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Abstract: Infectious microbes can be transmitted through the drinking water supply.
Recent research indicates that infection transmission dynamics influence the
public health benefit of water treatment interventions, although some risk
assessments currently in use do not fully account for those dynamics. This
chapter models the public health benefit of two interventions: improvements to
centralized water treatment facilities, and localized point-of-use treatments in
the homes of particularly susceptible individuals. A sengitivity analysis
indicates that the best option is not as obvious as that suggested by an analysis
that ignores infection dynamics suggests. Deterministic and stochastic
dynamic systems models prove to be useful tools for assessing the dynamics of
risk exposure.
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18.1 INTRODUCTION

A cryptosporidiosis outbreak linked to Cryptosporidium oocysts in
Milwaukee's drinking water caused over 400,000 cases of diarrhea and
1,000 hospitalizations in 1993. The outbreak played a role in the death of
more than 50 individuals, primarily individuals with AIDS [1, 2]. The
World Health Organization indicates that disease caused by these and other
waterborne microbes is involved in the death of millions of people every
year [3], and the illness of many more. One culprit is the lack of a safe water
supply and basic sanitation [4]. Endemic infection is a significant concern,
not just outbreaks.

This chapter reviews recent progress in merging infection transmission
models with microbial risk assessments. The goal of that work is to better
represent the dynamics of infection in such risk assessments. This chapter
also presents sensitivity analyses that provide policy regions that indicate
when it is better to use centralized water treatment alternatives versus local
water treatment measures, as a function of infection transmission parameters.
We dso discuss how different model structures, including ordinary
differential equations (ODES), stochastic Markov chains of individua
infection and recovery events, and Ornstein-Uhlenbeck (OU) diffusion
approximations may be useful for policy region assessment and inference for
parameters whose values are poorly understood.

Although the focus of this chapter is risk assessment for water treatment
interventions and their public health consequences, the idea of modeling risk
exposure as a dynamic function of a system’s state is rather general. Other
microbial applications include the protection of the food supply chain, and
biological warfare preparedness. Specific issues that have attracted public
interest recently include so-called “mad cow disease” (bovine spongiform
encephalopathy) and the threat of anthrax and smallpox attacks. E. coli and
Norwalk-like viruses can be found in both the water system and the food
chain [5]. The importance of dynamics for risk exposure assessments is not
exclusive to infectious diseases. For example, weather dynamics can
influence risk exposure to radiation in the aftermath of nuclear accidents [6].
The need for dynamic systems models of risk exposure, then, has a much
wider application than the scope presented here, and the tools available to
approximate those exposures continue to be devel oped.

Drinking water can be protected from microbes with a series of barriers
starting with source water protection, centralized municipal water treatment,
filters or other local point-of-use treatments, and wastewater treatment.
Centralized drinking water treatments improve water quality for the entire
community. Options include filtration, chlorination, and ozone pretreatment.
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Ozone pretreatment may reduce Cryptosporidium oocysts in water by 40-
60%, but may be quite costly. A facility for a particular California reservoir
is estimated to cost $154-190 million initially, and $3.8-5.2 million per year
thereafter [7]. Local treatment can also be used for population subgroups that
require particularly effective pathogen removal. Options include copper-
silver ionization and chlorine dioxide generation in hospitals and nursing
homes [8], and reverse osmosis filters in the homes of immunocompromised
individuals. Such filters may costs hundreds of dollars per home, and
require regular maintenance. These costs justify a formal assessment of the
public health benefit of each treatment option.

A standard approach to risk assessment for chemicals and microbes is to
identify hazards, quantify occurrence and exposure, assess the dose-response
relationship, and identify human health consequences. Exposure is generally
taken to be from drinking water in this context. The probability of infection
is assessed with a dose-response curve, where dose is a function of microbes
in consumed water. The hedth effects of any resulting disease are then
guantified. But microbes present additional risk exposures that chemicals do
not usualy exhibit. Microbes can circulate through two secondary
transmission routes: interpersonal human contact, and a water loop where
infected individuals recontaminate water through recreational use or waste
[9, 10].

Some analyses (e.g., [7]) account for secondary transmission in the water
loop by using the prevalence of infection in the population to assess the
amount of microbes shed into recreational water, then estimating increased
contamination in drinking water. That approach is consistent with risk
calculations used by the Environmenta Protection Agency (EPA) [11]. Such
an approach does not fully model the fact that effective water treatment
changes the prevalence of infection, which is an input to the assumed risk
exposure model. Although this indirect effect of treatment on risk exposure
due to secondary transmission is not modeled by that approach, there is a
recognized need to do so to inform water treatment policy [12].

