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Why Bayesian methods in Simulation?

Inputs

Statistical, θpr

Control, θcr

-
-

'

&

$

%
Simulation Model

-
Random
Numbers

Urij

-
Simulated
Variates

Xrij

- -

Simulation
Output

Yr

Yr = g(θp,θc ;Ur )

Example: Single Server Queue (M/M/1): θp = (λ, µi ) =
arrival and service rates (server i = 1, 2)

Output: Y ≈ λ/(µi − λ) + noise

Simulation: Analyze stochastic processes via sample path
generation. Inform decisions: pick control parameter θc , to
estimate or to optimize value h(E [Y | θp,θc ])

Bayesian as alternative to frequentist
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Why Bayesian methods?

Glynn (1986): Uncertainty
analysis. Not α = h(E [Y ]), but

α(θ) = h(E [Y | θ])

Unknown parameters, p(θ), data
from modeled system to update

1 Mean E [α(Θ)]
2 Distribution of α(Θ) induced by

Θ
3 Credible set: θlo , θhi so

p([h(θlo), h(θhi )]) = 95%

Chick (1997): Reviewed work to
that date.

Suggested broader range of
application.

1 Ranking and selection
2 Response surface modeling
3 Experimental design
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The Point of Today

Review some basic concepts of subjective probability, Bayesian
statistics, decision theory.

Identify several applications to simulation experiments.

Summarize some implementation issues.

Identify some areas for future work.
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Related work

See the WSC (2006) paper and chapter in Henderson and Nelson
book for a long (but incomplete) citation list for work over the last
10 years on:

Formal Bayes or decision theoretic theory

Applications: scheduling, insurance, finance, traffic modeling,
public health, waterway safety, supply chain and other areas

Bayes and deterministic simulations

Favorite books on subjective and Bayesian probability and
decision theory

Public Policy and Health Economics: increasingly uses simulation
(in addition to decision trees, Markov chains), and increasingly
requires probabilistic sensitivity analysis.
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Getting down to brass tacks

Probability of 7 heads in the first 10 flips?
How to approach the problem. . .
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Getting down to brass tacks

Probability of 7 heads in the first 10 flips?

Comte d’Alembert (18th cent.)

Indifference says maybe 1/11?

But wait, for one flip, probability of heads is 1/2?

See Savage (1972) and Kreps (1988).
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Getting down to brass tacks

Probability of 7 heads in the first 10 flips?

Dwight (an unreconstructed frequentist)

10!
7!3!θ

7(1− θ)3, where θ = limn→∞
X1+...+Xn

n (a.e.).

If we rent Madison Square garden and flip the tack repeatedly,
I can estimate θ for you.

What confidence and how accurately do you need to know θ?

Hmmm. . .
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Getting down to brass tacks

Probability of 7 heads in the first 10 flips?

Dwight (an unreconstructed frequentist)

10!
7!3!θ

7(1− θ)3, where θ = limn→∞
X1+...+Xn

n (a.e.).

If we rent Madison Square garden and flip the tack repeatedly,
I can estimate θ for you.

What confidence and how accurately do you need to know θ?

Let’s reformulate the question . . .
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Why am I a Bayesian?

Will you accept the following bet now? You get $100 if there are 7
heads, but you pay $5 if not.

more from Dwight

I can’t answer until I have a good idea of what θ is.

Guessing wouldn’t be scientific.
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Why am I a Bayesian?

Ralph

Probability of 7 heads in the first 10 flips?

I’m willing to use probability for personal judgments∫ 1
0

10!
7!3!θ

7(1− θ)3π(θ)dθ, where π(θ) is a prior probability.

I’ll update with Bayes’ rule, to get posterior probability

p(θ | xn) =
π(θ)p(xn | θ)

p(xn)
=

π(θ)
∏n

i=1 p(xi | θ)∫
p(xn | θ)dπ(θ)
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Why am I a Bayesian?

Lenny

Probability of 7 heads in the first 10 flips?

Fair bets: I set p(E1) > p(E2) if I prefer the first bet:

1)

$100

$0

E1

E1 2)

$100

$0

E2

E2

Exchangeability (weaker than i.i.d.)

p(x1, x2, . . . , xn) = p(xs1 , xs2 , . . . , xsn)

for permutations s on {1, 2, . . . , n} for arbitrary n.
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Why am I a Bayesian?

