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Abstract: Infectious microbes can be transmitted through the drinking water supply.  
Recent research indicates that infection transmission dynamics influence the 
public health benefit of water treatment interventions, although some risk 
assessments currently in use do not fully account for those dynamics.  This 
chapter models the public health benefit of two interventions: improvements to 
centralized water treatment facilities, and localized point-of-use treatments in 
the homes of particularly susceptible individuals.  A sensitivity analysis 
indicates that the best option is not as obvious as that suggested by an analysis 
that ignores infection dynamics suggests.  Deterministic and stochastic 
dynamic systems models prove to be useful tools for assessing the dynamics of 
risk exposure. 
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18.1  INTRODUCTION 

A cryptosporidiosis outbreak linked to Cryptosporidium oocysts in 
Milwaukee’s drinking water caused over 400,000 cases of diarrhea and 
1,000 hospitalizations in 1993. The outbreak played a role in the death of 
more than 50 individuals, primarily individuals with AIDS [1, 2].  The 
World Health Organization indicates that disease caused by these and other 
waterborne microbes is involved in the death of millions of people every 
year [3], and the illness of many more. One culprit is the lack of a safe water 
supply and basic sanitation [4].  Endemic infection is a significant concern, 
not just outbreaks.   
 
This chapter reviews recent progress in merging infection transmission 
models with microbial risk assessments.  The goal of that work is to better 
represent the dynamics of infection in such risk assessments.  This chapter 
also presents sensitivity analyses that provide policy regions that indicate 
when it is better to use centralized water treatment alternatives versus local 
water treatment measures, as a function of infection transmission parameters.  
We also discuss how different model structures, including ordinary 
differential equations (ODEs), stochastic Markov chains of individual 
infection and recovery events, and Ornstein-Uhlenbeck (OU) diffusion 
approximations may be useful for policy region assessment and inference for 
parameters whose values are poorly understood. 
 
Although the focus of this chapter is risk assessment for water treatment 
interventions and their public health consequences, the idea of modeling risk 
exposure as a dynamic function of a system’s state is rather general.  Other 
microbial applications include the protection of the food supply chain, and 
biological warfare preparedness.  Specific issues that have attracted public 
interest recently include so-called “mad cow disease” (bovine spongiform 
encephalopathy) and the threat of anthrax and smallpox attacks.  E. coli and 
Norwalk-like viruses can be found in both the water system and the food 
chain [5].  The importance of dynamics for risk exposure assessments  is not 
exclusive to infectious diseases.  For example, weather dynamics can 
influence risk exposure to radiation in the aftermath of nuclear accidents [6].  
The need for dynamic systems models of risk exposure, then, has a much 
wider application than the scope presented here, and the tools available to 
approximate those exposures continue to be developed. 
 
Drinking water can be protected from microbes with a series of barriers 
starting with source water protection, centralized municipal water treatment, 
filters or other local point-of-use treatments, and wastewater treatment. 
Centralized drinking water treatments improve water quality for the entire 
community. Options include filtration, chlorination, and ozone pretreatment.  
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Ozone pretreatment may reduce Cryptosporidium oocysts in water by 40-  
60%, but may be quite costly.  A facility for a particular California reservoir 
is estimated to cost $154-190 million initially, and $3.8-5.2 million per year 
thereafter [7]. Local treatment can also be used for population subgroups that 
require particularly effective pathogen removal. Options include copper-
silver ionization and chlorine dioxide generation in hospitals and nursing 
homes [8], and reverse osmosis filters in the homes of immunocompromised 
individuals.  Such filters may costs hundreds of dollars per home, and 
require regular maintenance. These costs justify a formal assessment of the 
public health benefit of each treatment option. 
 
A standard approach to risk assessment for chemicals and microbes is to 
identify hazards, quantify occurrence and exposure, assess the dose-response 
relationship, and identify human health consequences. Exposure is generally 
taken to be from drinking water in this context.  The probability of infection 
is assessed with a dose-response curve, where dose is a function of microbes 
in consumed water.  The health effects of any resulting disease are then 
quantified. But microbes present additional risk exposures that chemicals do 
not usually exhibit.  Microbes can circulate through two secondary 
transmission routes: interpersonal human contact, and a water loop where 
infected individuals recontaminate water through recreational use or waste 
[9, 10].  
 
Some analyses (e.g., [7]) account for secondary transmission in the water 
loop by using the prevalence of infection in the population to assess the 
amount of microbes shed into recreational water, then estimating increased 
contamination in drinking water. That approach is consistent with risk 
calculations used by the Environmental Protection Agency (EPA) [11]. Such 
an approach does not fully model the fact that effective water treatment 
changes the prevalence of infection, which is an input to the assumed risk 
exposure model.  Although this indirect effect of treatment on risk exposure 
due to secondary transmission is not modeled by that approach, there is a 
recognized need to do so to inform water treatment policy [12]. 
 