Other analyses [13, 14] use dynamic systems models to represent the
dynamics of risk exposure. The models are based on deterministic ordinary
differential equations (ODEs). Such models find that the public health
benefit of water treatment interventions depends strongly on how infection is
circulated. For example, Milwaukee residents with AIDS suffered
particularly extreme consequences from cryptosporidiosis during the 1993
epidemic [15]. Some have proposed that highly effective filters that
eliminate Cryptosporidium oocysts would effectively protect individuals
with AIDS from similar risks in the future. This would be the case if there
were no additional exposure from secondary transmission to that subgroup
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from human contact. However, it is likely that some secondary transmission
occurred [1, 13]. Depending on the average number of secondary
transmissions, and the relative probability of infection given exposure for
those with AIDS, improving a standard municipal facility by adding ozone
pretreatment may be more effective than filters [14]. If secondary
transmission is sufficiently high, ozone can reduce secondary exposure in the
AIDS subgroup by reducing cryptosporidiosis prevalence in the genera
population — and that reduction can outweigh the benefits of completely
effective filters on the water taps of individuals with AIDS.

Section 18.2 extends previous work [14] by presenting a sensitivity analysis
for those policy regions (ozone pretreatment versus local filters) with respect
to severa infection parameters, and by using a more refined model of the
natural history of infection of cryptosporidiosis. The policy region is quite
sensitive to the efficacy of ozone for inactivating oocysts, but is not very
sensitive to the size of the sensitive population subgroup, aslong as it is not
too large, nor to the rate of exogenous introduction of oocysts into the water
supply. Ozone becomes less effective, relative to filters in the susceptible
subpopulation, as the water loop becomes relatively more important for
secondary transmission than human contact.

Deterministic infection models ignore variability that arises in real infection
transmission systems. Further, standard ODE parameter fitting tools make
normal distribution assumptions that may not be satisfied in practice [16].
Stochastic infection models explicitly account for this variability, and may
provide a mechanism to further incorporate infection dynamics into the
parameter inference process. Parameter inference is important because the
secondary transmission parameters for a number of microbes of interest to
the EPA are poorly understood at present. Several researchers have
examined mechanisms to infer parameters of various infection models given
outbreak or intervention trial data [13, 17-19], or using endemic data [16].
Those works attempt to incorporate the dynamics of infection into the
likelihood model using a variety of approximations (e.g., binomia
distributions for discrete-time models, norma approximations for larger
populations using moment methods).

Section 18.3 extends that work by suggesting that diffusion process
approximations be used to model the stochastic infection dynamics. The idea
is to apply stochastic process results [20-23] to approximate the underlying
discrete-state Markov chain model of infection and microbe contamination
with a continuous-state Ornstein-Uhlenbeck (OU) process. We present
diffusion approximation formulas for the stationary mean and covariance of
the underlying infection model. Section 18.4 describes potentia areas for
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further research for water treatment policy, risk analysis, and epidemic
modeling research.

18.2 ODE MODELS TO EVALUATE POLICY REGIONS

Our god is to develop a mathematical model that captures the dynamics of
three modes of infection transmission: infection from microbes in the
drinking water that come from exogenous sources, secondary infection from
microbes in drinking water that result from contamination of source water
from modeled individuals, and secondary transmission from human-to-
human contact. The model must account for multiple subgroups with
different infection susceptibility and outcome parameters, and further allow
for the assessment of public health benefits of both local and municipal level
interventions. We first describe an ODE infection model. Many parameters
are not well understood for most microbes on the EPA’s Candidate
Contaminant List. We therefore present a sensitivity analysis that could be
applied for those agents. The analysis here is consistent with current
knowledge about cryptosporidiosis.

18.2.1 Deterministic infection transmission system model

Figure 18.1. illustrates that humans are assumed to change health status from
susceptible (S), infected (1), diseased (D), and recovered (R) as a result of
microbial infection. Microbes can be shed by infected and diseased
individuals into the water supply, which in turn can reinfect susceptible
individuals. We further assume that there are n different subgroups that
interact according to a proportional mixing pattern [24]. Individuas in
different subgroups may have different mixing and infection parameters.
Here we are particularly interested in the case of two subgroups:
immunocompetent and immunosuppressed individuals. A more detailed
study might also model special characteristics of the young and the aged.

The N, individuals in subgroup i are counted as to whether they are infected
li(t) (infectious, but asymptomatic), diseased D;(t) (infectious and
symptomatic), recovered Ri(t) (temporarily immune to reinfection), or
susceptible S(t). These values vary through time as the system evolves. For
simplicity, the argument t is dropped below except when we wish to
emphasi ze dependence of these values on time.

Microbe concentration in the water supply, W(t), shown in the upper portion
of the figure, is influenced by the rate y of exogenous introduction of
microbes, the rate o that microbes |eave the system from water flow or
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Figure 18.1 An SIDRS/W infection model with water loop and
proportional mixing
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inactivation, and the rate 6, that infected individuals contaminate the water
supply. Thisleadsto the microbe concentration dynamic in equation 1.