Lenny

Exchangeability plus conceptually infinite N imply

limN→∞ p(7 heads in first 10 flips) =
∫ 1
0

10!
7!3!θ

7(1− θ)3dF (θ)

de Finetti (1990)-like representation

Ralph assumed conditional i.i.d., while Lenny derives formula
from exchangeability

Probability defined by bet preferences, not repeated outcomes
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Implication for Simulation: Yr = g(θp,θe ,θc ;Ur)
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Environmental, θer
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Simulation
Output

Yr

Input selection: Infinite exchangeable sequence Xij from
modeled system to infer ith statistical input, θpi
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Implication for Simulation: Yr = g(θp,θe ,θc ;Ur)
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Y

Input selection: Infinite exchangeable sequence Xij from
modeled system to infer ith statistical input, θpi

Metamodeling: Infinite exchangeable Yr to infer Ψ.
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Part of the process

Establish exchangeability arguments, posit potential likelihood
functions for observables, given unknown quantities

Assess prior distributions for unknown quantities

Relevant asymptotic theorems

Decisions, loss, and value of information

ranking and selection,
other experimental design issues
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Subjective Methods

We need a prior distribution for unknown parameters.
For a Bernoulli outcome . . . de Finetti (1990), Savage (1972)
require You to assess your personal belief, π(θ) to describe
p(Θ ≤ θ)

Important gain in flexibility

Consistent with expected value decision theory

Kahneman, Slovic, and Tversky (1982) describe difficulties
with elicitation . . .

Some seek ‘automated’ methods . . .
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Principle of Indifference

For finite exchangeable sequence, set

θN = X1+...+XN
N ∈ {0/N, 1/N, . . . , (N − 1)/N, 1}

Indifference: discrete uniform for finite N

Limit: limN→∞ p(θN)
D→ uniform[0, 1]

Laplace (1812) used
uniform[0, 1] for his prior
probability that the sun would
come up tomorrow

Coordinate dependence for continuous r.v. (Xi versus log Xi )
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Jeffrey’s invariant prior

π(θ) ∝ |H(θ)|1/2dθ, where H is the expected information in
one observation,

H(θ) = EX

[
−∂2log p(X | θ)

∂θ2

∣∣∣∣
θ

]
, (1)

‘uniform’ with respect to the natural metric induced by the
likelihood function (Kass 1989)

Jeffreys’ prior for Bernoulli sampling is beta(1/2, 1/2)

For some likelihoods, Jeffreys’ prior is improper (doesn’t
integrate to 1). Might be used formally
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Conjugate prior distribution

Bernoulli sampling

Set sn =
∑n

i=1 xi

Likelihood:
p(xn|θ) ∝ θsn(1− θ)n−sn

Prior:
π(θ) ∝ θα−1(1− θ)β−1, a
beta(α, β) distribution

Posterior:
∝ θα+sn−1(1−θ)β+n−sn−1,
a beta(α + sn, β + n− sn)
(conjugate) distribution

Exponential family

Likelihood: p(x | θ) =

a(x)h0(θ) exp
[∑d

j=1 cjφj(θ)hj(x)
]

Canonical conjugate prior: p(θ) =

K (t)[h0(θ)]
n0 exp

[∑d
j=1 cjφj(θ)tj

]
Posterior, given n data points: has
parameters n0 + n and sum of
t = (t1, t2, . . . , td) and sufficient
statistics (Bernardo and Smith 1994)
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‘Noninformative’

The uniform[0, 1] distribution is conjugate for Bernoulli
sampling—a beta(1, 1) distribution.

‘Noninformative’ means ‘evenly spread’—a heuristic term

For canonical conjugate prior (for exponential family), the
posterior has parameter n0 + n

Some think of n0 + n as an ‘effective’ number of data points

‘Noninformative’ associated with a small n0

Others

Jaynes (1983): maximum entropy methods

Berger (1994), Kass and Wasserman (1996): Default rules

Useful? Actually informative?

WSC’06 Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation SummaryWhat is Bayes? Prior Probability Asymptotic Theorems Decisions, loss, value of information Entropy and Kullback-Leibler Discrepancy

Outline

1 Getting down to brass tacks
Subjective and Bayesian methods
Assessing prior probability
Asymptotic Theorems
Decisions, loss, and value of information
Entropy and Kullback-Leibler Discrepancy

2 Applications
Uncertainty Analysis
Selecting from Multiple Candidate Distributions
Selecting the Best System
Metamodels

3 Implementation

4 Summary

WSC’06 Bayesian Ideas for Simulation



Getting down To brass tacks Applications Implementation SummaryWhat is Bayes? Prior Probability Asymptotic Theorems Decisions, loss, value of information Entropy and Kullback-Leibler Discrepancy

Classic Analogs for Infinite Exchangeable Sequences

Classical asymptotic theorems (e.g. Billingsley 1986) . . .

laws of large numbers (LLN)

central limit theorem (CLT)

law of iterated logarithm (LIL)

. . . have Bayesian interpretations if considered conditional on mean
and standard deviation of an infinite exchangeable sequence.
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Bayesian LLN

A Bayesian extension of the LLN allows for sample averages to
converge to random variables rather than to ‘true’ means.

