the most
important of those methods at present. MCMC constructs a Markov chain
whose stationary distribution is the desired posterior distribution (Chapter 4,
this volume; Gilks et al. (1996)). The ARMS (adaptive rejection Metropolis
sampler) combines adaptive rejection sampling, which is useful for logcon-
cave posterior distributions, together with an MCMC-type Metropolis step
to handle non-logconcave distributions (Gilks et al., 1995). States of a chain
constructed with MCMC techniques can be sampled for input into the BMA
of Figure 2. Samples and estimators based on MCMC need evaluation to as-
sure reasonable convergence for estimators and faithfulness to the posterior
distribution.

Figure 3 illustrates a qualitative feel for some of the approximation techniques
for a gene linkage model (Tanner, 1996) that has a parameter θ ∈ [0, 1]. A
spreadsheet implementation of the EM algorithm identified the MAP θ̃. The
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prob(theta|Y): Hit F9 for more simulated imputations
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Fig. 3. Different approximations for the posterior pdf

asymptotic normal approximation of Theorem 2 provides a reasonable esti-
mate of the mode and variance of the true posterior distribution, but does not
model skewness well, particularly if θ̃ is near the boundary or if few data points
are available. Data augmentation results in a smoother kernel estimator than
the empirical histogram estimator usually studied with MCMC methods. The
MCMC estimator could be smoothed like the data augmentation to provide
a much more accurate representation (Gilks et al., 1996) with an additional
computational cost for smoothing.

For simple examples a spreadsheet is fine, but more powerful tools are needed
in general to implement Bayesian inference. The BUGS and WinBUGS packages
implement Gibbs sampling and some Metropolis sampling, and are available
on the WWW (Spiegelhalter et al., 1996). BOA, for Bayesian output analysis
(Smith, 2004), is a set of MCMC diagnostic tools for convergence and data
analysis that functions with the R or S-PLUS statistical packages. Gauss and
Matlab are also commonly used to program MCMC methods.

At present, it is possible to input randomized input parameters to some com-
mercial discrete-event simulation packages to implement the BMA algorithm
of Figure 2, but interfaces are not yet fully user friendly. A user-friendly tool
to implement the BMA and other uncertainty analysis needs in commercial
discrete-event simulation packages would be helpful. Uncertainty analysis for
other Monte Carlo applications has been available as a spreadsheet tool for
some time (e.g. Winston, 2000).
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3 Input distribution and model selection

Selecting an input distribution to model a sequence of random quantities
X1, X2, . . . is often more complicated than inferring a parameter of a sin-
gle parametric distribution, as described in Section 1. There is often a finite
number q of candidate distributions proposed to model a given source of ran-
domness, with continuous parameters θm = (ϑm1, . . . , ϑmdm), where dm is the
dimension of θm, for m = 1, . . . , q. For example, service times might be mod-
eled by exponential, lognormal or gamma distributions (q = 3). Denote by
p(x | m, θm) the probability density function (pdf) for X, given m and θm.

The classical approach in simulation (Law and Kelton, 2000) for input selec-
tion is to (a) find the MLE of each parameter, (b) perform a goodness-of-fit
test, and (c) pick the ‘best’ fitting candidate distribution and input the MLE
into the simulation. The Bayesian approach addresses some controversial as-
pects of the classical approach. Critiques of classical techniques in general
include: goodness-of-fit and P -value criteria are difficult to interpret and in-
conclusive at best, and misleading at worst (Berger and Pericchi, 1996); use
of a single distribution and parameter underestimates the uncertainty in the
distribution’s functional form and parameter (Draper, 1995); with few data
points, few candidate distributions are rejected, and with many data points,
all distributions are rejected (Raftery, 1995); there is no coherent method for
selecting among nonrejected distributions; and classical techniques can reject
the a posteriori most probable distribution (Lindley, 1957; Berger and Delam-
pady, 1987). In the simulation context, input uncertainty can make standard
confidence intervals for the mean output almost meaningless if the classical
approach is employed (Chick, 2001; Barton and Schruben, 2001).