Other analyses [13, 14] use dynamic systems models to represent the 
dynamics of risk exposure.  The models are based on deterministic ordinary 
differential equations  (ODEs).  Such models find that the public health 
benefit of water treatment interventions depends strongly on how infection is 
circulated.  For example, Milwaukee residents with AIDS suffered 
particularly extreme consequences from cryptosporidiosis during the 1993 
epidemic [15].  Some have proposed that highly effective filters that 
eliminate Cryptosporidium oocysts would effectively protect individuals 
with AIDS from similar risks in the future. This would be the case if there 
were no additional exposure from secondary transmission to that subgroup 
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from human contact. However, it is likely that some secondary transmission 
occurred [1, 13]. Depending on the average number of secondary 
transmissions, and the relative probability of infection given exposure for 
those with AIDS, improving a standard municipal facility by adding ozone 
pretreatment may be more effective than filters [14]. If secondary 
transmission is sufficiently high, ozone can reduce secondary exposure in the 
AIDS subgroup by reducing cryptosporidiosis prevalence in the general 
population – and that reduction can outweigh the benefits of completely 
effective filters on the water taps of individuals with AIDS. 
 
Section 18.2 extends previous work [14] by presenting a sensitivity analysis 
for those policy regions (ozone pretreatment versus local filters) with respect 
to several infection parameters, and by using a more refined model of the 
natural history of infection of cryptosporidiosis.  The policy region is quite 
sensitive to the efficacy of ozone for inactivating oocysts, but is not very 
sensitive to the size of the sensitive population subgroup, as long as it is not 
too large, nor to the rate of exogenous introduction of oocysts into the water 
supply.  Ozone becomes less effective, relative to filters in the susceptible 
subpopulation, as the water loop becomes relatively more important for 
secondary transmission than human contact. 
 
Deterministic infection models ignore variability that arises in real infection 
transmission systems.  Further, standard ODE parameter fitting tools make 
normal distribution assumptions that may not be satisfied in practice [16].  
Stochastic infection models explicitly account for this variability, and may 
provide a mechanism to further incorporate infection dynamics into the 
parameter inference process.  Parameter inference is important because the 
secondary transmission parameters for a number of microbes of interest to 
the EPA are poorly understood at present.  Several researchers have 
examined mechanisms to infer parameters of various infection models given 
outbreak or intervention trial data [13, 17-19], or using endemic data [16]. 
Those works attempt to incorporate the dynamics of infection into the 
likelihood model using a variety of approximations (e.g., binomial 
distributions for discrete-time models, normal approximations for larger 
populations using moment methods). 
 
Section 18.3 extends that work by suggesting that diffusion process 
approximations be used to model the stochastic infection dynamics. The idea 
is to apply stochastic process results [20-23] to approximate the underlying 
discrete-state Markov chain model of infection and microbe contamination 
with a continuous-state Ornstein-Uhlenbeck (OU) process.  We present 
diffusion approximation formulas for the stationary mean and covariance of 
the underlying infection model.  Section 18.4 describes potential areas for 
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further research for water treatment policy, risk analysis, and epidemic 
modeling research. 
 
18.2  ODE MODELS TO EVALUATE POLICY REGIONS 

Our goal is to develop a mathematical model that captures the dynamics of 
three modes of infection transmission: infection from microbes in the 
drinking water that come from exogenous sources, secondary infection from 
microbes in drinking water that result from contamination of source water 
from modeled individuals, and secondary transmission from human-to-
human contact.  The model must account for multiple subgroups with 
different infection susceptibility and outcome parameters, and further allow 
for the assessment of public health benefits of both local and municipal level 
interventions.  We first describe an ODE infection model.  Many parameters 
are not well understood for most microbes on the EPA’s Candidate 
Contaminant List.  We therefore present a sensitivity analysis that could be 
applied for those agents.  The analysis here is consistent with current 
knowledge about cryptosporidiosis.   
 
18.2.1  Deterministic infection transmission system model 

Figure 18.1. illustrates that humans are assumed to change health status from 
susceptible (S), infected (I), diseased (D), and recovered (R) as a result of 
microbial infection.  Microbes can be shed by infected and diseased 
individuals into the water supply, which in turn can reinfect susceptible 
individuals.  We further assume that there are n different subgroups that 
interact according to a proportional mixing pattern [24]. Individuals in 
different subgroups may have different mixing and infection parameters.  
Here we are particularly interested in the case of two subgroups: 
immunocompetent and immunosuppressed individuals.  A more detailed 
study might also model special characteristics of the young and the aged. 
 
The Ni individuals in subgroup i are counted as to whether they are infected 
Ii(t) (infectious, but asymptomatic), diseased Di(t) (infectious and 
symptomatic), recovered Ri(t) (temporarily immune to reinfection), or 
susceptible Si(t).  These values vary through time as the system evolves.  For 
simplicity, the argument t is dropped below except when we wish to 
emphasize dependence of these values on time. 
 