Theorem (Bayesian LLN)

If X̄n and Ȳm are respectively the averages of n and m
exchangeable random quantities Xi (the two averages may or may
not have some terms in common), the probability that∣∣X̄n − Ȳm

∣∣ > ε

may be made arbitrarily small by taking n and m sufficiently large
(de Finetti 1990, p. 216 assumes a finite variance).

WSC’06 Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation SummaryWhat is Bayes? Prior Probability Asymptotic Theorems Decisions, loss, value of information Entropy and Kullback-Leibler Discrepancy

Theorem (Posterior Normality)

For each n, let pn(·) be the posterior pdf of the d-dimensional
parameter θn given xn = (x1, . . . , xn), let θ̃n be its mode (MAP),
and define the d × d Bayesian observed information matrix Σ−1

n by

Σ−1
n = −∂2log pn(θ | xn)

∂θ2

∣∣∣∣
θ̃n

. (2)

Then φn = Σ
−1/2
n (θn − θ̃n) converges in distribution to a standard

(multivariate) normal random variable (Bernardo and Smith 1994,
Prop 5.14 needs regularity conditions).

Frequentist analog: asserts that MLE is asymptotically normally
distributed about a ‘true’ θ0 (Law and Kelton 2000), as opposed to
describing uncertainty about θ.
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Decisions under uncertainty

Uncertainty described by probability ⇒ modeler can assess
expected value of information (EVI) of additional data.

EVI is useful in experimental design.

EVI : value of resolving uncertainty with respect to a loss
function L(d , ω) that describes losses when a decision d is
chosen when the state of nature is ω.

Data from experiment can reduce uncertainty about ω, reduce
expected loss.
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Example: What is the mean? Setup

Example adapted from de Groot (1970) illustrates key concepts
used for VIP procedures (Chick and Inoue 2001b)

Decide if unknown mean W of normal distribution (known
σ2) is smaller (decision d = 1) or larger (d = 2) than w0.

Exchangeable samples Xn = (X1,X2, . . . ,Xn), with
p(Xi ) ∼ Normal

(
w , σ2

)
, given W = w , are available

Goal: design experiment (choose n) to balance sampling cost
(cn) and expected opportunity cost if wrong answer chosen

L (1,w) =

{
0 if w ≤ w0

w − w0 if w > w0,

L (2,w) =

{
w0 − w if w ≤ w0

0 if w > w0.

WSC’06 Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation SummaryWhat is Bayes? Prior Probability Asymptotic Theorems Decisions, loss, value of information Entropy and Kullback-Leibler Discrepancy

Example: What is the mean? If we knew. . .

Prior: W ∼ Normal (µ, 1/τ) is conjugate. NOTE: τ is the
precision in our uncertainty about unknown mean, W .

Posterior: Observing Xn = xn would result in

p(w | xn) ∼ Normal
(
z , τ−1

n

)
z = posterior mean of W = E [W | xn] =

τµ + n
σ2 x̄n

τ + n
σ2

τn = posterior precision of W = τ + n/σ2.

τ−1
n equals the asymptotic posterior variance approximation Σn

from theorem
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Example: What is the mean? How much to know. . .

Posterior mean z for unknown w influences the decision, but
depends upon n, which is selected before Xn is seen.

Conditional distribution of X̄n given w is Normal
(
w , σ2/n

)
Predictive distribution p(z) of the posterior mean
Z = E [W | Xn] = (τµ + n

σ2 X̄n)/τn

Mixing over prior π(w) implies a predictive distribution

Z ∼ Normal
(
µ, τ−1

z

)
τz = τ(τ + n/σ2)/(n/σ2)

Note: τ−1
z → 0 when n→ 0 (no new information).

If n→∞, then Var[Z ]→ σ2.
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Example: What is the mean? What is the risk. . .

To minimize risk (sampling cost + expected loss from potentially
incorrect decision), pick n to minimizes a nested expectation

ρ(n) = cn + EXn
[EW [L(d(Xn),W ) | Xn]].

General technique: set L∗(d ,w) = L(d ,w)− L(1,w), which
is 0 if d = 1 and is w0 − w if d = 2. Then

EW [L∗(d(Xn),W ) | Xn] =

{
0 if d = 1

w0 − Z if d = 2.
(3)

To minimize loss in Eq. 3, assert d(Xn) = 2 (‘bigger’) if
posterior mean exceeds threshold, Z > w0, and assert
d(Xn) = 1 (‘smaller’) if Z ≤ w0.
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Example: What is the mean? Expected loss

Decision depends on Xn via Z ; Z has normal distribution

Expected loss found with standard normal loss for newsboy

LN [s] =

∫
s
(t − s)φ(t)dt = φ(s)− s(1− Φ(s))

E [L∗(d(Xn),W )] = EXn
[EW [L∗(d(Xn),W ) | Xn]]

= −τ
−1
2

z LN [τ
1
2
z (w0 − µ)]

Add back E [L(1,W )], use prior for W

E [L(d(Xn),W )] = τ
−1
2 LN [τ

1
2 (w0 − µ)]− τ

−1
2

z LN [τ
1
2
z (w0 − µ)]

EVI and EVPI
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Example: What is the mean? What is the risk. . .