%:y—aw+i6i(li+q). 1

Each susceptible individual in subgroup i has the potential of becoming
infected after being exposed. The rate of exposure for each susceptible
individual depends on two main sources. Exposure from water consumption
is determined by the number of microbes per unit volume in the source
water, W, the fraction of microbes that remain after treatment ;, the volume
of drinking water consumed per day ¢;, and the probability of infection per
ingested microbe, r;. Exposure from secondary transmission depends on the
number of individuals in each subgroup, N;, the number of contacts per day,
¢, and the probability B; that a potentially infectious contact will infect an
individual in subgroup i. This results in an overall exposure rate A;,, for
subgroup i, when the microbe concentration is W.

N S
AL B @
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Thefirst term models exposure from drinking water. The second term sums
the exposures from each subgroup to susceptiblesin i: there are ¢(1;+ D))
potentially infectious contacts, of which afraction N, / £ ¢ N, are with
members of group i. The probability that a member of subgroupi is
susceptible is S/N;, and the probability of infection given the contact is 3.

After becoming infected, only afraction p; become diseased; the rest recover
and become immune for some duration of time, p;. The mean duration of
infection is ;;, and the mean duration of disease is L. Since the dynamics
of microbia infection are on a much faster time scale than the lifetimes of
humans, we assume a closed population.

ds - R
at — N’W+ Ugi
dl. l.
i = A —i
dt "Wy (3
db, _ piy _D
dt Ly Wp;
R = N-§-1,-D

In summary, the infection transmission model is specified by equation (1)
and equation (3). We refer to this as an SIDRS/W model. The parametersin
the above equations, as well as values that are consistent with
Cryptosporidium, are presented in Table 18.1. Parameters without base
values are functions of other parameters, or are unknown or varied in the
sengitivity analysis to follow. The term in brackets is the unit of measure for
the parameter valuesin the table.

18.2.2 Poalicy regions for water treatment decisions

This section presents a sensitivity analysis for water treatment policy regions
for centralized versus locdl treatment interventions. We consider n=2
population subgroups, (1) immunocompetent and (2) immunocompromised
individuals, and their exposure to Cryptosporidium. The centralized water
treatment considered here is 0zone pretreatment, which can remove 40-60%
of Cryptosporidium oocysts from water. This has the effect of reducing t; by
an appropriate percentage for the entire population. The local treatment
considered here is afilter that essentially removes exposure from drinking
water (as an extreme case) for the immunocompromised subgroup. This sets
T, = 0 for the immunocompromised subgroup, but leaves T, unchanged for
the immunocompetent subgroup.
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Table 18.1 Summary of notation for SIDRS/W model, ranges for
Cryptosporidium, and values used in a base analysis of the

deterministic ODE model

Base
Symbol  Meaning Range value
N Number of subgroupsin human population 1,2, ... 2
N Total # individualsin human population >0 1.6x10°
N, Total #individualsin subgroup i >0
v Rate of exogenous introduction of 10°-10>  10°
microbes [microbed/liter/day]
o Rate microbes become inactivated [ 1/day] .05 .05
8; Rate an infectious individual sheds >0 0
microbes [microbes /liter/day]
r; Probability an ingested microbe causes .0021- .00428
infection .0076
o; Water consumption [liters/day] .017-2 1
T, Fraction of microbes surviving water 10°-1 10°
treatment
Pi Probability that infection progresses to .38-.81 .61
disease
Wi Mean incubation period [days] 1-12 7
Upi Mean duration of disease stage [days] 1-55
Ug Mean duration of recovered/immune stage  60-120 90
[days]
Fraction of oocysts viable after ozone pre- 2-8 4
treatment
G Human contact rate for members of >0
subgroup i [contacts/day]
B; Probability a susceptible member of 0.0-1.0
subgroup i becomes infected from a
potentially infectious human contact
Mw  Forceof infection to subgroup i, given See equation (2)

microbe concentration W.

We define the ‘better’ treatment in this chapter as that which leads to the
lowest endemic prevaence of cryptosporidiosis in the immunocompromised
This objective is motivated by the extreme effects of

subgroup.
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cryptosporidiosis in that subgroup during the 1993 Milwaukee outbreak. A
similar analysis can be run for other outcome measures of merit, including
quality-adjusted and disability-adjusted life years, and cost effectiveness
ratios, but we do not do so here.

A risk assessment that ignores the dynamics of secondary transmission
would conclude that the filter is more successful that ozone pretreatment for
the immunocompromised subgroup. If secondary transmission is significant,
however, secondary transmission from the immunocompetent subgroup can
result in significant infection in the immunocompromised subgroup. In fact,
if human-to-human secondary transmission is high enough, then removing
all microbes from the water will still not prevent endemic transmission. In
that case, water treatment makes almost no impact on the prevalence of
infection.

