BAYESIAN IDEAS FOR DISCRETE EVENT SIMULATION: WHY, WHAT AND HOW

Stephen E. Chick¹

¹Technology and Operations Management **INSEAD** Fontainebleau. France

2006 Winter Simulation Conference

INSEAD

Bayesian Ideas for Simulation

Why Bayesian methods?

• Glynn (1986): *Uncertainty* analysis. Not $\alpha = h(E[Y])$, but

$$\alpha(\theta) = h(E[Y \mid \theta])$$

- Unknown parameters, $p(\theta)$, data from modeled system to update
 - Mean $E[\alpha(\Theta)]$
 - **2** Distribution of $\alpha(\Theta)$ induced by Θ
 - **3** Credible set: θ_{lo} , θ_{hi} so $p([h(\theta_{lo}), h(\theta_{hi})]) = 95\%$

- Chick (1997): Reviewed work to that date.
- Suggested broader range of application.
 - Ranking and selection
 - 2 Response surface modeling
 - Experimental design

Why Bayesian methods in Simulation?



$$Y_r = g(\theta_p, \theta_c; \mathbf{U}_r)$$

- Example: Single Server Queue (M/M/1): $\theta_p = (\lambda, \mu_i) =$ arrival and service rates (server i = 1, 2)
- Output: $Y \approx \lambda/(\mu_i \lambda) + \text{noise}$
- Simulation: Analyze stochastic processes via sample path generation. Inform decisions: pick control parameter θ_c , to estimate or to optimize value $h(E[Y \mid \theta_p, \theta_c])$
- Bayesian as alternative to frequentist

INSEAD

WSC'06 Bayesian Ideas for Simulation

The Point of Today

- Review some basic concepts of subjective probability, Bayesian statistics, decision theory.
- Identify several applications to simulation experiments.
- Summarize some implementation issues.
- Identify some areas for future work.

INSEAD

Related work

See the WSC (2006) paper and chapter in Henderson and Nelson book for a long (but incomplete) citation list for work over the last 10 years on:

- Formal Bayes or decision theoretic theory
- Applications: scheduling, insurance, finance, traffic modeling, public health, waterway safety, supply chain and other areas
- Bayes and deterministic simulations
- Favorite books on subjective and Bayesian probability and decision theory

Public Policy and Health Economics: increasingly uses simulation (in addition to decision trees, Markov chains), and increasingly requires probabilistic sensitivity analysis.

INSEAD

Bayesian Ideas for Simulation

Outline

Getting down to brass tacks

Getting down To brass tacks Applications Implementation S

- Subjective and Bayesian methods
- Assessing prior probability
- Asymptotic Theorems
- Decisions, loss, and value of information
- Entropy and Kullback-Leibler Discrepancy
- 2 Applications
 - Uncertainty Analysis
 - Selecting from Multiple Candidate Distributions
 - Selecting the Best System
 - Metamodels
- 3 Implementation
- Summary

INSEAD

WSC'06

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems De-

Getting down to brass tacks

Probability of 7 heads in the first 10 flips?

How to approach the problem...

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems D

What is Bayes? Prior Probability Asymptotic Theorems

Getting down to brass tacks

Probability of 7 heads in the first 10 flips?

Comte d'Alembert (18th cent.)

- Indifference says maybe 1/11?
- But wait, for one flip, probability of heads is 1/2?

See Savage (1972) and Kreps (1988).

INSEAD

Getting down to brass tacks

Probability of 7 heads in the first 10 flips?

Dwight (an unreconstructed frequentist)

- $\frac{10!}{7!3!}\theta^7(1-\theta)^3$, where $\theta = \lim_{n\to\infty} \frac{X_1 + ... + X_n}{n}$ (a.e.).
- If we rent Madison Square garden and flip the tack repeatedly, I can estimate θ for you.
- What confidence and how accurately do you need to know θ ?

Hmmm...

INSEAD

Bayesian Ideas for Simulation

I can estimate θ for you.

Probability of 7 heads in the first 10 flips? Dwight (an unreconstructed frequentist)

Getting down to brass tacks

We're more than just an arena...

• What confidence and how accurately do you need to know θ ?

Let's reformulate the question . . .