First-order optimality condition

∂ρ

∂n
=

1

2
τ
− 3

2
z φ[τ

1
2
z (w0 − µ)] · −τ2σ2

n2
+ c = 0

For small costs c → 0, the sample size is large. Since τz → τ
as n→∞, the optimal sample size n is asymptotically

n∗ ≈
(

τ
1
2 σ2φ[τ

1
2
z (w0 − µ)]/(2c)

)1/2

.

Asymptotic approximations are a second useful tool to identify
criteria-based sampling plans.

Extensions of these ideas used to derive VIP procedures
(Chick and Inoue 2001b).
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Alternate approximation

Regular exponential family: asymptotic variance
approximation Σn from theorem simplifies to

H−1(θ)/(n0 + n),

where H is the expected information from one observation
(Eq. 1), if canonical conjugate prior distribution is used

Approximate effect of m new samples is to change posterior to

Normal

(
θ̃n,Σn

n0 + n

n0 + n + m

)
.

Used for OCBA (Chen 1996), sampling plans for field data
(Ng and Chick 2001). Frequentist result to obtain CI of
desired size (Law and Kelton 2000)
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Another loss function: discrepancy

Kullback-Leibler discrepancy: difference between distributions

Discrete distributions p̃ and p,

δ(p || p̃) =
∑

p̃i log(p̃i/qi ).

Continuous r.v. X with densities f̃ and fθ = f (x | θ),

δ(fθ || f̃ ) =

∫
f̃ (x) log

f̃ (x)

f (x | θ)
dx .

One use: loss function for eliciting probability. If you believe
the distribution is f̃ , and you lose δ(f || f̃ ) if you provide a
distribution f , then you should honestly report f̃ (Bernardo
1979)
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Discrepancy: Other uses

Select design matrix dΘ of r vectors of inputs (θpi ,θei ,θci )
for i = 1, 2, . . . , r with output Y in order to best differentiate
the posterior distribution of the response parameters ψ from
the prior distribution for ψ (Bayesian D-optimal, Bernardo
1979; Smith and Verdinelli 1980; Ng and Chick 2004)∫

p(Y | dΘ)

(∫
p(ψ | Y) log

p(ψ | Y)

p(ψ)
dψ

)
dY

Select maximum entropy prior distribution (Jaynes 1983)

More later: input distribution selection . . .
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Why Uncertainty Analysis?

Simple Example

µj → Simulation → Yj = 2µj + ej

Input model: X` ∼ Normal
(
µ, σ2

x

)
, known σ2

x

Data: X` observed (` = 1, 2, . . . , n0)

Run r replications with X̄n0 input for µ

Construct 90% CI:

Ȳr ± z0.95
σ̂y√

r

/
Coverage?

If µ is known, expect coverage to be 90%. But µ is not known.
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Why Uncertainty Analysis?

Simple Example

µj → Simulation → Yj = 2µj + ej

Input model: X` ∼ Normal
(
µ, σ2

x

)
, known σ2

x

Data: X` observed (` = 1, 2, . . . , n0)

Run r replications with X̄n0 input for µ

Construct 90% CI:

Ȳr ± z0.95
σ̂y√

r

/
Coverage?

If µ is known, expect coverage to be 90%. But µ is not known.
CI can be meaningless (several authors. . . )
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Why Uncertainty Analysis?

Simple Example

µj → Simulation → Yj = 2µj + ej

Input model: X` ∼ Normal
(
µ, σ2

x

)
, known σ2

x

Data: X` observed (` = 1, 2, . . . , n0)

Run r replications with X̄n0 input for µ

Construct 90% CI:

Ȳr ± z0.95
σ̂y√

r

//∖√
Vtot

Account for parameter uncertainty

Vtot =
σ2

y

r + 4σ2
x

n0
, so try Ȳr ± z0.95

√
Vtot
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Why Uncertainty Analysis?

Simple Example

µj → Simulation → Yj = 2µj + ej

Input model: X` ∼ Normal
(
µ, σ2

x

)
, known σ2

x

Data: X` observed (` = 1, 2, . . . , n0)

Run r replications with X̄n0 input for µ

Construct 90% CI:

Ȳr ± z0.95
σ̂y√

r

//∖√
Vtot

For known mean response g , input parameters θ = (θ1, . . . , θk)

Vtot ≈
σ2

y

r +
∑k

i=1
βiH(θ̃i )

−1βT

i
ni

where gradient βi = ∂g(
˜θ)T

∂θi

∣∣
˜θ

(asymptotics. Cheng & Holland; Ng & Chick; Wilson & Zouaoui)
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Why Uncertainty Analysis? Estimate response