Before presenting policy regions, we introduce notation to describe
secondary transmission. Let Ry; be the mean number of secondary
transmissions from human contact by an infected individua of subgroup j to
individuals in subgroup i, assuming that al individuals in subgroup i are
susceptible (¢ contacts per unit time, a fraction ¢ N, / X ¢ N, of them with
subgroup i, of which f3; are infective, for amean duration of w; + p;Up).

N.
Ronij =C; ﬁ B, (}‘Llj + Pl ) (4)

Let Rowj be the analogous number of secondary transmissions through the
water loop from an infective in subgroup j to individuals in subgroup i,
assuming that all individuals in subgroup i are susceptible (see Appendix ).

NirT06,
Row,i :%(}J—u + pjuDj)' 5)

The Appendix proposes two different arguments to show that the basic
reproduction number, R,, is key to determining the infection dynamics. It
can be related to the expected number of secondary infections needed to
sustain endemic infection.

R = ROh,ll + ROW,ll + ROh,ZZ + I:20w,22 - ROh,llROw,ZZ -
ROh,ZZROW,ll + ROh,lZROW,Zl + ROh,ZlROW,lZ'

If R, > 1, then infection remains endemic even if no exogenous introduction
of microbes occurs (y = 0).

(6)
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Somewhat surprisingly, it is still possible for a municipal improvement like
ozone pretreatment to outperform filters on the taps of immunocompromised
individuals, even if endemic infection is not sustainable through secondary
transmission. The reason is that cryptosporidiosis prevaence in the
immunocompetent subgroup can be significantly reduced with ozone
pretreatment. This in turn reduces secondary exposure of cryptosporidiosis
to the immunocompromised subgroup. Figure 18.2 illustrates that ozone
pretreatment is more successful at reducing endemic cryptosporidiosis
infection in the immunocompromised subgroup if the secondary
transmission rate from human contact is high enough. This graph assumes
that all secondary transmission occurs from human contact (R, = Ry, 11+Ron 22,
because 6, = 0, = 0), and that other parameters take on the base values for
Cryptosporidium given in Table 18.1. If immunocompromised individuas
are much more susceptible to cryptosporidiosis than immunocompetent
individuals (larger B,/ B,), then ozone pretreatment is attractive at even lower
levels of secondary transmission. The values for ¢f3; are chosen to give rise
to the corresponding value of R,on the y-axis.

Figure 18.2 Ozone pre-treatment is better for larger values of
secondary transmission or the relative susceptibility of
immunocompromised individuals
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These observations are qualitatively similar to results in our previous work
[14]. The policy region boundary is somewhat lower here than in [14] for
several reasons. the natural history of infection is more redlistic here
(including two infectious periods, the infected/asymptomatic and
diseased/symptomatic states), a more effective ozone pretreatment processis
assumed (60% of oocysts are removed rather than 50%), and a few other
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parameters are changed. The qualitative shape of the policy region,
however, is the same. We now extend the results by assessing the sensitivity
of the policy region to several parameters that may affect transmission
dynamics.

Figure 18.3 shows that the policy region is relatively insensitive to the
fraction N, /(N; + Nyp) of individuals in immunocompromised subgroup, at
least when base case parameter values are used, and the fraction of
immunocompromised individuals is relatively small (under 5% or so). If
that fraction increases, the policy region boundary would rise, as direct
exposure would become relatively more important than secondary
transmission from the smaller immunocompetent subgroup. The policy
region is smilarly insensitive [25] to the rate y of exogenous introduction of
microbes, except if rates would lead to oocyst concentrations found during
outbreaks with plant failures.

Figure 18.3 The policy region is relatively stable over a range of
values for the fraction of population that is immunocompromised
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Ozone best subgroup, N,/(N; +N,,)
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The 1993 Milwaukee outbreak data has been used to estimate [13] the
secondary transmission rate as R,=0.15. The secondary transmission rate
during endemic situations is unknown, but individuals may be more
conscientious about secondary transmission during an outbreak than when
infection is transmitted silently in the background. It seems reasonable to
assume that immunocompromised individuals may be somewhat more
susceptible to cryptosporidiosis infection due to human transmission (B./ B,
> 1), but there isinconclusive data one way or the other [26].
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Figure 18.4 illustrates the sensitivity of the policy region to ozone
pretreatment efficiency. Ozone pretreatment outperforms filters in this
anaysis even at relatively low values of secondary transmission, assuming
that 80% of oocysts can be inactivated during the pretreatment. Although
the values of secondary transmission parameters are not completely
understood, this would put the treatment policy boundary near educated
approximations for the parameter estimates. On the other hand, a risk
assessment that assumes that there is no secondary transmission from
interpersonal contact would indicate that filters are much more effective at
reducing the endemic prevaence of cryptosporidiosis in the
immunocompromised subgroup.