INSEAD

• $\frac{10!}{7!3!}\theta^7(1-\theta)^3$, where $\theta = \lim_{n\to\infty} \frac{X_1 + ... + X_n}{n}$ (a.e.).

• If we rent Madison Square garden and flip the tack repeatedly,

Bayesian Ideas for Simulation

Why am I a Bayesian?

Will you accept the following bet now? You get \$100 if there are 7 heads, but you pay \$5 if not.

more from Dwight

- I can't answer until I have a good idea of what θ is.
- Guessing wouldn't be scientific.

INSEAD

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems D Why am I a Bayesian?

Ralph

Probability of 7 heads in the first 10 flips?

- I'm willing to use probability for personal judgments
- $\int_0^1 \frac{10!}{7!2!} \theta^7 (1-\theta)^3 \pi(\theta) d\theta$, where $\pi(\theta)$ is a prior probability.
- I'll update with Bayes' rule, to get posterior probability

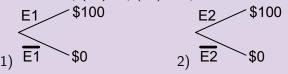
$$p(\theta \mid \mathbf{x}_n) = \frac{\pi(\theta)p(\mathbf{x}_n \mid \theta)}{p(\mathbf{x}_n)} = \frac{\pi(\theta)\prod_{i=1}^n p(x_i \mid \theta)}{\int p(\mathbf{x}_n \mid \theta)d\pi(\theta)}$$

Why am I a Bayesian?

Lennv

Probability of 7 heads in the first 10 flips?

• Fair bets: I set $p(E_1) > p(E_2)$ if I prefer the first bet:



Exchangeability (weaker than i.i.d.)

$$p(x_1, x_2, \ldots, x_n) = p(x_{s_1}, x_{s_2}, \ldots, x_{s_n})$$

for permutations s on $\{1, 2, ..., n\}$ for arbitrary n.

INSEAD

WSC'06

Bayesian Ideas for Simulation

Why am I a Bayesian?

Lennv

- Exchangeability plus conceptually infinite N imply $\lim_{N\to\infty} p(7 \text{ heads in first } 10 \text{ flips}) = \int_0^1 \frac{10!}{7!3!} \theta^7 (1-\theta)^3 dF(\theta)$
- de Finetti (1990)-like representation
- Ralph assumed conditional i.i.d., while Lenny derives formula from exchangeability
- Probability defined by bet preferences, not repeated outcomes

INSEAD

WSC'06

Bayesian Ideas for Simulation

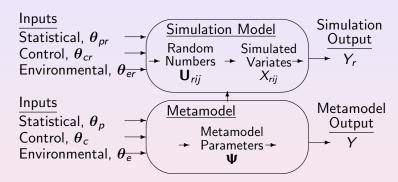
Implication for Simulation: $Y_r = g(\theta_p, \theta_e, \theta_c; \mathbf{U}_r)$

Simulation Statistical, θ_{pr} Control, θ_{cr} Environmental, θ_{er} Simulation iviouei
Random Simulated
Numbers Variates U_{rij} X_{rij} Simulation Model Output → Y_r

• Input selection: Infinite exchangeable sequence X_{ij} from modeled system to infer ith statistical input, θ_{pi}

INSEAD

Implication for Simulation: $Y_r = g(\theta_p, \theta_e, \theta_c; U_r)$



- Input selection: Infinite exchangeable sequence X_{ii} from modeled system to infer ith statistical input, θ_{pi}
- Metamodeling: Infinite exchangeable Y_r to infer Ψ .

Part of the process

- Establish exchangeability arguments, posit potential likelihood functions for observables, given unknown quantities
- Assess prior distributions for unknown quantities
- Relevant asymptotic theorems
- Decisions, loss, and value of information
 - ranking and selection,
 - other experimental design issues

INSEAD

Bayesian Ideas for Simulation

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S

Getting down to brass tacks

Asymptotic Theorems

Uncertainty Analysis

Selecting the Best System

2 Applications

Assessing prior probability

• Subjective and Bayesian methods

 Decisions, loss, and value of information Entropy and Kullback-Leibler Discrepancy