Inputs

θ1 = (µ1, λ1)
θ2 = (µ2, λ2)
θ3 = (µ3, λ3)

-
-
-

'

&

$

%
Simulation -

Yr = g(θ) + σZ

= β0 +
(∑k

i=1 β2i−1µi + β2iλi

)
+β7µ1µ2 + β8µ

2
1 + σZ

Assess Xi` ∼ Normal
(
µi , λ

−1
i

)
for ith source of randomness

Observe data Xi` are observed (i = 1, 2, 3; ` = 1, 2, . . . , ni )

Estimate unknown β with r0 runs (e.g. CCD from DOE)

Vtot =
σ̂2

y

r0
+

k∑
i=1

∂g(θ̃n, β̃r0)

∂θi
Σni

∂g(θ̃n, β̃r0)
T

∂θi︸ ︷︷ ︸
Vpar=O(n−1

i )

+ Σβ ⊗ Σθ︸ ︷︷ ︸
Vresp=O(n−1

i r−1)
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Uncertainty Analysis: Uncertainty Reduction

Goal: Reduce uncertainty,
not just quantify

r more replications
mi more samples from
source of randomness i

Optimization:

min
r ,mi

σ̂2
y

r0 + r
+

k∑
i=1

ξi

ni + mi

+
ζi

(r0 + r)(ni + mi )

r ,mi ≥ 0

CI Coverage (Ng and Chick 2006)
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Uncertainty Analysis

Sensitivity analysis: E [g(θ)] as a function of θ (average out
stochastic uncertainty from u)

Uncertainty analysis: E [Y | E ], with both stochastic and
parameter uncertainty, given all information E
Bayesian Model Average (BMA) estimates EY [Y | E ]

for r = 1, . . . ,R replications
sample parameter θr ∼ p(θ | E)
for i = 1, 2, . . . , n

generate output yri given input θr

end loop
end loop

Generate estimate ȳ =
∑R

r=1
1
R

∑n
i=1

yri
n .
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Variations on Estimating E [Y | E ]

Zouaoui and Wilson (2003): decouple stochastic, parameter
uncertainty; update estimate as new data becomes available
with variations on BMA

Andradóttir and Glynn (2004): biased estimates of E [Y | θ];
quasi-random numbers; quadrature to select inputs θi

Estimate distribution of conditional expectation E [Y | Θ, E ].
Steckley and Henderson (2003) derive asymptotically optimal
ways selecting r and n in BMA to produce a kernel density
estimator (some conditions apply)
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Outline

1 Getting down to brass tacks
Subjective and Bayesian methods
Assessing prior probability
Asymptotic Theorems
Decisions, loss, and value of information
Entropy and Kullback-Leibler Discrepancy

2 Applications
Uncertainty Analysis
Selecting from Multiple Candidate Distributions
Selecting the Best System
Metamodels

3 Implementation

4 Summary
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Basic Problem

Which distribution/parameter to pick?

‘Usual’:
1 Pick q candidate input distributions (e.g. exponential, gamma,

Weibull, lognormal)
2 Find MLE θ̂i for candidates i = 1, . . . , q
3 Goodness-of-fit (χ-squared, K-S, A-D) tests

Concerns:
1 CI coverage if MLE/best distribution selected
2 How to select among unrejected models? . . . (Lindley 1957;

Berger and Pericchi 1996)
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Bayesian Input Selection

BMA applies without change for q candidates
1 Put prior on (M = m, θm), where m ∈ {1, 2, . . . , q}
2 Compute posterior p(m,Θm|E), sample from it in BMA

Chick (2001): stochastic process simulation context; moment
matching method for commensurate prior distributions

Zouaoui and Wilson (2004): decouple stochastic uncertainty
from two types of structural uncertainty (candidate model &
parameters); variance reduction for BMA; numerical analysis

Model selected closest to the true model in sense of
Kullback-Leibler divergence (Berk 1966; Bernardo and Smith
1994; Dmochowski 1999).
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Ranking and selection procedures differ?

What is it for?

Select the ‘best’ of a finite set
Best identified by mean simulation response

What are the approaches?

IZ, Indifference zone:
P(CS) ≥ 1− α, δ∗, repeated applications of procedure
VIP, Bayesian value of information procedures:
Like selection of mean bigger or smaller than threshold,
Bayesian inference, loss, EVI
OCBA, Chen et al.:
Heuristic, allocates samples to improve Bayesian PCS using
‘thought experiment’ σ2/r0 → σ2/(r0 + r)
Economic. Chick and Gans (2005) propose a new economic
approach, includes costs of replications and discounting,
maximizes E[NPV] of decisions with simulation.
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VIP procedures

Motivated by ‘statistical conservativeness’ of IZ approaches

Two-stage: Unknown means of several systems.