Microbe concentration in the water supply, W(t), shown in the upper portion 
of the figure, is influenced by the rate γ of exogenous introduction of 
microbes, the rate α that microbes leave the system from water flow or 
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inactivation, and the rate θi that infected individuals contaminate the water 
supply.  This leads to the microbe concentration dynamic in equation 1. 
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Each susceptible individual in subgroup i has the potential of becoming 
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Figure 18.1  An SIDRS/W infection model with water loop and 
proportional mixing 
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The first term models exposure from drinking water.  The second term sums 
the exposures from each subgroup to susceptibles in i: there are cj(Ij+Dj) 
potentially infectious contacts, of which a fraction ciNi / Σ ckNk are with 
members of group i. The probability that a member of subgroup i is 
susceptible is Si/Ni, and the probability of infection given the contact is βi.   

 
After becoming infected, only a fraction ρi become diseased; the rest recover 
and become immune for some duration of time, µRi.  The mean duration of 
infection is µIi, and the mean duration of disease is µDi.  Since the dynamics 
of microbial infection are on a much faster time scale than the lifetimes of 
humans, we assume a closed population.   
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In summary, the infection transmission model is specified by equation (1) 
and equation (3). We refer to this as an SIDRS/W model. The parameters in 
the above equations, as well as values that are consistent with 
Cryptosporidium, are presented in Table 18.1.  Parameters without base 
values are functions of other parameters, or are unknown or varied in the 
sensitivity analysis to follow. The term in brackets is the unit of measure for 
the parameter values in the table. 
 
18.2.2  Policy regions for water treatment decisions 

This section presents a sensitivity analysis for water treatment policy regions 
for centralized versus local treatment interventions.  We consider n=2 
population subgroups, (1) immunocompetent and (2) immunocompromised 
individuals, and their exposure to Cryptosporidium.  The centralized water 
treatment considered here is ozone pretreatment, which can remove 40-60% 
of Cryptosporidium oocysts from water.  This has the effect of reducing τi by 
an appropriate percentage for the entire population.  The local treatment 
considered here is a filter that essentially removes exposure from drinking 
water (as an extreme case) for the immunocompromised subgroup.  This sets 
τ2 = 0 for the immunocompromised subgroup, but leaves τ1 unchanged for 
the immunocompetent subgroup. 
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Table 18.1  Summary of notation for SIDRS/W model, ranges for 
Cryptosporidium, and values used in a base analysis of the 

deterministic ODE model 

 
  Symbol 

 
   Meaning 

 
Range 

Base 
value 

N Number of subgroups in human population 1, 2, … 2 
N Total # individuals in human population > 0 1.6x106 
Ni Total # individuals in subgroup i > 0  

γ Rate of exogenous introduction of 
microbes [microbes/liter/day] 

10-6-102 10-6 

α Rate microbes become inactivated [1/day]  .05 .05 

θi Rate an infectious individual sheds 
microbes [microbes /liter/day] 

0≥  0 

ri Probability an ingested microbe causes 
infection 

.0021-
.0076 

.00428 

φi Water consumption [liters/day] .017-2 1 

τ i Fraction of microbes surviving water 
treatment 

10-6-1 10-3 

ρi Probability that infection progresses to 
disease 

.38-.81 .61 

µIi Mean incubation period [days] 1-12 7 

µDi Mean duration of disease stage [days] 1-55 9 

µRi Mean duration of recovered/immune stage 
[days] 

60-120 90 

 Fraction of oocysts viable after ozone pre-
treatment 

.2-.8 .4 

ci Human contact rate for members of 
subgroup i [contacts/day] 

0≥   

βi Probability a susceptible member of 
subgroup i becomes infected from a 
potentially infectious human contact  

0.0-1.0  

λi,W Force of infection to subgroup i, given 
microbe concentration W. 

See equation (2) 

We define the ‘better’ treatment in this chapter as that which leads to the 
lowest endemic prevalence of cryptosporidiosis in the immunocompromised 
subgroup.  This objective is motivated by the extreme effects of 



MICROBIAL RISK ASSESSMENT FOR DRINKING WATER.  9
 
cryptosporidiosis in that subgroup during the 1993 Milwaukee outbreak.  A 
similar analysis can be run for other outcome measures of merit, including 
quality-adjusted and disability-adjusted life years, and cost effectiveness 
ratios, but we do not do so here. 
 
A risk assessment that ignores the dynamics of secondary transmission 
would conclude that the filter is more successful that ozone pretreatment for 
the immunocompromised subgroup.  If secondary transmission is significant, 
however, secondary transmission from the immunocompetent subgroup can 
result in significant infection in the immunocompromised subgroup.  In fact, 
if human-to-human secondary transmission is high enough, then removing 
all microbes from the water will still not prevent endemic transmission.  In 
that case, water treatment makes almost no impact on the prevalence of 
infection.   
 