• Selecting from Multiple Candidate Distributions

Outline

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems Do

Principle of Indifference

Metamodels

Implementation

Summarv

For finite exchangeable sequence, set

$$\theta_N = \frac{X_1 + \dots + X_N}{N} \in \{0/N, 1/N, \dots, (N-1)/N, 1\}$$

- Indifference: discrete uniform for finite N
- Limit: $\lim_{N\to\infty} p(\theta_N) \xrightarrow{\mathcal{D}} \text{uniform}[0,1]$
- Laplace (1812) used uniform[0, 1] for his prior probability that the sun would come up tomorrow

• Coordinate dependence for continuous r.v. $(X_i \text{ versus log } X_i)$

INSEAD

INSEAD

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems De-

Subjective Methods

We need a prior distribution for unknown parameters. For a Bernoulli outcome ... de Finetti (1990), Savage (1972) require You to assess your personal belief, $\pi(\theta)$ to describe $p(\Theta \leq \theta)$

- Important gain in flexibility
- Consistent with expected value decision theory
- Kahneman, Slovic, and Tversky (1982) describe difficulties with elicitation . . .

Some seek 'automated' methods

Jeffrey's invariant prior

• $\pi(\theta) \propto |H(\theta)|^{1/2} d\theta$, where H is the expected information in one observation.

$$H(\theta) = E_X \left[-\frac{\partial^2 \log p(X \mid \theta)}{\partial \theta^2} \Big|_{\theta} \right], \tag{1}$$

'uniform' with respect to the natural metric induced by the likelihood function (Kass 1989)

- Jeffreys' prior for Bernoulli sampling is beta(1/2, 1/2)
- For some likelihoods, Jeffreys' prior is improper (doesn't integrate to 1). Might be used formally

INSEAD

Bayesian Ideas for Simulation

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems De

'Noninformative'

- The uniform[0, 1] distribution is conjugate for Bernoulli sampling—a beta(1,1) distribution.
- 'Noninformative' means 'evenly spread'—a heuristic term
- For canonical conjugate prior (for exponential family), the posterior has parameter $n_0 + n$
- Some think of $n_0 + n$ as an 'effective' number of data points
- 'Noninformative' associated with a small n_0

Others

- Jaynes (1983): maximum entropy methods
- Berger (1994), Kass and Wasserman (1996): Default rules Useful? Actually informative?

INSEAD

Conjugate prior distribution

Bernoulli sampling

- Set $s_n = \sum_{i=1}^n x_i$
- Likelihood: $p(\mathbf{x}_n|\theta) \propto \theta^{s_n} (1-\theta)^{n-s_n}$
- Prior: $\pi(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$, a $beta(\alpha, \beta)$ distribution
- Posterior: $\propto heta^{lpha+s_n-1} (1- heta)^{eta+n-s_n-1}$ a beta $(\alpha + s_n, \beta + n - s_n)$ (conjugate) distribution

Exponential family

- Likelihood: $p(x \mid \theta) =$ $a(x)h_0(\theta) \exp \left[\sum_{j=1}^d c_j \phi_j(\theta)h_j(x)\right]$
- Canonical conjugate prior: $p(\theta) =$ $K(\mathbf{t})[h_0(\theta)]^{n_0} \exp \left[\sum_{j=1}^d c_j \phi_j(\theta) t_j\right]$
- Posterior, given *n* data points: has parameters $n_0 + n$ and sum of $\mathbf{t} = (t_1, t_2, \dots, t_d)$ and sufficient statistics (Bernardo and Smith 1994)

INSEAD

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems D

Outline

- Getting down to brass tacks
 - Subjective and Bayesian methods
 - Assessing prior probability
 - Asymptotic Theorems
 - Decisions, loss, and value of information
 - Entropy and Kullback-Leibler Discrepancy
- 2 Applications
 - Uncertainty Analysis
 - Selecting from Multiple Candidate Distributions
 - Selecting the Best System
 - Metamodels
- Summary

Classic Analogs for Infinite Exchangeable Sequences

Classical asymptotic theorems (e.g. Billingsley 1986) ...

- laws of large numbers (LLN)
- central limit theorem (CLT)
- law of iterated logarithm (LIL)

... have Bayesian interpretations if considered conditional on mean and standard deviation of an infinite exchangeable sequence.