Opportunity cost and 0-1 loss (P(CS))
Variances also unknown, different (conjugate prior, student
marginal for mean)
Optimal solution unknown except special cases
Asymptotic approximation, Bonferroni bound for loss

Sequential:

In theory, should improve things
Behrens-Fisher
Seems to work quite well
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Procedure LL(B), for opportunity cost (linear loss)

1 Specify the first-stage sample size r0. Take independent
replications yi1, . . . , yi r0 , for each system, i = 1, . . . , k

2 Compute all first-stage sample means x̄i =
∑r0

i=1 yij/r0 and

sample variances σ̂2
i =

Pr0
j=1(yij−x̄i )

2

r0−1 , order statistics

x̄[1] ≤ . . . ≤ x̄[k], and λi ,k = r0/(σ̂2
[k] + σ̂2

[i ])

3 If sampling budget is B, run ri more independent replications,

r[i ] =
B +

∑
j∈S r0cj∑

j∈S

(
cjc[i ]σ̂

2
j ηj

σ̂2
[i ]

η[i ]

)1/2
− r0

η[i ] = (λi ,k)1/2 (r0−1)+λi,k (x̄[k]−x̄[i ])
2

(r0−1)−1 φr0−1[(λi ,k)1/2(x̄[k] − x̄[i ])] if

[i ] 6= [k] and η[k] =
∑k−1

j=1 η[j]

4 Select system with largest ¯̄xi =
∑r0+ri

j=1 yij/(r0 + ri )
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Sample Comparison with Combined Procedure, C (MDM)
Figure Number of systems, k

of merit Proc. 2 5 10 100

ANR All 738 3,429 8,784 42,862

Empirical C 0.8363 0.9140 0.9323 0.9763
P(CS) 0-1(B) 0.8527∗ 0.9117 0.9480∗ 0.9937∗

LL(B) 0.8500 0.9293∗ 0.9660∗ 0.9987∗

Empirical C 1.0000 0.9943 0.9990 1.0000
frac. ‘good’ 0-1(B) 1.0000 0.9953 0.9977 0.9997
selections LL(B) 1.0000 0.9953 0.9993 1.0000

Expected C 0.8336 0.8379 0.8649 0.9318
posterior 0-1(B) 0.8446∗ 0.8339 0.8821∗ 0.9717∗

PCS LL(B) 0.8470∗ 0.8462∗ 0.9022∗ 0.9842∗

Expected C 0.0176 0.0138 0.0104 0.0037
bound, 0-1(B) 0.0157∗ 0.0128∗ 0.0075∗ 0.0012∗

opp. cost LL(B) 0.0154∗ 0.0110∗ 0.0055∗ 0.0005∗

Monotone decreasing means (MDM). ∗ indicates statistically
significant difference
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VIP: Common Random Numbers

Common random numbers (CRN) can
sharpen contrasts between systems (e.g.
same simulated demand pattern)

Two-stage with screening (Chick and Inoue
2001a)

Run subset of systems in stage 2
Use ‘missing data’ formulas to update
Select from even screened systems

Matrix intensive, heuristic provided
Stage 1

1 2 3 4 5 . . . k

WSC’06 Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation SummaryUncertainty Analysis Input Distribution Selection Ranking/Selection Metamodels

VIP: Common Random Numbers

Common random numbers (CRN) can
sharpen contrasts between systems (e.g.
same simulated demand pattern)

Two-stage with screening (Chick and Inoue
2001a)

Run subset of systems in stage 2
Use ‘missing data’ formulas to update
Select from even screened systems

Matrix intensive, heuristic provided
Stage 1

Stage 2

1 2 3 4 5 . . . k
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VIP: Common Random Numbers

Common random numbers (CRN) can
sharpen contrasts between systems (e.g.
same simulated demand pattern)

Two-stage with screening (Chick and Inoue
2001a)

Run subset of systems in stage 2
Use ‘missing data’ formulas to update
Select from even screened systems

Matrix intensive, heuristic provided
Stage 1

Stage 2 Infer

1 2 3 4 5 . . . k
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Summaries

VIP procedures have solid basis, perform numerically quite
well Chick and Inoue (2001, 2001a, 2002).