A Bayesian approach is no different than the approach in Section 1, except that
a prior probability distribution needs to be placed on the model/parameter
combination, π(M = m, θm), a mixed discrete-continuous model. If data xn

becomes available, the BMA then requires sampling from the joint posterior
p(m, θm | xn). This can be accomplished by composition, sampling the input
model then the parameter with p(m | xn)p(θm | m, xn). While improper,
noninformative prior distributions can formally be used when there is a single
candidate model and enough data makes the posterior proper, this cannot be
done when there are multiple candidate distributions. The reason is that

p(M = m | xn) =

∫
p(xn | θm,m)π(θm | m)π(M = m)dθm∑q
i=1

∫
p(xn | θi, i)π(θi | i)π(M = i)dθi

can be changed at will by changing an improper prior π(θm | M) to an equally
valid improper prior cπ(θm | M) for an arbitrary constant c. Proper (and
therefore informative) prior distributions π(θm | M = m) are needed for each
m in order to make Bayes’ rule well-defined. Chick (2001) implements the
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BMA with this model selection for discrete-event simulations, and suggests a
method for assessing π(θm | M = m) based on moment methods. O’Hagan
(1995); Berger and Pericchi (1996) proposed automated prior distribution se-
lection techniques for the model selection problem that use variations on the
theme of using part of the data with a noninformative prior.

Chick (2001) illustrated Bayesian input modeling in a stochastic simulation
context when q > 1, and suggested a method-of-moments approach for assess-
ing prior distributions for the unknown parameters of each candidate distribu-
tion. Zouaoui and Wilson (2004) noted a decoupling of stochastic uncertainty
from two types of structural uncertainty (about candidate models and their
parameters) under special conditions, and provided a variance reduction for
the BMA and numerical analysis. Richardson and Green (1997) and Cheng
and Currie (2003) present techniques for the nonregular case when a candidate
itself is a mixture distribution (e.g., a mixture of 2 or 3 normal distributions).

Selecting models according to p(M |E) is consistent in that if one of the en-
tertained models is actually the true model, then the true model is selected if
enough data is observed and some regularity conditions hold. When the true
model is not among those being considered, Bayesian model selection chooses
the model that is closest to the true model in terms of Kullback-Leibler diver-
gence (Berk, 1966; Bernardo and Smith, 1994; Dmochowski, 1999).

4 Joint input-output models

Simulation is interested in both stochastic uncertainty, or randomness that
occurs when all model parameters are known, and structural uncertainty, or
uncertainty about model inputs when a real system is being simulated. This
section describes an input-output model that quantifies the uncertainty in sim-
ulation outputs due to input uncertainty, data collection plans for reducing
input uncertainty in a way that effectively reduces output uncertainty, mecha-
nisms to select computer inputs to improve estimates of the system response,
and mechanisms to help infer probability distributions for input parameters,
given information about output parameters (the inverse problem).

Recall Figure 1. It is impossible to simulate all possible values of continuous
input parameters in finite time on a finite number of computers. Metamod-
els describe the value of g at untested input values (see Chapter 18). This is
useful when the simulation model requires extensive computation. Metamodel
parameters ψ = (φ1, φ2, . . . , φnm) may include regression coefficients, or pa-
rameters of a Gaussian random function (GRF) model of the mean response
(Cressie, 1993; Santner et al., 2003; van Beers and Kleijnen, 2003). Since the
metamodel parameters are unknown, they are described as a random variable

17



Ψ. The metamodel is

Y = g(Θp,Θe,θc; U ,Ψ) (12)

This formulation allows for Y to be predicted for unsimulated values of θ =
(θp,θe,θc) via the response model and Ψ. Field data from a modeled system
can be used (1) to infer the input parameters θc, along the lines of Sections 1
and 3, or (2) to understand the distribution of the outputs Y . Output from
multiple simulation runs are used to infer Ψ. This formulation generalizes
several previous models that focused on g(θp, u) (Cheng and Holland, 1997),
or nonstochastic models that do not model randomness from u (Santner et al.,
2003). The model of Chick (1997) differed in that simulation output was not
considered to be exchangeable with a real system’s output (a calibration issue).

4.1 Bayesian Metamodeling

Here we discuss inference for the normal linear model and Gaussian random
function (GRF) metamodels. The normal linear model is

Y =
p∑

`=1

g`(θ)β` + Z(θ; U ) = gT (θ)β + Z(θ; U ),

for known regression functions g1, . . . , gp, unknown regression coefficients β,
and independent zero-mean random noise Z(·) with sampling variance σ2. If
σ2 does not depend upon θ, then the conjugate prior is an inverse gamma
distribution for σ2 and a conditionally normal distribution for β given σ2,
if all factors are active (Bernardo and Smith, 1994). George and McCulloch
(1996) and Cheng (1999) discuss techniques for estimating which factors are
active with what probability. Ng and Chick (2002) describe an entropy-based
experimental design criterion to identify which factors are active and reduce
parameter uncertainty simultaneously.

If the gi represent the individual dimensions of the unknown parameters
(θp,θe), the β` are gradients with respect to the inputs. If further the model
has only statistical input parameters θp for which data can be collected (but
not parameters θe for which no data is available), Ng and Chick (2001) and
Zouaoui and Wilson (2003) indicated that output uncertainty can be decou-
pled asymptotically or under special conditions.