INSEAD

Bayesian Ideas for Simulation

Theorem (Posterior Normality)

For each n, let $p_n(\cdot)$ be the posterior pdf of the d-dimensional parameter θ_n given $\mathbf{x}_n = (x_1, \dots, x_n)$, let $\tilde{\theta}_n$ be its mode (MAP), and define the d \times d Bayesian observed information matrix Σ_n^{-1} by

$$\Sigma_n^{-1} = -\frac{\partial^2 \log p_n(\theta \mid \mathbf{x}_n)}{\partial \theta^2} \bigg|_{\tilde{\theta}_n}.$$
 (2)

Then $\phi_n = \sum_{n=1}^{n-1/2} (\theta_n - \tilde{\theta}_n)$ converges in distribution to a standard (multivariate) normal random variable (Bernardo and Smith 1994, Prop 5.14 needs regularity conditions).

Frequentist analog: asserts that MLE is asymptotically normally distributed about a 'true' θ_0 (Law and Kelton 2000), as opposed to describing uncertainty about θ .

INSEAD

Bayesian LLN

A Bayesian extension of the LLN allows for sample averages to converge to random variables rather than to 'true' means.

Theorem (Bayesian LLN)

If \bar{X}_n and \bar{Y}_m are respectively the averages of n and m exchangeable random quantities X_i (the two averages may or may not have some terms in common), the probability that

$$\left|\bar{X}_n - \bar{Y}_m\right| > \epsilon$$

may be made arbitrarily small by taking n and m sufficiently large (de Finetti 1990, p. 216 assumes a finite variance).

INSEAD

Outline

- Getting down to brass tacks
 - Subjective and Bayesian methods
 - Assessing prior probability
 - Asymptotic Theorems
 - Decisions, loss, and value of information
 - Entropy and Kullback-Leibler Discrepancy
- 2 Applications
 - Uncertainty Analysis
 - Selecting from Multiple Candidate Distributions
 - Selecting the Best System
 - Metamodels
- Summary

Decisions under uncertainty

- Uncertainty described by probability ⇒ modeler can assess expected value of information (EVI) of additional data.
- EVI is useful in experimental design.
- EVI : value of resolving uncertainty with respect to a loss function $\mathcal{L}(d,\omega)$ that describes losses when a decision d is chosen when the state of nature is ω .
- Data from experiment can reduce uncertainty about ω , reduce expected loss.

INSEAD

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems Dec

Example: What is the mean? If we knew...

- Prior: $W \sim \text{Normal}(\mu, 1/\tau)$ is conjugate. NOTE: τ is the precision in our uncertainty about unknown mean, W.
- Posterior: Observing $X_n = x_n$ would result in

$$p(w \mid \mathbf{x}_n) \sim \text{Normal}(z, \tau_n^{-1})$$
 $z = \text{posterior mean of } W = E[W \mid \mathbf{x}_n] = \frac{\tau \mu + \frac{n}{\sigma^2} \overline{\mathbf{x}}_n}{\tau + \frac{n}{\sigma^2}}$ $\tau_n = \text{posterior precision of } W = \tau + n/\sigma^2.$

 τ_n^{-1} equals the asymptotic posterior variance approximation Σ_n from theorem

INSEAD

Example adapted from de Groot (1970) illustrates key concepts used for VIP procedures (Chick and Inoue 2001b)

- Decide if unknown mean W of normal distribution (known σ^2) is smaller (decision d=1) or larger (d=2) than w_0 .
- Exchangeable samples $\mathbf{X}_n = (X_1, X_2, \dots, X_n)$, with $p(X_i) \sim \text{Normal}(w, \sigma^2)$, given W = w, are available
- Goal: design experiment (choose n) to balance sampling cost (cn) and expected opportunity cost if wrong answer chosen

$$\mathcal{L}(1, w) = \begin{cases} 0 & \text{if } w \leq w_0 \\ w - w_0 & \text{if } w > w_0, \end{cases}$$

$$\mathcal{L}(2, w) = \begin{cases} w_0 - w & \text{if } w \leq w_0 \\ 0 & \text{if } w > w_0. \end{cases}$$

INSEAD

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems De Example: What is the mean? How much to know...