Matlab: All procedures (0-1 or opportunity cost loss; two-stage
or independent sequential; two-stage CRN)
C: Independent replications, two-stage or sequential, both loss
functions, plus variants (work in progress) to achieve Bayesian
predictive targets for PCS and EOC

Can show asymptotic relation between certain VIP and OCBA
procedures

Specific Bayesian procedures with new stopping rules highly
effective (Branke, Chick, and Schmidt 2005)
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Metamodels

Normal linear model

Y =

p∑
`=1

g`(θ)β` + Z (θ;U) = gT (θ)β + Z (θ;U), (4)

Gaussian random function (GRF) - kriging
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Normal linear model

Y =

p∑
`=1

g`(θ)β` + Z (θ;U) = gT (θ)β + Z (θ;U), (5)

Model

Known: regression functions g1, . . . , gp

Unknown: coefficients β, variance of zero-mean noise Z (·)
Conjugate prior p(β, σ2) (if all factors active)

Inverted gamma distribution for unknown variance σ2

Multivariate normal distribution for β given σ2,
Raftery, Madigan, and Hoeting (1997) describe a relatively
‘uninformative’ prior distribution, ‘good’ results

Identifying important factors like input distribution selection

2p candidate models
KL discrepancy-based design criterion balances factor
identification and parameter estimation (Ng and Chick 2004)
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Gaussian random functions (GRF)

Well-known in deterministic simulations, particularly in
geostatistics (Cressie 1993; Santner et al. 2003)

Provide flexibility that the linear model does not, and are
useful when g takes a long time to compute.

GRF for unknown nonstochastic g (no random numbers u) is

Y (θ) =

p∑
`=1

g`(θ)β` + Z (θ) = gT (θ)β + Z (θ) (6)

for known regression functions g1, . . . , gp of Rd , unknown
regression coefficients β, and a zero-mean random
second-order process so that for any distinct inputs
θ1, . . . ,θm, the vector (Y1, . . . ,Ym) has (nonindependent)
multivariate normal distribution, conditional on β.
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Inference with GRFs

GRF: Determined by mean gT (θ)β and covariance function

C ∗(θ1,θ2) = Cov(Y (θ1),Y (θ2))

Common to assume strong stationarity, so

C ∗(θ1,θ2) = C (θ1 − θ2)

Inference for g(θ) at θr+1 not yet input to simulation model
with correlation function R(h) = C (h)/C (0) for h ∈ Rd .
Example: power exponential R(h) =

∏
exp[−|hi/γi |pi ] for

pi ∈ [0, 2].

Kriging (geostatistics) is best linear unbiased prediction
(BLUP) for g(θr+1)
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More GRF

Assessment of uncertainty in g(θr+1)⇒ experimental design
technique to choose inputs to reduce response uncertainty
(Santner et al. 2003)

Also see tutorial by van Beers and Kleijnen (2004)

Deterministic simulation: (Sacks et al. 1989; O’Hagan et al.
1999; Kennedy and O’Hagan 2001; Santner et al. 2003;
van Beers and Kleijnen 2003).

More work is needed for GRFs in the stochastic simulation
context.
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Implementation

Issues:

Maximize (MLE θ̂ or MAP θ̃)

Integrate (marginal distribution
p(θ1 | xn) from p(θ1, θ2 | xn)),
or proportionality constant
c−1 =

∫
f (xn | θ)dπ(θ))

Simulate (sample from p(θ | xn)
to estimate E [α(Θ)])

Tools:

Newton-Raphson, Nelder-Mead,
expectation-maximization (EM)
algorithm, . . .

Quadrature, normal
approximation, data
augmentation (IP algorithm),
importance sampling (IS)

Inversion, importance sampling
(IS), Markov Chain Monte Carlo
(MCMC)

Evans and Swartz 1995; Tanner 1996; Gilks et al. 1996; Devroye
2006, . . . .
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Metropolis-Hastings: An MCMC Algorithm

Target: Sample from p(θ | E)
Capable: Easily sample from q(· | θt−1)

Initialize t = 0, θ0

for t = 1, 2, . . .
sample a candidate θ ∼ q(· | θt−1)
compute acceptance probability

α(θt−1, θ) = min
{

1, p(θ|E)·q(θt−1|θ)
p(θt−1|E)·q(θ|θt−1)

}
generate an independent u ∼ uniform[0, 1]
if u ≤ α(θt−1, θ) then set θt ← θ

otherwise set θt ← θt−1

set t ← t + 1
end loop

Sample path
NTotal[1]

iteration
1095010900

   20.0

   40.0

   60.0

   80.0

w[1] sample: 10000

    0.0    25.0    50.0    75.0

    0.0

   0.02

   0.04

   0.06

Density Estimate
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Approximating Posterior Distributions: Pros and Cons

Exact Posterior

Exact

Good if simple closed form
known

May be hard in general
(mixtures, missing data,
marginal distribution, curse of
dimensionality?)