Vtot = Var[Ȳ | E ]≈ stochastic + structural uncertainty

≈ σ̂2
0

m
+

βT Ĥ−1

θp
β

n
,

where σ̂2
0 is the estimate of the variance from m replications, the MLE θ̂p
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and estimate Ĥ−1

θp
of the information in one observation are based on n data

points, and technical conditions hold (e.g. those for Theorem 2). This adapted
a frequentist result of Cheng and Holland (1997). Ng and Chick (2001) ap-
plied the result to uncertainty due to multiple input parameters, to provide
sampling plans to collect further data (e.g. for arrival rates or for service time
distributions) to reduce input parameter uncertainty in a way that optimally
reduces output uncertainty in some sense. Ng and Chick (2004) extended that
analysis by accounting for uncertainty in β as well, providing analytical results
for members of the exponential family of distributions, and giving a numerical
analysis.

Figure 4 summarizes qualitatively how ignoring input parameter uncertainty
can significantly degrade confidence interval (CI) coverage. The experiment
involved simulating the parameter estimation process for several simulation
input parameters, inputting those parameters into a simulation, then gener-
ating a nominal 95% CI (see (Ng and Chick, 2004) for details). The values
at B = 0 in all graphs represent the CI coverage and mean half width if no
additional data is collected after that first round of simulation. The top row
of graphs gives the empirical coverage and half width if the CI is based on the
estimated variance Vtot involving both stochastic and structural uncertainty.
The bottom row is based on computing the CI by inputting only the MLE
of the input parameters into the simulation, and using only stochastic uncer-
tainty Vstoch = σ̂2

0/m to estimate the variance of the estimator. The values
at B > 0 describe how the coverage would change if additional data for the
several different input parameters were collected in an optimal way. Optimal
here is defined by collecting data for the different parameters in a way that
minimizes Vtot if the effect of additional samples is presumed to reduce Vtot as
in Equation (11). There is a slight degradation in coverage, perhaps due to the
fact that the simulation model was nonlinear and the approximation for Vtot

is based on a local linear approximation. The bigger story from this example
is that ignoring input parameter uncertainty can lead to almost meaningless
CI statements if the mean of the simulated response is a nonlinear function of
the input parameters. The effect is worse with fewer data points to estimate
parameters. To date, much simulation research seeks analytical results for
stochastic models, or mechanisms to reduce the variance of estimators due to
stochastic noise. Those results need to be complemented with an understand-
ing of how performance depends on input uncertainty, and methods to reduce
input uncertainty to effectively reduce output uncertainty. Bayesian tools can
help.

GRFs are well-known response models in deterministic simulations, partic-
ularly in geostatistics (Cressie, 1993; Santner et al., 2003), but are less well
known in stochastic simulation. GRFs provide flexibility that the linear model
does not, and are useful when g takes a long time to compute. The GRF for
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Fig. 4. Empirical coverage for a nominal 95% CI is poor if parameter uncertainty is
ignored

an unknown nonstochastic g (no random number stream u) is

Y (θ) =
p∑

`=1

g`(θ)β` + Z(θ) = gT (θ)β + Z(θ) (13)

for known regression functions g1, . . . , gp of Rd, and unknown regression coeffi-
cients β. The zero-mean random second-order process Z(θ) is such that for any
distinct inputs θ1, . . . , θm, the vector (Y1, . . . , Ym) has a multivariate normal
distribution, conditional on β. GRFs are determined by their mean gT (θ)β
and (auto)covariance function C∗(θ1, θ2) = Cov(Y (θ1), Y (θ2)), defined inde-
pendent of β. It is common to assume strong stationarity ((Y1, . . . , Ym) and
(Y1 + h, . . . , Ym + h) have the same distribution), so C∗(θ1,θ2) = C(θ1−θ2).

Inference for g(θ) at values of θr+1 not yet input to a simulation model is more
flexible than linear regression via the correlation function R(h) = C(h)/C(0)
for h ∈ Rd. See Santner et al. (2003) for examples. Kriging, a geostatistics
term, is a best linear unbiased prediction (BLUP) for g(θr+1). An assessment
of the uncertainty in g(θr+1) can be used as an experimental design tech-
nique to choose inputs to reduce response uncertainty (Santner et al., 2003).
Example usage of GRFs includes input selection for efficient response sur-
face estimation; percentile estimation; and model calibration (Sacks et al.,
1989; O’Hagan et al., 1999; Kennedy and O’Hagan, 2001; Santner et al., 2003;
Oakley, 2004). Stochastic observations can be modeled by assuming a mea-
surement error, giving a so-called ‘nugget effect’ (Santner et al., 2003). Van
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Beers and Kleijnen (2003) found that a special case of Equation (13) was a
useful metamodel of a stochastic process simulation. GRFs provide an effec-
tive mechanism for reducing the computational effort to get a good response
estimate by selecting simulation inputs on areas where the mean response has
the greatest uncertainty. More work is needed for GRFs in the stochastic sim-
ulation context.