- Posterior mean z for unknown w influences the decision, but depends upon n, which is selected before \mathbf{X}_n is seen.
- Conditional distribution of \bar{X}_n given w is Normal $(w, \sigma^2/n)$
- Predictive distribution p(z) of the posterior mean $Z = E[W \mid \mathbf{X}_n] = (\tau \mu + \frac{n}{\sigma^2} \bar{X}_n) / \tau_n$
- Mixing over prior $\pi(w)$ implies a predictive distribution

$$Z \sim \text{Normal}(\mu, \tau_z^{-1})$$

 $\tau_z = \tau(\tau + n/\sigma^2)/(n/\sigma^2)$

Note: $\tau_{\star}^{-1} \to 0$ when $n \to 0$ (no new information). If $n \to \infty$, then $Var[Z] \to \sigma^2$.

Example: What is the mean? What is the risk...

To minimize risk (sampling cost + expected loss from potentially incorrect decision), pick n to minimizes a nested expectation

$$\rho(n) = cn + E_{\mathbf{X}_n}[E_W[\mathcal{L}(d(\mathbf{X}_n), W) \mid \mathbf{X}_n]].$$

• General technique: set $\mathcal{L}^*(d, w) = \mathcal{L}(d, w) - \mathcal{L}(1, w)$, which is 0 if d=1 and is w_0-w if d=2. Then

$$E_W[\mathcal{L}^*(d(\mathbf{X}_n), W) \mid \mathbf{X}_n] = \begin{cases} 0 & \text{if } d = 1 \\ w_0 - Z & \text{if } d = 2. \end{cases}$$
 (3)

• To minimize loss in Eq. 3, assert $d(\mathbf{X}_n) = 2$ ('bigger') if posterior mean exceeds threshold, $Z > w_0$, and assert $d(\mathbf{X}_n) = 1$ ('smaller') if $Z \leq w_0$.

INSEAD

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems Dec

Example: What is the mean? What is the risk...

First-order optimality condition

$$\frac{\partial \rho}{\partial n} = \frac{1}{2} \tau_z^{-\frac{3}{2}} \phi \left[\tau_z^{\frac{1}{2}} (w_0 - \mu)\right] \cdot \frac{-\tau^2 \sigma^2}{n^2} + c = 0$$

ullet For small costs c o 0, the sample size is large. Since $au_z o au$ as $n \to \infty$, the optimal sample size n is asymptotically

$$n^* pprox \left(\tau^{\frac{1}{2}} \sigma^2 \phi [\tau_z^{\frac{1}{2}} (w_0 - \mu)] / (2c) \right)^{1/2}.$$

- Asymptotic approximations are a second useful tool to identify criteria-based sampling plans.
- Extensions of these ideas used to derive VIP procedures (Chick and Inoue 2001b).

INSEAD

Example: What is the mean? Expected loss

- Decision depends on X_n via Z; Z has normal distribution
- Expected loss found with standard normal loss for newsboy

$$L_{N}[s] = \int_{s} (t-s)\phi(t)dt = \phi(s) - s(1-\Phi(s))$$

$$E[\mathcal{L}^{*}(d(\mathbf{X}_{n}), W)] = E_{\mathbf{X}_{n}}[E_{W}[\mathcal{L}^{*}(d(\mathbf{X}_{n}), W) \mid \mathbf{X}_{n}]]$$

$$= -\tau_{z}^{\frac{-1}{2}}L_{N}[\tau_{z}^{\frac{1}{2}}(w_{0}-\mu)]$$

• Add back $E[\mathcal{L}(1, W)]$, use prior for W

$$E[\mathcal{L}(d(\mathbf{X}_n), W)] = \tau^{\frac{-1}{2}} L_N[\tau^{\frac{1}{2}}(w_0 - \mu)] - \tau_z^{\frac{-1}{2}} L_N[\tau_z^{\frac{1}{2}}(w_0 - \mu)]$$

EVI and EVPI

Alternate approximation

 Regular exponential family: asymptotic variance approximation Σ_n from theorem simplifies to

$$H^{-1}(\theta)/(n_0+n),$$

where H is the expected information from one observation (Eq. 1), if canonical conjugate prior distribution is used

• Approximate effect of m new samples is to change posterior to

Normal
$$\left(\tilde{\theta}_n, \Sigma_n \frac{n_0 + n}{n_0 + n + m}\right)$$
.