Figure 18.4 The policy region is highly dependent upon the
effectiveness of ozone pre-treatment for removing oocysts

1
09 Fraction of oocyst surviving
08 0zone pretreatment
0.7 Ozone best ——0.2 ——04

—4—06 —08

Ro=Ro11 + Ry
o
o

o

o o b

v \ 4 . ¢
T T T T

3 4 5 6 7 8 9
Susceptibity to infection factor, B,/B;

The graphs above assume that human contact is the sole exposure for
secondary transmission, with no active water loop. This may be appropriate
where there is no potentia for recreational activities to contaminate source
water. In some regions, however, recreational use can pose a distinct risk for
water loop transmission [7]. Figure 18.5 shows that as the water loop
increases in importance for transmission (increasing R, = R+ Row2), the
policy region boundary rises. Conceptually, this matches the notion that if
all secondary transmission occurs through the water loop, with no human
contact, then filters for the immunocompromised subgroup are more
effective than ozone pretreatment in reducing cryptosporidiosis prevaence
in that subgroup (filters are assumed here to be 100% effective, but ozone is
only partidly effective at removing oocysts). This means that filters are
always more effective, relative to this objective, when there is no human-to-
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human transmission. Filters may still be an effective intervention if
secondary transmission occurs primarily through the water |oop.

Figure 18.5 Filters are much more effective if the water loop
increases in importance relative human-to-human secondary
transmission
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18.3 VARIATION IN INFECTION OUTCOMES

Infection and recovery times are stochastic, not deterministic; this is one
source of variation in prevalence and microbial contamination data. How
much variation in infection outcomes should one expect, even if al infection
transmission parameters are known precisely? Another important related
guestion is how to estimate unknown infection parameters, given field data.
While the policy regions like those in Section 18.2 are useful for qualitative
insights into the effects of treatment given transmission parameter
assumptions, the precise values of parameters are still poorly understood for
several microbes transmitted through the water system. A model of the
random variation in infection prevalence and microbe concentration can be
used as a likelihood function to help infer the unknown parameters. 1dedly,
such amodel would be easy to simulate quickly.

18.3.1 Stochastic model background

Severa authors have incorporated stochastic system dynamics to infer the
parameters of infection models. Deterministic ODE infection models may
have stochastic analogs that are derivable as large population limits [20-23,
27]. A continuous time stochastic analog of the deterministic SIS'W model
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with n closed subgroups, the model in Section 18.2 without the extra disease
dtates, has a state (S, ..., S, Y) , where Y=WNA is the total oocyst count in

the drinking water supply’. The state space is a lattice, { [1,{0, 1, ...,

N}}IX{0, 1, ..}. The statedoesnot include I; since I, = N, - § by assumption
here. State transition rates are determined by the associated rate in the ODE.
For example, the transition rate from (S,....S,..., S,Y) to (S,,...S+1..., S,
Y) is|; / w,;, based on the recovery rate 1/, of each individual. Infection
transitionsto (S, ..., S-1..., S, Y) occur with rate

ri¢iTiVVS| +zn,cj|jnq¢i[3i . (7)
T YeN N

k=1

The analogy of these rates with Equations (2) and (3) should be clear. Rate
terms in the ODE dynamics correspond to infinitesimal state transition rates
in the Markov chain model, and transition rates for microbe immigration and
inactivation occur similarly. Figure 18.6 shows a sample path for the
number infected in a 3-subgroup model asit varies about the trgjectory of the
analogous ODE model. An alternate approach is to use a closely related
discrete-time Reed-Frost epidemic model [18], or to aso incorporate socia
network information into the state with a stochastic graph [19].

Severa researchers (e.g., see [19] and references therein) have developed
likelihood models for Bayesian inference that incorporate infection
dynamics into the likelihood function for parameters as a function of data
that might be obtained from tracing an outbreak, or closely monitoring an
intervention trial. Interesting properties of quasistationary distributions [28],
the long run distribution assuming that infection remains endemic, of
infection models have been studied as well.

A recent proposal to infer infection parameters with endemic data provides a
dtatistical tool that provide an dternative to waiting for, identifying, and
measuring an outbreak [16]. The work uses stationary distributions of a
combined stochastic-deterministic SIS'W infection model in a homogenous
population to model endemic data. Infection and recovery events were
assumed to be stochastic, but water contamination was assumed to be
deterministic, given the number infected. Because a closed form for the
stationary distribution is not known and there are situations when normal
approximations used by standard ODE least square estimators are not fully
justified, the authors develop two likelihood approximations.