Before presenting policy regions, we introduce notation to describe 
secondary transmission.  Let R0h,ij be the mean number of secondary 
transmissions from human contact by an infected individual of subgroup j to 
individuals in subgroup i, assuming that all individuals in subgroup i are 
susceptible (cj contacts per unit time, a fraction ci Ni / Σ ck Nk  of them with 
subgroup i, of which βi are infective, for a mean duration of  µIj +  ρj µDj). 

 ( )DjjIji
kk

ii
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Nc
cR µρµβ +=

∑,0 . (4) 

Let R0w,ij be the analogous number of secondary transmissions through the 
water loop from an infective in subgroup j to individuals in subgroup i, 
assuming that all individuals in subgroup i are susceptible (see Appendix ). 
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The Appendix proposes two different arguments to show that the basic 
reproduction number, R0, is key to determining the infection dynamics.  It 
can be related to the expected number of secondary infections needed to 
sustain endemic infection.  
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If R0  > 1, then infection remains endemic even if no exogenous introduction 
of microbes occurs (γ = 0).   
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Somewhat surprisingly, it is still possible for a municipal improvement like 
ozone pretreatment to outperform filters on the taps of immunocompromised 
individuals, even if endemic infection is not sustainable through secondary 
transmission.  The reason is that cryptosporidiosis prevalence in the 
immunocompetent subgroup can be significantly reduced with ozone 
pretreatment.  This in turn reduces secondary exposure of cryptosporidiosis 
to the immunocompromised subgroup.  Figure 18.2 illustrates that ozone 
pretreatment is more successful at reducing endemic cryptosporidiosis 
infection in the immunocompromised subgroup if the secondary 
transmission rate from human contact is high enough.  This graph assumes 
that all secondary transmission occurs from human contact (R0 = R0h,11+R0h,22, 
because θ1 = θ2 = 0), and that other parameters take on the base values for 
Cryptosporidium given in Table 18.1.  If immunocompromised individuals 
are much more susceptible to cryptosporidiosis than immunocompetent 
individuals (larger β2/ β1), then ozone pretreatment is attractive at even lower 
levels of secondary transmission.  The values for ciβi are chosen to give rise 
to the corresponding value of R0 on the y-axis. 
 

Figure 18.2  Ozone pre-treatment is better for larger values of 
secondary transmission or the relative susceptibility of 

immunocompromised individuals 
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These observations are qualitatively similar to results in our previous work 
[14].  The policy region boundary is somewhat lower here than in [14] for 
several reasons: the natural history of infection is more realistic here 
(including two infectious periods, the infected/asymptomatic and 
diseased/symptomatic states), a more effective ozone pretreatment process is 
assumed (60% of oocysts are removed rather than 50%), and a few other 



MICROBIAL RISK ASSESSMENT FOR DRINKING WATER.  11
 
parameters are changed.  The qualitative shape of the policy region, 
however, is the same.  We now extend the results by assessing the sensitivity 
of the policy region to several parameters that may affect transmission 
dynamics. 
 
Figure 18.3 shows that the policy region is relatively insensitive to the 
fraction N2 /(N1 + N2) of individuals in immunocompromised subgroup, at 
least when base case parameter values are used, and the fraction of 
immunocompromised individuals is relatively small (under 5% or so).  If 
that fraction increases, the policy region boundary would rise, as direct 
exposure would become relatively more important than secondary 
transmission from the smaller immunocompetent subgroup.  The policy 
region is similarly insensitive [25] to the rate γ of exogenous introduction of 
microbes, except if rates would lead to oocyst concentrations found during 
outbreaks with plant failures. 
 

Figure 18.3  The policy region is relatively stable over a range of 
values for the fraction of population that is immunocompromised 
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The 1993 Milwaukee outbreak data has been used to estimate [13] the 
secondary transmission rate as R0=0.15.  The secondary transmission rate 
during endemic situations is unknown, but individuals may be more 
conscientious about secondary transmission during an outbreak than when 
infection is transmitted silently in the background.  It seems reasonable to 
assume that immunocompromised individuals may be somewhat more 
susceptible to cryptosporidiosis infection due to human transmission (β2/ β1 
> 1), but there is inconclusive data one way or the other [26].  
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Figure 18.4 illustrates the sensitivity of the policy region to ozone 
pretreatment efficiency.  Ozone pretreatment outperforms filters in this 
analysis even at relatively low values of secondary transmission, assuming 
that 80% of oocysts can be inactivated during the pretreatment.  Although 
the values of secondary transmission parameters are not completely 
understood, this would put the treatment policy boundary near educated 
approximations for the parameter estimates.  On the other hand, a risk 
assessment that assumes that there is no secondary transmission from 
interpersonal contact would indicate that filters are much more effective at 
reducing the endemic prevalence of cryptosporidiosis in the 
immunocompromised subgroup. 
 