4.2 Inference of Input Parameters from Output Information

Uncertainty analysis examines the distribution of g(θc,Θp,Θe; U ) induced by
the distribution of (Θp,Θe) (whether g depends upon U or is determinis-
tic). The question of calibration is whether the realization or distribution of
(Θp,Θe) can be inferred from data or probability assessments about Y .

For example, the arrival rate λ and service rate µ of an M/M/c queue are
inputs to a simulation model. If they are unknown, their distribution can be
inferred from field data. The distribution of λ, µ induces a distribution on sys-
tem outputs, such as the average queue content Q̄, and the ‘clock speed’ as
measured by the autocorrelation of the queue occupancy process. The inverse
problem is whether inputs λ and µ can be inferred from observation on the out-
puts such as the queue occupancy at discrete times Q(τ1), . . . , Q(τn). McGrath
et al. (1987); McGrath and Singpurwalla (1987); Armero and Bayarri (1997)
comment on the potential to infer input parameters for queues from out-
puts, but mostly evaluate the expected value of information for inferring λ, µ
from interarrival and service time data, along with potentially one observation
Q(τ1). The problem is hard because the likelihood function involves transient
state transition probabilities, which are complicated for many stochastic pro-
cesses. Larson (1990) describes frequentist inference with incomplete arrival
time data, but using transactional data on arrivals and departures.

For epidemic models, O’Neill (2002) provides a review of tools and techniques.
Chick et al. (2003) illustrate the inference of epidemic model (input) parame-
ters from (output) data on disease incidence and germ contamination by esti-
mating the likelihood model for outputs, given inputs, using approximations
of the stationary distribution to help assess the likelihood function. Kennedy
and O’Hagan (2001) provide a GRF model to infer (θp, θe) given observations
of Y (θc) to help calibrate input parameters given output observations, assum-
ing a nonstochastic response function g and that output data can be observed
with random error. Also see Craig et al. (2001). Part of the problem of infer-
ring input parameters from outputs arises from allowing the computer output
to be an imperfect model of reality (e.g. with bias modeled as a Gaussian
random field). The joint input-output model of Chick (1997) did not allow for
the inference of input parameters from system outputs because it considered
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input models to be adequate for representing reality, but did not consider the
outputs of the model to be exchangeable with the corresponding observations
from the real system. The reason is that the lack of detail in computer models
may not reflect the reality of the actual system. The joint input-output model
augmented with an explicit bias metamodel helps quantify model validation
concerns. The bias term accounts for the potential that model output might
not be perfectly exchangeable with computer model output, conditional upon
the values of the input parameters matching the values of the corresponding
parameters in the real system.

Kraan and Bedford (2003) assess subjective prior distributions for inputs to
a nonstochastic g that best induces a desired distribution for the outputs,
in the sense of Kullback-Leibler divergence, even without data for Bayesian
inference.

5 Ranking and selection

This section compares and contrasts frequentist and Bayesian approaches to
ranking and selection. The objective of ranking and selection is to select the
best of a finite number k of systems, where best is defined in terms of the ex-
pected performance of a system (e.g. Chapter 17). In the notation of Section 4,
θc assumes one of a discrete set of values indexed by i ∈ {1, 2, . . . , k}, and the
goal is to identify the system i that maximizes wi = E[g(θci,Θp,Θe; U )]. The
means are inferred from observing simulation replications

Yir = wi(θc, θp,θe) + σi(θc,θp, θe)z(θc,θp,θe; U ri) (14)

for i = 1, 2, . . . , k; r = 1, 2, . . ., where the function g is rewritten in terms of
the mean wi, standard deviation σi, and a zero-mean unit-variance noise z.
The usual formulation of the problem does not explicitly specify a dependence
upon (Θp,Θe), so we leave those parameters implicit in this section, and the
response from different systems is not related with a metamodel ψ (although
continuous optimization problems may use ψ, see Chapter 18).

Both two-stage and sequential procedures are possible. In a two-stage proce-
dure, a first stage consisting of r0 replications for each system are run, initial
estimates of (w,σ) are obtained in order to determine how many more sam-
ples to collect for each system, and then a second stage collects the samples
and selects a system based on all output. Sequential procedures repeatedly
allocate samples in a series of consecutive stages.