! The total number of microbes, not microbes per volume, in avolume NA of water that scales
with N is needed to obtain diffusion approximation results. See [20-23], Appendix 18.A.4.
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Figure 18.6 A sample path for the number infected in three
subgroups for a stochastic model varies about the trajectory of the
analogous ODE
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The first uses the stationary distribution of a closely related lattice Markov
chain whose state is the number infected. That likelihood approximation has
good bias and root mean square error (RMSE) properties, but may be
computationally intensive when extended to populations with multiple
subgroups, or if the natural history of infection is more complex. The
second likelihood approximation uses a normal distribution approximation
that takes advantage of relationships between low order moments that are
determined by the Kolmogorov forward equations, but is somewhat more
biased or may give confidence regions that are too small, particularly near R,
=1 or when populations are small, where the normal approximation may be
suspect. Further, the continuous dynamics for the water, combined with the
moment relationships, may or may not give afull specification of the system
with more complicated natural histories of infection, or with multiple
subpopulations (e.g., higher dimensions).

Here we take an adternate approach to approximating the stationary
distribution of the number of infections. a diffusion approximation [20-23].
While statistical bias issues may remain to be resolved if the populations are
small or if R, is near 1, the approach appears to be more generalizable to
higher dimensions. While the mixed stochastic/deterministic model in [16]
cannot directly use diffusion approximation results, a slight change to use
the stochastic model on the lattice introduced at the beginning of Section
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18.3.1 makes those results applicable. In particular [20-23] illustrate that
density-dependent processes, which include many epidemic models like the
lattice-state model above, can be approximated (in law) by an Ornstein-
Uhlenbeck (OU) process near an endemic equilibrium point, as N grows.
The stationary mean is approximated by the ODE’'s asymptotically stable
endemic infection level (which is positive if there is exogenous
contamination, y> 0, and other parameters are not 0), and the stationary
covariance matrix £ can be approximated by appropriately rescaling the
solution to a Lyapunov equation, as overviewed in Appendix 18.A.4.

18.3.2 Preliminary results for diffusion approximation

This chapter presents only preliminary results for the OU approximation.
We simulated the continuous time SISW stochastic process with
proportional mixing and compared sample statistics for the stationary mean
and variance with the endemic ODE mean and OU approximation to the
variance.

Simulated population sizes were 60, 600 and 6000 individuals in n=3
subgroups, with 1/6 of the individuals in subgroup 1, 1/3 in subgroup 2, and
1/2 in subgroup 3. Parameters were chosen so that a fair amount of
secondary transmission would be observed. Parameters were chosen to be
the same for each subpopulation, with ¢=c, B;=p, w,=Ww,=7 days, etc. so that
Ry = cBu, = 0.875, R,, = 0.05. Table 18.2 provides some summary sample
statistics for the stationary mean i_j and standard deviations ; of the number

infected in subgroup j. The statistics were based on 150 years of simulated
infection and water contamination. The means are time averages, and the
standard deviations are based upon sampling the number infected once per
month. The OU approximation for the mean equals the ODE endemic
equilibrium, and the standard deviations are computed as described in the
previous section and Appendix 18.A.4. As observed elsewhere [29, 30], the
mean number infected estimated by the simulations is lower than predicted
by the deterministic model for smaller populations. Correlation is strong
between subgroups and water contamination levels in simulations with
significant secondary transmission, matching simulations with a single
subgroup in [16].

The OU approximation for the mean and variance of the number infected
provides yet another likelihood approximation for inferring infection
parameters from endemic data, to complement the two approximationsin
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Table 18.2 Comparison of some estimates from long simulation runs
versus the Ornstein-Uhlenbeck (OU) approximation for the stationary
mean and covariance

Population  Approx- Statistic
Size, N imation i iy c, o,

60 Sim. 0.72 1.10 0.927 1.18

ou 0.95 1.44 1.10 144

600 Sim. 9.28 13.9 3.72 5.32
ou 9.56 14.4 3.81 5.25
6000 Sim. 95.7 143 135 18.82
ou 95.5 143 14.3 20.97

[16] (the two ideas there were to compute the stationary distribution, and to
use the Kolmogorov forward equations to establish relationships between
moments). How strongly the bias in the estimates of the means and
variances might influence the bias and RM SE of parameter estimators based
upon an OU likelihood approximation is an areafor further study.

18.4 CONCLUSIONS AND FUTURE RESEARCH
18.4.1 Water treatment policy

Infection transmission dynamics can strongly influence the public health
benefit of water treatment interventions. Ignoring secondary transmission in
a risk assessment, or examining only first order effects, can suggest
misleading conclusions. System dynamics models can help quantify the
complex infection dynamics that some microbes transmitted through the
drinking water system may have. Policy decisions regarding the recreational
use of public waterways that are source water directly influence the potential
for secondary transmission, too.