Figure 18.4  The policy region is highly dependent upon the 
effectiveness of ozone pre-treatment for removing oocysts 
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The graphs above assume that human contact is the sole exposure for 
secondary transmission, with no active water loop.  This may be appropriate 
where there is no potential for recreational activities to contaminate source 
water. In some regions, however, recreational use can pose a distinct risk for 
water loop transmission [7].  Figure 18.5 shows that as the water loop 
increases in importance for transmission (increasing R0w = R0w,11+ R0w,22), the 
policy region boundary rises.  Conceptually, this matches the notion that if 
all secondary transmission occurs through the water loop, with no human 
contact, then filters for the immunocompromised subgroup are more 
effective than ozone pretreatment in reducing cryptosporidiosis prevalence 
in that subgroup (filters are assumed here to be 100% effective, but ozone is 
only partially effective at removing oocysts).  This means that filters are 
always more effective, relative to this objective, when there is no human-to-
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human transmission.  Filters may still be an effective intervention if 
secondary transmission occurs primarily through the water loop. 
 

Figure 18.5  Filters are much more effective if the water loop 
increases in importance relative human-to-human secondary 

transmission 
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18.3  VARIATION IN INFECTION OUTCOMES 

Infection and recovery times are stochastic, not deterministic; this is one 
source of variation in prevalence and microbial contamination data.  How 
much variation in infection outcomes should one expect, even if all infection 
transmission parameters are known precisely?  Another important related 
question is how to estimate unknown infection parameters, given field data.  
While the policy regions like those in Section 18.2 are useful for qualitative 
insights into the effects of treatment given transmission parameter 
assumptions, the precise values of parameters are still poorly understood for 
several microbes transmitted through the water system.  A model of the 
random variation in infection prevalence and microbe concentration can be 
used as a likelihood function to help infer the unknown parameters.  Ideally, 
such a model would be easy to simulate quickly. 

18.3.1 Stochastic model background 

Several authors have incorporated stochastic system dynamics to infer the 
parameters of infection models. Deterministic ODE infection models may 
have stochastic analogs that are derivable as large population limits  [20-23, 
27].  A continuous time stochastic analog of the deterministic SIS/W model 
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with n closed subgroups, the model in Section 18.2 without the extra disease 
states, has a state (S1, …, Sn, Y) , where Y=WN∆ is the total oocyst count in 
the drinking water supply1.  The state space is a lattice, { n

i 1=∏ {0, 1, …, 
Ni}}x{0, 1, …}.  The state does not include Ii since Ii = Ni - Si by assumption 
here.  State transition rates are determined by the associated rate in the ODE.  
For example, the transition rate from (S1,…,Si,…, Sn,Y) to (S1,…,Si+1…, Sn, 
Y) is Ii / µIi, based on the recovery rate 1/µIi of each individual.  Infection 
transitions to (S1, …, Si-1 …, Sn, Y) occur with rate  

 i
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The analogy of these rates with Equations (2) and (3) should be clear.  Rate 
terms in the ODE dynamics correspond to infinitesimal state transition rates 
in the Markov chain model, and transition rates for microbe immigration and 
inactivation occur similarly.  Figure 18.6 shows a sample path for the 
number infected in a 3-subgroup model as it varies about the trajectory of the 
analogous ODE model.  An alternate approach is to use a closely related 
discrete-time Reed-Frost epidemic model [18], or to also incorporate social 
network information into the state with a stochastic graph [19]. 
 
Several researchers (e.g., see [19] and references therein) have developed 
likelihood models for Bayesian inference that incorporate infection 
dynamics into the likelihood function for parameters as a function of data 
that might be obtained from tracing an outbreak, or closely monitoring an 
intervention trial. Interesting properties of quasistationary distributions [28], 
the long run distribution assuming that infection remains endemic, of 
infection models have been studied as well. 
 
A recent proposal to infer infection parameters with endemic data provides a 
statistical tool that provide an alternative to waiting for, identifying, and 
measuring an outbreak [16].  The work uses stationary distributions of a 
combined stochastic-deterministic SIS/W infection model in a homogenous 
population to model endemic data.  Infection and recovery events were 
assumed to be stochastic, but water contamination was assumed to be 
deterministic, given the number infected.  Because a closed form for the 
stationary distribution is not known and there are situations when normal 
approximations used by standard ODE least square estimators are not fully 
justified, the authors develop two likelihood approximations. 