Different approaches to ranking and selection use different criteria for allo-
cating samples and for measuring the quality of a selection. Frequentist ap-
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proaches, like indifference zone (IZ) methods, provide correct selection guar-
antees over repeated applications of a selection procedure (see Chapter 17).
Bayesian approaches, like the value of information procedures (VIP, Chick
and Inoue, 2001a), and optimal computing budget allocation (OCBA, Chen,
1996), use posterior distributions to quantify the evidence for correct selection.
These approaches are described and distinguished below.

Typical assumptions common to all three approaches are that the means and
variances of the output of each system may differ, and that the output is inde-
pendent and normally distributed, conditional on wi and σ2

i , for i = 1, . . . , k.

{Yij : j = 1, 2, . . .} i.i.d.∼ Normal
(
wi, σ

2
i

)

Although the normality assumption is not always applicable, it is often possi-
ble to batch a large number of outputs so that independence and normality is
approximately satisfied (we return to correlated output in Section 5.3). It will
be easier at times to refer to the precision λi = 1/σ2

i instead of the variance.
Set w = (w1, . . . , wk) and λ = (λ1, . . . , λk). Let w[1] ≤ w[2] ≤ . . . ≤ w[k] be the
ordered means. In practice, the ordering [·] is unknown, and the best system,
system [k], is to be identified with simulation. A problem instance (‘configu-
ration’) is denoted by χ = (w, σ2). Let ri be the number of simulation repli-
cations for system i run so far. Let ȳi =

∑ri
j=1 yij/ri be the sample mean and

σ̂2
i =

∑ri
j=1(yij−ȳi)

2/(ri−1) be the sample variance. Let ȳ(1) ≤ ȳ(2) ≤ . . . ≤ ȳ(k)

be the ordering of the sample means based on all replications seen so far.
Equality occurs with probability 0 in contexts of interest here. The quantities
ri, ȳi, σ̂

2
i and (i) may change as more replications are observed.

Because output is random, correct selection cannot be guaranteed with prob-
ability 1 with a finite number of replications. A correct selection occurs when
the selected system, system D, is the best system, [k]. Selection is based on
a procedure’s estimates ŵi of wi, for i = 1, . . . , k, after all replications are
observed. Usually overall sample means are the estimates, ŵi = ȳi, and the
system with the best sample mean is selected as best, D = (k), although some
procedures may vary due to screening (Goldsman et al., 2002) or weighted
samples (Dudewicz and Dalal, 1975).

The commonality between the three approaches stops there, and the differ-
ences now begin. The IZ (Chapter 17) approach seeks to guarantee a bound
for the evidence for correct selection, with respect to repeated applications of
the procedure to a given problem instance, for all problem instances within
a specified class. For normally distributed output, the most widely-used cri-
terion is a lower bound P ∗ for the probability of correct selection (Bechhofer
et al., 1995), subject to the indifference zone constraint that the best system
be at least a pre-specified amount δ∗ > 0 better than the others. Formally,
the probability of correct selection (PCSiz) is the probability that the system
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selected as best (system D) is the system with the highest mean (system [k]),
conditional on the problem instance. The probability is with respect to the
simulation output Yij from the procedure (the realizations yij determine D).

PCSiz(χ)
def
= Pr

(
wD = w[k] |w, σ2

)
(15)

The validity of an IZ procedure comes from proving statements like

PCSiz(χ) ≥ P ∗, for all χ = (w,σ2) such that w[k] ≥ w[k−1] + δ∗. (16)

See Bechhofer et al. (1995) for other examples of the IZ approach with other
distributions and indifference-zone structures. Early IZ procedures were sta-
tistically conservative in the sense of requiring many replications. More recent
work with screening or sequential IZ procedures reduces the number of repli-
cations (Nelson et al., 2001; Goldsman et al., 2002).

Bayesian procedures model the evidence for correct selection with the pos-
terior distribution of the unknown means and variances, given the data seen so
far from a single application of the procedure. The basic Bayesian formulation
is developed before the differences between the VIP and OCBA approaches
are described. Given all output E seen so far for a single application of a
procedure, the posterior probability of correct selection is

PCSBayes = Pr
(
WD = W[k] | E

)
(17)

= 1− E[L0−1(D,W) | E ], (18)

where the 0-1 loss function L0−1(D,w) equals 1 if wD = w[k] and 0 otherwise.
The expectation is taken over the decision, D, and the posterior distribu-
tion of the unknown means and variances. Assuming a noninformative prior
distribution for the unknown mean and variance, the posterior marginal dis-
tribution for the unknown means Wi given ri > 3 samples is St (ȳi, ri/σ̂

2
i , υi),

a shifted Student t distribution with mean ȳi, degrees of freedom υi = ri − 1,
and variance (σ̂2

i /ri)υi/(υi − 2) (de Groot, 1970; Chick and Inoue, 2001a).