 Used for OCBA (Chen 1996), sampling plans for field data (Ng and Chick 2001). Frequentist result to obtain CI of desired size (Law and Kelton 2000)

INSEAD

• Kullback-Leibler discrepancy: difference between distributions

 $\delta(p \mid\mid \tilde{p}) = \sum \tilde{p}_i \log(\tilde{p}_i/q_i).$

 $\delta(f_{\theta} \mid\mid \tilde{f}) = \int \tilde{f}(x) \log \frac{\tilde{f}(x)}{f(x \mid \theta)} dx.$

One use: loss function for eliciting probability. If you believe

the distribution is \tilde{f} , and you lose $\delta(f || \tilde{f})$ if you provide a distribution f, then you should honestly report \tilde{f} (Bernardo

• Continuous r.v. X with densities \tilde{f} and $f_{\theta} = f(x \mid \theta)$,

Outline

- Getting down to brass tacks
 - Subjective and Bayesian methods
 - Assessing prior probability
 - Asymptotic Theorems
 - Decisions, loss, and value of information
 - Entropy and Kullback-Leibler Discrepancy
- 2 Applications
 - Uncertainty Analysis
 - Selecting from Multiple Candidate Distributions
 - Selecting the Best System
 - Metamodels
- Summarv

INSEAD

Bayesian Ideas for Simulation

1979)

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking

Outline

- - Subjective and Bayesian methods

Another loss function: discrepancy

Discrete distributions p
 and p.

- Assessing prior probability
- Asymptotic Theorems
- Decisions, loss, and value of information
- Entropy and Kullback-Leibler Discrepancy
- 2 Applications
 - Uncertainty Analysis
 - Selecting from Multiple Candidate Distributions
 - Selecting the Best System
 - Metamodels
- Summary

INSEAD

Discrepancy: Other uses

• Select design matrix \mathbf{d}_{Θ} of r vectors of inputs $(\theta_{pi}, \theta_{ei}, \theta_{ci})$ for i = 1, 2, ..., r with output **Y** in order to best differentiate the posterior distribution of the response parameters ψ from the prior distribution for ψ (Bayesian D-optimal, Bernardo 1979; Smith and Verdinelli 1980; Ng and Chick 2004)

Getting down To brass tacks Applications Implementation S What is Bayes? Prior Probability Asymptotic Theorems De-

$$\int p(\mathbf{Y} \mid \mathbf{d}_{\mathbf{\Theta}}) \left(\int p(\psi \mid \mathbf{Y}) \log \frac{p(\psi \mid \mathbf{Y})}{p(\psi)} d\psi \right) d\mathbf{Y}$$

- Select maximum entropy prior distribution (Jaynes 1983)
- More later: input distribution selection . . .

Why Uncertainty Analysis?

Simple Example

$$\mu_j \rightarrow \boxed{\mathsf{Simulation}} \rightarrow Y_j = 2\mu_j + e_j$$

- Input model: $X_{\ell} \sim \text{Normal}(\mu, \sigma_{\nu}^2)$, known σ_{ν}^2
- Data: X_{ℓ} observed $(\ell = 1, 2, \dots, n_0)$
- Run r replications with \bar{X}_{n_0} input for μ
- Construct 90% CI:

$$ar{Y}_r \pm z_{0.95} rac{\hat{\sigma}_y}{\sqrt{r}}$$

Coverage?

If μ is known, expect coverage to be 90%. But μ is *not* known.

INSEAD

Bayesian Ideas for Simulation

Why Uncertainty Analysis?

Simple Example

$$\mu_j \rightarrow \boxed{\mathsf{Simulation}} \rightarrow Y_j = 2\mu_j + e_j$$

- Input model: $X_{\ell} \sim \text{Normal}(\mu, \sigma_{\star}^2)$, known σ_{\star}^2
- Data: X_{ℓ} observed $(\ell = 1, 2, \dots, n_0)$
- Run r replications with \bar{X}_{n_0} input for μ
- Construct 90% CI:

$$ar{Y}_r \pm z_{0.95} ar{N} \sqrt{V_{tot}}$$

Account for parameter uncertainty

$$V_{tot} = rac{\sigma_y^2}{r} + rac{4\sigma_x^2}{n_0}$$
, so try $ar{Y}_r \pm z_{0.95} \sqrt{V_{tot}}$

Why Uncertainty Analysis?