                                                
1 The total number of microbes, not microbes per volume, in a volume N∆ of water that scales 
with N is needed to obtain diffusion approximation results. See [20-23], Appendix 18.A.4.   
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Figure 18.6  A sample path for the number infected in three 
subgroups for a stochastic model varies about the trajectory of the 

analogous ODE 
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The first uses the stationary distribution of a closely related lattice Markov 
chain whose state is the number infected.  That likelihood approximation has 
good bias and root mean square error (RMSE) properties, but may be 
computationally intensive when extended to populations with multiple 
subgroups, or if the natural history of infection is more complex.  The 
second likelihood approximation uses a normal distribution approximation 
that takes advantage of relationships between low order moments that are 
determined by the Kolmogorov forward equations, but is somewhat more 
biased or may give confidence regions that are too small, particularly near R0 
= 1 or when populations are small, where the normal approximation may be 
suspect.  Further, the continuous dynamics for the water, combined with the 
moment relationships, may or may not give a full specification of the system 
with more complicated natural histories of infection, or with multiple 
subpopulations (e.g., higher dimensions). 
 
Here we take an alternate approach to approximating the stationary 
distribution of the number of infections: a diffusion approximation [20-23]. 
While statistical bias issues may remain to be resolved if the populations are 
small or if R0 is near 1, the approach appears to be more generalizable to 
higher dimensions.  While the mixed stochastic/deterministic model in [16] 
cannot directly use diffusion approximation results, a slight change to use 
the stochastic model on the lattice introduced at the beginning of Section 
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18.3.1 makes those results applicable.  In particular [20-23] illustrate that 
density-dependent processes, which include many epidemic models like the 
lattice-state model above, can be approximated (in law) by an Ornstein-
Uhlenbeck (OU) process near an endemic equilibrium point, as N grows.  
The stationary mean is approximated by the ODE’s asymptotically stable 
endemic infection level (which is positive if there is exogenous 
contamination, γ > 0, and other parameters are not 0), and the stationary 
covariance matrix Σ can be approximated by appropriately rescaling the 
solution to a Lyapunov equation, as overviewed in Appendix 18.A.4. 
 
18.3.2 Preliminary results for diffusion approximation 

This chapter presents only preliminary results for the OU approximation.  
We simulated the continuous time SIS/W stochastic process with 
proportional mixing and compared sample statistics for the stationary mean 
and variance with the endemic ODE mean and OU approximation to the 
variance.   
 
Simulated population sizes were 60, 600 and 6000 individuals in n=3 
subgroups, with 1/6 of the individuals in subgroup 1, 1/3 in subgroup 2, and 
1/2 in subgroup 3.  Parameters were chosen so that a fair amount of 
secondary transmission would be observed.  Parameters were chosen to be 
the same for each subpopulation, with ci=c, βi=β, µIi=µI=7 days, etc. so that 
R0h = cβµI = 0.875, R0w = 0.05.  Table 18.2 provides some summary sample 
statistics for the stationary mean ji and standard deviation jσ  of the number 

infected in subgroup j.  The statistics were based on 150 years of simulated 
infection and water contamination.  The means are time averages, and the 
standard deviations are based upon sampling the number infected once per 
month.  The OU approximation for the mean equals the ODE endemic 
equilibrium, and the standard deviations are computed as described in the 
previous section and Appendix 18.A.4. As observed elsewhere [29, 30], the 
mean number infected estimated by the simulations is lower than predicted 
by the deterministic model for smaller populations.  Correlation is strong 
between subgroups and water contamination levels in simulations with 
significant secondary transmission, matching simulations with a single 
subgroup in [16]. 
 
The OU approximation for the mean and variance of the number infected 
provides yet another likelihood approximation for inferring infection 
parameters from endemic data, to complement the two approximations in  
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Table 18.2  Comparison of some estimates from long simulation runs 
versus the Ornstein-Uhlenbeck (OU) approximation for the stationary 

mean and covariance 
 

Population Approx- Statistic 
Size, N imation 

2i  3i  2σ  3σ  

60 Sim. 0.72 1.10 0.927 1.18 
 OU 0.95 1.44 1.10 1.44 

600 Sim. 9.28 13.9 3.72 5.32 
 OU 9.56 14.4 3.81 5.25 

6000 Sim. 95.7 143 13.5 18.82 
 OU 95.5 143 14.3 20.97 

 
[16] (the two ideas there were to compute the stationary distribution, and to 
use the Kolmogorov forward equations to establish relationships between 
moments).  How strongly the bias in the estimates of the means and 
variances might influence the bias and RMSE of parameter estimators based 
upon an OU likelihood approximation is an area for further study. 
 
18.4  CONCLUSIONS AND FUTURE RESEARCH 

18.4.1  Water treatment policy 

Infection transmission dynamics can strongly influence the public health 
benefit of water treatment interventions.  Ignoring secondary transmission in 
a risk assessment, or examining only first order effects, can suggest 
misleading conclusions.  System dynamics models can help quantify the 
complex infection dynamics that some microbes transmitted through the 
drinking water system may have.  Policy decisions regarding the recreational 
use of public waterways that are source water directly influence the potential 
for secondary transmission, too. 
 
While infection transmission parameters may be important determinants of 
the health benefit of interventions, their values are not well understood for a 
number of microbes.  The use of stationary distributions as likelihood 
functions for unknown parameters allows endemic data to be used in the 
inference process. This complements tools by others to infer parameters in 
an intervention trial or with outbreak data [17-19].   
 