While infection transmission parameters may be important determinants of
the health benefit of interventions, their values are not well understood for a
number of microbes. The use of stationary distributions as likelihood
functions for unknown parameters alows endemic data to be used in the
inference process. This complements tools by others to infer parameters in
an intervention trial or with outbreak data[17-19].

Here we considered only one microbial agent. In redlity, there are many
strains of many microbes. A comprehensive risk management program must
consider multiple microbes and multiple intervention options. Further, some
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coordination may be required between different governmental agencies. The
Centers for Disease Control and Prevention are historically responsible for
outbreak and infection data, whereas the EPA is historically responsible for
water quality data.

18.4.2 Infection modeling

One advantage of the OU approximation, at least for large populations with
nontrivial endemic levels, is that the mean and covariance matrix are readily
computed. Furthermore, transient probability distributions can be estimated
with this OU approximation under certain conditions [23]. In principle, this
would allow for data from outbreaks, intervention trials and/or endemic data
to be used to infer transmission parameters.

The OU approximation has a statistical bias when the population size is
small, or there are small numbers of individuals per subgroup, such as occurs
when family units or small work sites form the subgroups [30]. The
stationary and quasistationary mean prevalence of the lattice-based Markov
chain infection model may be lower than the scaled endemic equilibrium
infection level. The difference goes to zero in the large population limit, but
may be nontrivia for small populations. A rigorous exploration of this bias
isan areafor further research.

Such bias holds implications not only for parameter inference, but aso for
speeding up simulations of infection processes. The OU process might
ignore every infection and recovery event in alarge process, but may require
small time steps to insure that bias is avoided. An interesting simulation
guestion is to evaluate effective ways to simulate the approximating OU
process in a way that faithfully represents important low order statistical
properties of the original Markov process. Approximations that work well
when almost everybody or amost nobody in a subgroup is infected are an
open area of research, and have implications for simulating small
populations and subgroups, such as family units or daycare centers that are
participating in water treatment intervention or vaccine trials.

18.4.3 Other modeling applications

The food supply chain is complex and presents another potentia route for
the transmission of microbes. Some infection models have examined the
dynamics of growth of microbes as food passes from the farm to the fork
[31] in one context. Others have examined the dynamics of infection in
herds [32, 22] and the ensuing impact on the livestock industry. One area
for further development is the integration of infection dynamics models in
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animals, microbes in the food supply chain, and primary and secondary
exposure in human popul ations.
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18.A Appendix

18.A.1 Algebraic stability conditions for the S RSW model

Consider first the SIRS/W infection transmission model in a homogenously
mixing population (a special case of the general model, with n=1 subgroup,
p=0, so D=0 and we drop subscripts in this section). The expected number
Ry, of secondary transmissions, due to human contact, caused by one
infective in an otherwise susceptible population, is the contact rate c, times
the infection probability per contact 3, times the duration of infection .

Ron = cBu, - (A1)

The analogous number of secondary transmissions through the water loop is
qualitatively derived by noting that an infected individual raises the

concentration of microbes by 6 microbes per day for , days, the microbes
remain viable for 1/o days, and each of N susceptibles consumes a fraction
t¢ of available microbes, each of which causes infection with probability r.

Ry =9 (A2)

o

Then R=R,+R,, is the total number of secondary transmissions, on
average.

Theorem 1: If there is no exogenous source of microbes (y=0), and there is
homogeneous mixing (n=1), then
e The disease free equilibrium (S = N, I* = R* = W* = 0) islocally
asymptoticaly stable if R, < 1, and unstableif R, > 1.
e The endemic equilibrium (S*=N/R,, I* = N(1-VR)w./(1, + Ug),
Wr= 01*/ar) is locally asymptotically stable if R, > 1, and is not
realizableif R,< 1.

Proof: The equilibrium values are determined by setting derivatives to 0.
The stability result is proven by linearization in [25].

18.A.2 Algebraic stability conditions for the ODE in Section 18.2, (n=2)
By analogy with A.1, let Ry,;; and Ry,;; be asin Equations (4) and (5).
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Theorem 2: Suppose there is no exogenous source of microbes (y= 0), and
there are n=2 subgroups with proportional mixing, as in Section 18.1.
Consider the following two conditions.

ROh,ll + ROw,ll + ROh,22 + ROW,22 - ROh,llROW,ZZ -
ROh,zz ROw,ll + ROh,lZ R0w,21 + ROh,ZlROW,lz <1

(“) ROh,ll + ROW,ll + R0h,22 + ROW,ZZ < 1

Then:
e Conditions (i) and (ii) are sufficient for the disease free equilibrium
to be asymptotically stable (S* = N, I,* = R* = W* = Q).
e If the inequality in condition (i) is reversed, then the zero
equilibrium is not stable, resulting in positive endemic infection.