Simple Example

$$\mu_j \rightarrow \boxed{\mathsf{Simulation}} \rightarrow Y_j = 2\mu_j + e_j$$

- Input model: $X_{\ell} \sim \text{Normal}(\mu, \sigma_{\chi}^2)$, known σ_{χ}^2
- Data: X_{ℓ} observed $(\ell = 1, 2, \dots, n_0)$
- Run r replications with $ar{X}_{n_0}$ input for μ
- Construct 90% CI:

$$ar{Y}_r \pm z_{0.95} rac{\hat{\sigma}_y}{\sqrt{r}}$$

Coverage?

If μ is known, expect coverage to be 90%. But μ is *not* known. CI can be meaningless (several authors...)

Bayesian Ideas for Simulation

Why Uncertainty Analysis?

Simple Example

$$\mu_j \rightarrow \boxed{\mathsf{Simulation}} \rightarrow Y_j = 2\mu_j + e_j$$

- Input model: $X_{\ell} \sim \text{Normal}(\mu, \sigma_{\mathbf{x}}^2)$, known $\sigma_{\mathbf{x}}^2$
- Data: X_{ℓ} observed $(\ell = 1, 2, \dots, n_0)$
- Run r replications with \bar{X}_{n_0} input for μ
- Construct 90% CI:

$$ar{Y}_r \pm z_{0.95} \sqrt[4]{V_{tot}}$$

For known mean response g, input parameters $\theta = (\theta_1, \dots, \theta_k)$

$$V_{tot} pprox rac{\sigma_y^2}{r} + \sum_{i=1}^k rac{oldsymbol{eta}_i \mathbf{H}(ilde{ heta}_i)^{-1} oldsymbol{eta}_i^{\mathrm{T}}}{n_i} \ ext{where gradient} \ oldsymbol{eta}_i = rac{\partial \mathbf{g}(ilde{oldsymbol{ heta}})^{\mathrm{T}}}{\partial heta_i} ig|_{ ilde{oldsymbol{ heta}}} \ ext{(asymptotics. Cheng & Holland; Ng & Chick; Wilson & Zouaoui)}$$

Why Uncertainty Analysis? Estimate response

$$\frac{\frac{\text{Inputs}}{\theta_1 = (\mu_1, \lambda_1)}}{\theta_2 = (\mu_2, \lambda_2)} \longrightarrow \text{Simulation}
Y_r = g(\theta) + \sigma Z$$

$$= \beta_0 + \left(\sum_{i=1}^k \beta_{2i-1}\mu_i + \beta_{2i}\lambda_i\right) + \beta_7\mu_1\mu_2 + \beta_8\mu_1^2 + \sigma Z$$

- Assess $X_{i\ell} \sim \text{Normal}(\mu_i, \lambda_i^{-1})$ for *i*th source of randomness
- Observe data $X_{i\ell}$ are observed $(i = 1, 2, 3; \ell = 1, 2, ..., n_i)$
- Estimate unknown β with r_0 runs (e.g. CCD from DOE)

$$V_{tot} = \frac{\hat{\sigma}_y^2}{r_0} + \sum_{i=1}^k \underbrace{\frac{\partial g(\tilde{\boldsymbol{\theta}}_n, \tilde{\boldsymbol{\beta}}_{r_0})}{\partial \theta_i} \Sigma_{n_i} \frac{\partial g(\tilde{\boldsymbol{\theta}}_n, \tilde{\boldsymbol{\beta}}_{r_0})^{\mathrm{T}}}{\partial \theta_i}}_{V_{par} = O(n_i^{-1})} + \underbrace{\Sigma_{\boldsymbol{\beta}} \otimes \Sigma_{\boldsymbol{\theta}}}_{V_{resp} = O(n_i^{-1}r^{-1})}$$

INSEAD

WSC'06

own To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking,

Variations on Estimating $E[Y \mid \mathcal{E}]$

- Zouaoui and Wilson (2003): decouple stochastic, parameter uncertainty; update estimate as new data becomes available with variations on BMA
- Andradóttir and Glynn (2004): biased estimates of $E[Y \mid \theta]$; quasi-random numbers; quadrature to select inputs θ_i
- Estimate distribution of conditional expectation $E[Y \mid \Theta, \mathcal{E}]$. Steckley and Henderson (2003) derive asymptotically optimal ways selecting r and n in BMA to produce a kernel density estimator (some conditions apply)

INSEAD

...