Here, gene linkage example (Tanner
1996)

prob(theta|Y): Hit F9 for more simulated imputations
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Approximating Posterior Distributions: Pros and Cons

Asymptotic normality (from theorem)

Normal
(
θ̃n,Σn

)
Relatively easy to compute

Requires many data points
(n > 20d)

Does not model skew, etc.

prob(theta|Y): Hit F9 for more simulated imputations
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Approximating Posterior Distributions: Pros and Cons

Data Augmentation (IP algorithm)

p(θ|E) =
∫

p(θ|Z , E)p(Z |E),
average over Z = ‘missing data’

1 Set i = 0; g0(θ) = current
estimate of p(θ|E)

2 Generate z1, z2, . . . , zm from
gi (θ) by

1 Sample θ1, . . . , θm from
gi (θ)

2 Sample z1, . . . , zm from
p(Z |θi , E)

3 gi+1(θ) =
∑m

j=1 p(θ|zj , E)/m

prob(theta|Y): Hit F9 for more simulated imputations
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Approximating Posterior Distributions: Pros and Cons

MCMC with histogram

General tool to sample
(approximately) from posterior

Complicated models possible

Output analysis issues
(convergence)

Time-average (IP was average
of distributions)

MCMC can average
distributions, too

prob(theta|Y): Hit F9 for more simulated imputations
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Some Tools

Handcode: Matlab, C, Gauss

WinBUGS (Spiegelhalter et al. 1996)
(http://www.mrc-bsu.cam.ac.uk/
bugs/welcome.shtml)

R (http://www.r-project.org/),
S-PLUS packages, BOA add-on
(http://www.public-health.
uiowa.edu/boa/)

Uncertainty analysis in spreadsheet
Monte Carlo applications are available
(e.g. Winston 2000).

Most DEDS Commercial Tools:
cumbersome to implement BMA

Line: Linear Regression 

for(i IN 1 : N)

sigma

taubetaalpha

mu[i]

Y[i]

 
 model 
 { 
  for( i in 1 : N ) { 
   Y[i] ~ dnorm(mu[i],tau) 
   mu[i] <- alpha + beta * (x[i] - xbar) 
  } 
  tau ~ dgamma(0.001,0.001) sigma <- 1 / sqrt(tau) 
  alpha ~ dnorm(0.0,1.0E-6) 
  beta ~ dnorm(0.0,1.0E-6)  
 } 
 

Data 
 list(x = c(1, 2, 3, 4, 5), Y= c(1, 3, 3, 3, 5), xbar = 3, N = 5) 
  

Inits 
 list(alpha = 0, beta = 0, tau = 1) 
 list(alpha = 1, beta = 0.5, tau = 0.5) 
  
 

 

0 1 2 3 4

−
1

0
1

2
3

Scatterplot

alpha

be
ta
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Bayesian Methods for Stochastic Process Simulation

Themes:

Represent all uncertainty with probability, update with Bayes’
rule, expected value of information for sampling decisions
Use simulation to efficiently estimate quantities of interest for
a Bayesian analysis

Bayesian, decision theory fits well with managerial/economic
mindset

Applications: input distribution selection, uncertainty analysis,
experimental design, ranking and selection

Asymptotic approximations helpful when exact optimal
solutions are hard to find
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Research opportunities include

More links to economics of simulation analysis

Input modeling and uncertainty analysis (kernel estimation of
conditional means; the effect of different candidate
distributions on uncertainty; prior distributions elicitation;
calibration/inverse problem)

Response modeling (extend the Gaussian random field work
for stochastic simulation; nonasymptotic sampling plans for
input parameter inference to optimally reduce output
uncertainty; reasoning about models; calibration. . . )

Experimental design (quantiles, non-expected value goals;
CRN for unknown input parameters for ranking and selection;
non-Gaussian output for ranking and selection, GRFs)

Improved computational tools (e.g. MCMC, software interop)
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Andradóttir, S., and P. W. Glynn. 2004.

Computing Bayesian means using simulation.

Georgia Tech, ISYE Technical Report.

Berger, J. O. 1994.

An overview of robust Bayesian analysis.

TEST 3:5–124.

Berger, J. O., and L. R. Pericchi. 1996.

The intrinsic Bayes factor for model selection and prediction.

Journal of the American Statistical Association 91:109–122.

Berk, R. 1966.

Limiting behaviour of posterior distributions when the model is
incorrect.

Annals of Mathematical Statistics 37 (1): 51–58.

Bernardo, J. 1979.
WSC’06 Bayesian Ideas for Simulation



Getting down To brass tacks Applications Implementation Summary

Expected information as expected utility.

Annals of Statistics 7:686–690.

Bernardo, J. M., and A. F. M. Smith. 1994.

Bayesian theory.

Chichester, UK: Wiley.

Billingsley, P. 1986.

Probability and Measure. 2nd ed.

New York: John Wiley & Sons, Inc.

Branke, J., S. E. Chick, and C. Schmidt. 2005.

Selecting a selection procedure.

Technology and Operations Management Area, INSEAD, Working
Paper.

Chen, C.-H. 1996.

A lower bound for the correct subset-selection probability and its
application to discrete event simulations.

WSC’06 Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation Summary

IEEE Transactions on Automatic Control 41 (8): 1227–1231.

Chick, S. E. 1997.

Bayesian analysis for simulation input and output.

In Proc. 1997 Winter Simulation Conference, ed. S. Andradóttir,
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