A comparison of Equation (15) and Equation (17) emphasizes the difference
between the PCS based on frequentist methods and Bayesian methods. Fre-
quentist methods provide worst-case bounds for PCSiz(χ) subject to con-
straints on χ, and PCSiz(χ) is estimated by counting the fraction of cor-
rect selections from repeated applications of the procedure. Bayesian meth-
ods provide a measure of evidence for correct selection given the data seen
in a single application of a procedure. Equation (18) emphasizes the link to
the Bayesian decision-theoretic methods in Section 1.2. That link can be ex-
tended by generalizing the opportunity cost to the selection context here,
Loc(D,w) = w[k] − wD. The loss is 0 when the best system is selected, and
is the difference between the best and the selected system otherwise. This is
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an alternate measure of evidence for correct selection that makes more sense
than PCS when simulation output represents financial value. The posterior
expectation of the opportunity cost of a potentially incorrect selection is

EOCBayes = E [Loc(D,W) | E ] = E
[
W[k] −WD | E

]
. (19)

The frequentist EOCiz(χ) = E
[
w[k] − wD |w, σ2

]
differs by having the expec-

tation taken only over randomized D for a given χ. This formalism is sufficient
to describe the basic ideas behind the VIP and OCBA selection procedures.

5.1 Value of Information Procedures (VIPs)

Value of Information Procedures (VIPs) allocate additional samples in order to
improve the expected value of information (EVI) of those samples with respect
to a loss function. Chick and Inoue (2001a) provide four procedures. Both
two-stage and sequential procedures are given for both the 0-1 loss function
and opportunity cost. The EVI of additional samples are measured using the
predictive distribution of additional output, along with the expected loss from
Equation (18) or Equation (19), with ideas paralleling those in Section 1.2.

After the first stage of sampling of ri = r0 replications per system in a VIP,
the posterior distribution of the unknown mean and variance of each sys-
tem is used as a prior distribution for the second stage. If noninformative
prior distributions are used for the unknown mean and variance, the unknown
means have a t distribution as described after Equation (18). The goal is to
determine the second-stage allocation r′ = (r′1, r

′
2, . . . , r

′
k)

T that minimizes the
expected loss to a decision maker after all replications have been run. Let
xr′i = (xi,r0+1, . . . , xi,r0+r′i) denote the second-stage output for system i, let
xr′ = (xr′1 , . . . , xr′

k
) denote all second-stage output, and let D(xr′) be the sys-

tem with the highest overall sample mean after both stages. Given xr′ and a
loss function L, the expected loss is E[L (D(xr′),W) | xr′ ]. Since r′ is chosen
before the second stage, we take the expectation with respect to the predic-
tive distribuion of Xr′ . Let c = (c1, . . . , ck) be the cost per replication of each
system. The total cost of replications plus the expected loss for selecting the
system with the best overall sample mean is (cf. Equation (7))

ρ∗(r′) def
= cr′ + E [E[L (D(Xr′),W) | Xr′ ]] . (20)

If there is a computing budget constraint (e.g. for CPU time), samples are
allocated to solve the following optimization problem.
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min
r′

ρ∗(r′) (21)

s.t. cr′ = B

r′i ≥ 0 for i = 1, . . . , k

Gupta and Miescke (1994) solved a special case of Problem (21). If k = 2 and
c1 = c2, the optimal second-stage allocation minimizes the absolute difference
of the posterior precision for the mean of each system, regardless of whether
the 0-1 loss or opportunity cost is used. For the opportunity cost, k ≥ 2,
c1 = . . . = ck = 1, and known precision, Gupta and Miescke (1996) provide
an optimal allocation if B = 1.

Those special cases are not sufficient to address the complexity of problems
found in simulation, and approximations are required to obtain readily com-
putable allocations. Chick and Inoue (2001a) derived asymptotically optimal
allocations that minimize a bound on the expected loss in Equation (20), a
formulation that allows for unequal, unknown variances, different sampling
costs, and a balance between sampling costs and the EVI of the samples.
The bound is obtained by examining the k − 1 pairwise comparisons between
the system with the highest first-stage sample mean and each other system.
The asymptotic approximation is like that for Equation (10). If k = 2, the
bound is tight for the opportunity cost but is loose for the 0-1 loss due to
an extra asymptotic approximation. Sequential procedures require one more
approximation, as the number of replications of each system may be different
after a given stage. This means that the EVI requires assessing the difference
Wi −Wj of t distributed random variables with different degrees of freedom
(the Behrens-Fisher problem). The Welch (1938) approximation can be used
to approximate the EVI and expected loss in Equation (21) (Chick and Inoue,
2001a). The resulting EOC and PCS VIPs minimize the following measures
of incorrect selection.