0)

Proof: The stability result is proven by linearization in [25]. The two
conditions are equivaent when ¢, =c,0,. If c0, #c,9,, then the
linearization leads to a quintic equation after some factorization, which is not
solvable in closed form. The two conditions together are sufficient to insure
that the dominant eigenvalue fallsin the left hand complex plane.

We have not yet developed characterizations for n>2 subgroups when the
water loop is active. [33] use Lyapunov functions to characterize stability
for n>1 subgroups with proportional and other mixing patterns for human-to-
human transmission, but do not account for the water loop.

18.A.3 Alternate stability conditions for the ODE in Section 18.2

Sections 18.A.1 and 18.A.2 provide population thresholds to characterize
stability based on an algebraic analysis. An dternate heuristic to assess
whether endemic infection is sustainable even if no exogenous introduction
of microbes occurs (y = 0) isto assess an individual level endemic threshold
using probabilistic arguments. This section overviews such an argument for
the n = 2 subgroup model. Let Ry,j; and Royj be asin 18.A.2, and denote the
total mean number of secondary transmissions to a completely susceptible
subgroup i from an index case in subgroup j by

Ro,ij = ROh,ij + ROW,ij . (A.3)

The individua level threshold is established by assessing whether the mean
number of new infections in subgroup i caused by aninitial index caseini is
at least 1, when the whole chain of infection is considered. For example, an
individual in subgroup 1 can infect someone in subgroup 2, who then infects
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another person, who then eventualy infects someone in subgroup 1. The
expected number of infections (directly or indirectly caused) in the chain
(see Figure 18.7) should be at least 1 for at |east one subgroup.

Figure 18.7 The chain of infection from an index case in subgroup 1

can result in infections in subgroup 1 directly, or indirectly through
subgroup 2

O ONONE

If Ryis > 1 or Ry, > 1, then a given subgroup can sustain infection within
itself, and therefore infection remains endemic. Consider the case where
Ro11 @nd Ry, are both at least O but neither exceeds 1. If asingle individual
in subgroup 1 is infected, and the population is otherwise susceptible, then
the expected number R of additional cases through the whole chain of
transmission that eventually reach subgroup 1 is

R = R+ Ro,21(Ro,12 +Ro2 (RO,IZ + Rz ()))
= R+ RoxuRon + RoaRonRoz + RoxRos Roz,zz +--- (A4
_ R5,2:Ro.12
) R0,11 ’ 1- Ro,zz l

The last equation holds because R,,, € [0,1). An individual level threshold
says that endemics cannot be sustained without exogenous sources of
infection if R<1, or Ry + Ry - RoiRoz + Ry Ron< 1. Substituting the
definition of R,; in Equation (A.3) gives an individual level threshold that is
equivalent to the population threshold in condition (i) of Theorem 2 above.

18.A.4 Ornstein-Uhlenbeck approximation to S S'W process

The OU approximation to the stochastic SIS'W model with proportional
mixing can be derived by examining the ODE analog of that model along
with the transmission rates of the stochastic model (S,,..., S, W) summarized
in Section 18.3.1. Theidea (e.g., [22, 23]) isto first find a representation so
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that the state scales up with N, the total population size, then to look at a
rescaled version of that process. The S, aready scale directly with N. To get
the microbe contamination to scale with N, we model the total oocyst count
Y in the drinking supply, rather than microbe concentration, and suppose that
the drinking supply scales with the population size (e.g., contains a total of
NA liters, and water drunk by individuals is replaced with fresh water so that
the total volume remains constant). This means that Y = NAW, v is the
oocyst contamination rate per unit time per A liters of water, and the rescaled
process of interest isx=(S,,..., S,, Y)/N.

Let dx/dt = f(xy) be a vector valued function that describes the dynamics of
the scaled ODE model, and let X, be an asymptotically stable equilibrium in

the interior of the scaled state space, with f(xo) = 0. Let A= VT (X)|x:x0 be

the matrix containing the gradient of the dynamics f(x) of the scaled process
x=(Sy,...,S, Y)/N, evaluated at X, and let §; = N/N. Let the matrix G be the
local covariance of a scaled version of the state over a short time &t, given
that the state is currently x,. For the SIS'W model with proportional mixing,
Gisadiagona matrix, and is determined by evaluating the following at Xo.

G; :M-i_ri(birivvxi + X %iq (G;—X%) fori=1..,n
u“ NiZCka =
k=1
Gn+l,n+l :’Y+Zlej(Nj —Sj)+OCW (A5)
j=

The matrix G will have nonzero off-diagona elements for the SIDRS/W
model, since anincreasein § means a decreasein ;.

The stationary distribution for the OU process can be approximated with a
normal distribution with mean Nx, and covariance matrix NX, where X solves
Equation (A.6) (e.g., see [22, 23] for similar models without water
transmission).

AZ+3XAT +G=0 (A.6)