Here we considered only one microbial agent.  In reality, there are many 
strains of many microbes.  A comprehensive risk management program must 
consider multiple microbes and multiple intervention options.  Further, some 
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coordination may be required between different governmental agencies.  The 
Centers for Disease Control and Prevention are historically responsible for 
outbreak and infection data, whereas the EPA is historically responsible for 
water quality data. 
 
18.4.2  Infection modeling 

One advantage of the OU approximation, at least for large populations with 
nontrivial endemic levels, is that the mean and covariance matrix are readily 
computed.  Furthermore, transient probability distributions can be estimated 
with this OU approximation under certain conditions [23].  In principle, this 
would allow for data from outbreaks, intervention trials and/or endemic data 
to be used to infer transmission parameters.   
 
The OU approximation has a statistical bias when the population size is 
small, or there are small numbers of individuals per subgroup, such as occurs 
when family units or small work sites form the subgroups [30].  The 
stationary and quasistationary mean prevalence of the lattice-based Markov 
chain infection model may be lower than the scaled endemic equilibrium 
infection level.  The difference goes to zero in the large population limit, but 
may be nontrivial for small populations.  A rigorous exploration of this bias 
is an area for further research.   
 
Such bias holds implications not only for parameter inference, but also for 
speeding up simulations of infection processes.  The OU process might 
ignore every infection and recovery event in a large process, but may require 
small time steps to insure that bias is avoided.  An interesting simulation 
question is to evaluate effective ways to simulate the approximating OU 
process in a way that faithfully represents important low order statistical 
properties of the original Markov process.  Approximations that work well 
when almost everybody or almost nobody in a subgroup is infected are an 
open area of research, and have implications for simulating small 
populations and subgroups, such as family units or daycare centers that are 
participating in water treatment intervention or vaccine trials. 
 
18.4.3  Other modeling applications 

The food supply chain is complex and presents another potential route for 
the transmission of microbes.  Some infection models have examined the 
dynamics of growth of microbes as food passes from the farm to the fork 
[31] in one context.  Others have examined the dynamics of infection in 
herds [32, 22] and the ensuing impact on the livestock industry.  One area 
for further development is the integration of infection dynamics models in 
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animals, microbes in the food supply chain, and primary and secondary 
exposure in human populations.   
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18.A  Appendix 
 
18.A.1 Algebraic stability conditions for the SIRS/W model 

Consider first the SIRS/W infection transmission model in a homogenously 
mixing population (a special case of the general model, with n=1 subgroup, 
ρ=0, so D=0 and we drop subscripts in this section).  The expected number 
R0h of secondary transmissions, due to human contact, caused by one 
infective in an otherwise susceptible population, is the contact rate c, times 
the infection probability per contact β, times the duration of infection µI. 

 Ih cR βµ=0 . (A.1) 

The analogous number of secondary transmissions through the water loop is 
qualitatively derived by noting that an infected individual raises the 
concentration of microbes by θ microbes per day for µI days, the microbes 
remain viable for 1/α days, and each of N susceptibles consumes a fraction 
τφ of available microbes, each of which causes infection with probability r. 

 Iw
Nr

R µ
α
τφθ=0 . (A.2) 

Then R0=R0h+R0w is the total number of secondary transmissions, on 
average. 
 
Theorem 1: If there is no exogenous source of microbes (γ=0), and there is 
homogeneous mixing (n=1), then 

• The disease free equilibrium (S* = N, I* = R* = W* = 0) is locally 
asymptotically stable if R0 < 1, and unstable if R0 > 1. 

• The endemic equilibrium (S*=N/R0, I* = N(1-1/R0)µI,/(µI + µR), 
W*= θI*/α) is locally asymptotically stable if R0 > 1, and is not 
realizable if R0 < 1. 

 
Proof: The equilibrium values are determined by setting derivatives to 0.  
The stability result is proven by linearization in [25]. 
 
18.A.2 Algebraic stability conditions for the ODE in Section 18.2, (n=2) 

By analogy with A.1, let R0h,ij and R0h,ij be as in Equations (4) and (5). 
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Theorem 2:  Suppose there is no exogenous source of microbes (γ = 0), and 
there are n=2 subgroups with proportional mixing, as in Section 18.1. 
Consider the following two conditions. 

(i) 
112,021,021,012,011,022,0

22,011,022,022,011,011,0

<++
−−+++

whwhwh

whwhwh

RRRRRR
RRRRRR

 

(ii) 122,022,011,011,0 <+++ whwh RRRR  

Then: 
• Conditions (i) and (ii) are sufficient for the disease free equilibrium 

to be asymptotically stable (S1* = N1, I1* = R1* = W* = 0). 
• If the inequality in condition (i) is reversed, then the zero 

equilibrium is not stable, resulting in positive endemic infection. 
 