EOCBonf =
∑

i 6=D

E [max{0,Wi −WD} | E ]

1− PCSBonf =
∑

i 6=D

Pr ({Wi ≥ WD} | E)

5.2 OCBA Procedures

The third approach is the optimal computing budget allocation (OCBA)
(Chen, 1996). The OCBA is based on several approximations, including the
thought experiment in Equation (11) that approximates how additional repli-
cations would affect uncertainty about each Wi. Samples are allocated sequen-
tially in a greedy manner to maximize an approximation to PCSBayes at each
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stage. The approximations made by the original OCBA essentially assume
that (a) the system with the best sample mean based on replications seen so
far is to be selected, (b) a normal distribution can approximate uncertainty
about each Wi, and (c) the effect of an additional small number of replica-
tions r′ beyond the ri done so far for system i, but none for the other systems,
changes the uncertainty about the means to

p(W̃i)∼ Normal
(
ȳi, σ̂

2
i /(ri + r′)

)

p(W̃j)∼ Normal
(
ȳj, σ̂

2
j /rj

)
for j 6= i.

This induces an estimated approximate probability of correct selection that
approximates the probability of correct selection with respect to p(W̃) and
Slepian’s inequality (Chapter 17).

EAPCSi =
∏

j:j 6=(k)

Pr
({

W̃ : W̃j < W̃(k)

}
| E

)
. (22)

A small number r′ of replications are allocated at each stage to the q systems
with the largest EAPCSi − PCSSlep, where the posterior evidence for correct
selection is approximated with Slepian’s inequality,

PCSSlep =
∏

j:j 6=(k)

Pr
({

W : Wj < W(k)

}
| E

)
,

and using the Welch approximation for the differences Wj −W(k). Chen et al.
(2004, references therein) explored several variations on this theme, including
varying r′ and q; and the use of either normal or t distributions for Wi.

5.3 Comments

Surprisingly few papers to date compare representatives from each of the IZ,
VIP and OCBA approaches. Chick and Inoue (2001a) found that VIPs com-
pared favorably with the Combined Procedure of Nelson et al. (2001), when
PCSiz was measured against the average number of replications per system.
Inoue et al. (1999) compared the VIP, OCBA, and modified versions of the
IZ procedure of Rinott (1978). Both two-stage and sequential VIPs performed
well empirically over a broad class of problems. The VIP based on opportunity
cost fared best with respect to several performance criteria. The VIP based
on the 0-1 loss performed slightly less well than the opportunity cost proce-
dure, even with respect to PCSiz, because of an extra approximation in its
derivation. The fully sequential OCBA was also empirically very effective. The
OCBA performed less well when run as a two-stage procedure, rather than
sequentially, or when the values of r′ and q were large (Inoue et al., 1999).
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Branke, Chick and Schmidt (2005) evaluate a variety of procedures, and intro-
duce new ‘stopping rules’ for the VIP and OCBA procedures. The sequential
stopping rule S samples τ replications per stage of sampling (after the first)
until a fixed sampling budget is exhausted. That rule was used by Inoue et al.
(1999). The new EOC stopping rule samples τ replications per stage (after the
first) until a Bonferroni-like bound for the EOC is reached (EOCBonf ≤ β∗

for some user-specified β∗). Other stopping rules, such as for PCSSlep are im-
plemented similarly. Figure 5 gives a typical result that compares VIPs and
OCBA procedures endowed with these stopping rules (τ = 1), and a version
of a leading sequential IZ procedure, KN++ (Goldsman et al., 2002), adapted
for independent output. As the number of replications or target posterior EOC
values are changed for VIP and OCBA procedures, a different average number
of replications and evidence for correct selection are observed. The curves are
dependent upon the specific problem instance, which in this case is a single
problem instance with evenly spaced means and a common variance, but some
observations can be made.
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Fig. 5. Estimated evidence for correct selection as a function of the average number
of replications per stage (top row), and relationship of parameter target versus
empirical result (bottom row), for several several selection procedures (k = 10
systems, w1 − wi = (i − 1)/2; σ2

i = 1 for i = 1, 2, . . . , k, with r0 = 5, estimates
based on 105 macroreplications).

In the top graphs of Figure 5, lower curves mean that more evidence per correct
selection is obtained per average number of replications. For KN++, δ∗ was
fixed to certain levels equal to, less than, and greater than the true difference in
means between the best and second best (0.5 in this case), and the PCS goal P ∗
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was varied to obtain similar curves. The S stopping rule allows a practitioner
to completely control the number of replications. Procedure KN++ improves
efficiency here by allowing a procedure to stop early if the evidence for correct
selection is high early, or to continue sampling if more information is needed.
The Bayesian VIP and OCBA procedures similarly can adapt the amount of
sampling as a function of the posterior evidence for correct selection so far
(here measured with EOCBonf), but improved upon KN++ here due to more
flexibility as to which systems get sampled. The bottom graphs in Figure 5
show the relationship between the targeted and empirically observed evidence
for correct selection. The diagonal represents perfect calibration. The OCBA
and VIP are slightly conservative (below the line), meaning that the observed
PCSiz and EOCiz for this problem instance is somewhat ‘better’ than the
corresponding Bayesian target levels. The graphs for KN++ are straight, but
may significantly underdeliver or overdeliver relative to the desired PCSiz
depending upon whether δ∗ is selected to be larger, similar to, or smaller
than the difference in means between the top two systems. A small δ∗ results
in excessive sampling for a given target P ∗. For KN++, the desired PCS
and empirical PCSiz tracked each other better for slippage configurations (all
nonbest systems have the same mean) when δ∗ was exactly the difference
between the best and second best. Branke, Chick and Schmidt (2005) provide
a more thorough analysis and empirical study.

Common random numbers (CRN) can be used to sharpen contrasts across sys-
tems in two stage procedures. To date, the IZ approach provides more choices
for procedures that accomodate CRN than the Bayesian approach. Kim and
Nelson (2001) describe recent progress for IZ procedures with CRN. Chick and
Inoue (2001b) present two-stage VIP procedures that handle CRN for both
the opportunity cost and 0-1 loss functions. The procedures allow for simu-
lating only a subset of systems during a second stage, but are not sequential.
Because of correlation across systems, information is gained about the systems
not simulated during the second stage using missing data techniques. Fu et al.
(2004) examine CRN for the OCBA with sequential sampling.

CRN is typically implemented by using the same random number genera-
tors ur to synchronize the stochastic uncertainty between simulated systems,
so that the outputs Yri and Yrj are positively correlated for replication r of
systems i and j. When there is also input uncertainty, so that (Θp,Θe) are
described with probability rather than assumed to be a fixed input value,
a second method for inducing CRN exists. Common values of (θpr,θer) are
used for the r-th simulation of each system. This can be useful for sharpening
contrasts for systems even when input uncertainty is modeled.

Cross-fertizilation between the approaches is also possible. Chick and Wu
(2005) applied the opportunity cost idea from the VIP approach to the IZ
framework to develop a two-stage procedure with a frequentist expected op-
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portunity cost bound. The net effect is to replace the two parameters P ∗, δ∗

of the IZ approach with a single parameter ∆, the maximum acceptable ex-
pected opportunity cost, so that the frequentist expected opportunity cost
E

[
w[k] − wD |χ = (w,σ2)

]
≤ ∆ for all problem instances χ (not just those

in an indifference zone).

6 Discussion and future directions

Bayesian methods apply to simulation experiments in a variety of ways, includ-
ing uncertainty analysis, ranking and selection, input distribution modeling,
response surface modeling, and experimental design. One main theme is to
represent all uncertainty with probability distributions, to update probability
using Bayes’ rule, and to use the expected value of information as a technique
to make sampling decisions (e.g. the opportunity cost and 0-1 loss functions for
selection procedures, or the Kullback-Leibler divergence for parameter estima-
tion for linear response models). The other main theme is to use simulation to
efficiently estimate quantities of interest for a Bayesian analysis. Asymptotic
approximations are often helpful when exact optimal solutions are difficult to
obtain. Research opportunities include:

• Input modeling and uncertainty analysis: kernel estimation for conditional
means, with variability due to input uncertainty; improved modeling of prior
distributions for statistical input parameters to obtain better models of
uncertainty for simulation outputs (e.g. the conjugate prior distributions
for parameters of an M/M/1 queue result in the absence of moments for
quantities like the stationary average queue length, even conditioning on
stability), including results for the calibration/inverse problem.

• Response modeling: extending the Gaussian random function work in the
world of stochastic simulation; sampling plans for input parameter inference
to optimally reduce output uncertainty, including nonasymptotic results, to
help understand what data is most important to collect to infer the value
of inputs for simulations.

• Ranking and selection: VIP procedures based on nonasymptotic EVI allo-
cations for samples; analytical or empirical work to evaluate the IZ, VIP
and OCBA approaches.

• Experimental designs: Estimating quantiles or other non-expected value
goals; non-Gaussian output for ranking and selection and GRFs.

• Computational methods: improvements in MCMC and other sampling meth-
ods for posterior distributions.

Acknowledgments. Portions of this chapter were published by Chick (2004)
in the Proceedings of the Winter Simulation Conference.
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