Proof:  The stability result is proven by linearization in [25]. The two 
conditions are equivalent when 1221 θθ cc = .  If 1221 θθ cc ≠ , then the 
linearization leads to a quintic equation after some factorization, which is not 
solvable in closed form.  The two conditions together are sufficient to insure 
that the dominant eigenvalue falls in the left hand complex plane. 
 
We have not yet developed characterizations for n>2 subgroups when the 
water loop is active.  [33] use Lyapunov functions to characterize stability 
for n≥1 subgroups with proportional and other mixing patterns for human-to-
human transmission, but do not account for the water loop.   
 
18.A.3 Alternate stability conditions for the ODE in Section 18.2 

Sections 18.A.1 and 18.A.2 provide population thresholds to characterize 
stability based on an algebraic analysis.  An alternate heuristic to assess 
whether endemic infection is sustainable even if no exogenous introduction 
of microbes occurs (γ = 0) is to assess an individual level endemic threshold 
using probabilistic arguments.  This section overviews such an argument for 
the n = 2 subgroup model.  Let R0h,ij and R0w,ij be as in 18.A.2, and denote the 
total mean number of secondary transmissions to a completely susceptible 
subgroup i from an index case in subgroup j by 

 ijwijhij RRR ,0,0,0 += . (A.3) 

The individual level threshold is established by assessing whether the mean 
number of new infections in subgroup i caused by an initial index case in i is 
at least 1, when the whole chain of infection is considered.  For example, an 
individual in subgroup 1 can infect someone in subgroup 2, who then infects 
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another person, who then eventually infects someone in subgroup 1.  The 
expected number of infections (directly or indirectly caused) in the chain 
(see Figure 18.7) should be at least 1 for at least one subgroup. 
 
Figure 18.7  The chain of infection from an index case in subgroup 1 

can result in infections in subgroup 1 directly, or indirectly through 
subgroup 2 

 
 

 
 

If R0,11 > 1 or R0,22  > 1, then a given subgroup can sustain infection within 
itself, and therefore infection remains endemic.  Consider the case where 
R0,11 and R0,22  are both at least 0 but neither exceeds 1.  If a single individual 
in subgroup 1 is infected, and the population is otherwise susceptible, then 
the expected number R of additional cases through the whole chain of 
transmission that eventually reach subgroup 1 is 
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 (A.4) 

The last equation holds because R0,22 ∈[0,1).  An individual level threshold 
says that endemics cannot be sustained without exogenous sources of 
infection if R<1, or R0,11 + R0,22 - R0,11R0,22  + R0,12 R0,21< 1.  Substituting the 
definition of R0,ij  in Equation (A.3) gives an individual level threshold that is 
equivalent to the population threshold in condition (i) of Theorem 2 above. 
 
18.A.4 Ornstein-Uhlenbeck approximation to SIS/W process 

The OU approximation to the stochastic SIS/W model with proportional 
mixing can be derived by examining the ODE analog of that model along 
with the transmission rates of the stochastic model (S1,…, Sn, W) summarized 
in Section 18.3.1.  The idea (e.g., [22, 23]) is to first find a representation so 

1 2 2 2 

1 1 1 1 
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that the state scales up with N, the total population size, then to look at a 
rescaled version of that process.  The S1 already scale directly with N.  To get 
the microbe contamination to scale with N, we model the total oocyst count 
Y in the drinking supply, rather than microbe concentration, and suppose that 
the drinking supply scales with the population size (e.g., contains a total of 
N∆ liters, and water drunk by individuals is replaced with fresh water so that 
the total volume remains constant).  This means that Y = N∆W, γ is the 
oocyst contamination rate per unit time per ∆ liters of water, and the rescaled 
process of interest is x=(S1,…, Sn, Y)/N.  
 
Let dx/dt = f(x0) be a vector valued function that describes the dynamics of 
the scaled ODE model, and let x0 be an asymptotically stable equilibrium in 
the interior of the scaled state space, with f(x0) = 0.  Let 

0
)(

xx
xfA

=
∇=  be 

the matrix containing the gradient of the dynamics f(x) of the scaled process 
x=(S1,… ,Sn, Y)/N, evaluated at x0, and let ζi = Ni/N.  Let the matrix G be the 
local covariance of a scaled version of the state over a short time δt, given 
that the state is currently x0.  For the SIS/W model with proportional mixing, 
G is a diagonal matrix, and is determined by evaluating the following at x0. 
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The matrix G will have nonzero off-diagonal elements for the SIDRS/W 
model, since an increase in Si means a decrease in Ii.   
 
The stationary distribution for the OU process can be approximated with a 
normal distribution with mean Nx0 and covariance matrix NΣ, where Σ solves 
Equation (A.6) (e.g., see [22, 23] for similar models without water 
transmission).   

 0=+Σ+Σ GAA T  (A.6) 

 