Bayesian Ideas for Simulation

ting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking/

Uncertainty Analysis

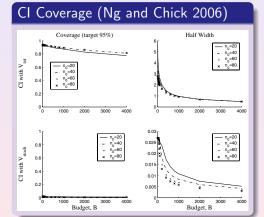
- Sensitivity analysis: $E[g(\theta)]$ as a function of θ (average out stochastic uncertainty from \mathbf{u})
- Uncertainty analysis: $E[Y \mid \mathcal{E}]$, with both stochastic and parameter uncertainty, given all information \mathcal{E}
- Bayesian Model Average (BMA) estimates $E_Y[Y \mid \mathcal{E}]$

for
$$r=1,\ldots,R$$
 replications sample parameter $\theta_r \sim p(\theta \mid \mathcal{E})$ for $i=1,2,\ldots,n$ generate output y_{ri} given input θ_r end loop end loop Generate estimate $\bar{y} = \sum_{r=1}^R \frac{1}{R} \sum_{i=1}^n \frac{y_{ri}}{n}$.

INSEAD

- Goal: Reduce uncertainty, not just quantify
 - r more replications
 - m_i more samples from source of randomness i
- Optimization:

$$\min_{r,m_{i}} \frac{\hat{\sigma}_{y}^{2}}{r_{0}+r} + \sum_{i=1}^{k} \frac{\xi_{i}}{n_{i}+m_{i}} + \frac{\zeta_{i}}{(r_{0}+r)(n_{i}+m_{i})}$$



INSEAD

WSC'06

Bayesian Ideas for Simulat

SC'06 Ba

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking/S

Bayesian Input Selection

- BMA applies without change for q candidates
 - ① Put prior on $(M = m, \theta_m)$, where $m \in \{1, 2, ..., q\}$
 - 2 Compute posterior $p(m, \Theta_m | \mathcal{E})$, sample from it in BMA
- Chick (2001): stochastic process simulation context; moment matching method for commensurate prior distributions
- Zouaoui and Wilson (2004): decouple stochastic uncertainty from two types of structural uncertainty (candidate model & parameters); variance reduction for BMA; numerical analysis
- Model selected closest to the true model in sense of Kullback-Leibler divergence (Berk 1966; Bernardo and Smith 1994; Dmochowski 1999).

INSEAD

Getting down To brass tacks Applications Implementation S

- Which distribution/parameter to pick?
- 'Usual':
 - Pick q candidate input distributions (e.g. exponential, gamma, Weibull, lognormal)
 - 2 Find MLE $\hat{\theta}_i$ for candidates i = 1, ..., q
 - **3** Goodness-of-fit (χ -squared, K-S, A-D) tests
- Concerns:
 - CI coverage if MLE/best distribution selected
 - 4 How to select among unrejected models? ... (Lindley 1957; Berger and Pericchi 1996)

INSEAD

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking/S

Uncertainty Analysis Input Distribution Selection

Outline

- - Subjective and Bayesian methods
 - Assessing prior probability
 - Asymptotic Theorems
 - Decisions, loss, and value of information
 - Entropy and Kullback-Leibler Discrepancy
- 2 Applications
 - Uncertainty Analysis
 - Selecting from Multiple Candidate Distributions
 - Selecting the Best System
 - Metamodels
- Summary

Ranking and selection procedures differ?

- What is it for?
 - Select the 'best' of a finite set
 - Best identified by mean simulation response
- What are the approaches?
 - IZ. Indifference zone: $P(CS) \ge 1 - \alpha$, δ^* , repeated applications of procedure
 - VIP, Bayesian value of information procedures: Like selection of mean bigger or smaller than threshold, Bayesian inference, loss, EVI
 - OCBA, Chen et al.: Heuristic, allocates samples to improve Bayesian PCS using 'thought experiment' $\sigma^2/r_0 \rightarrow \sigma^2/(r_0+r)$
 - Economic. Chick and Gans (2005) propose a new economic approach, includes costs of replications and discounting, maximizes E[NPV] of decisions with simulation.

INSEAD

down To brass tacks Applications Implementation S Uncertainty Analysis

Bayesian Ideas for Simulation

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking/Se

Procedure $\mathcal{LL}(\mathcal{B})$, for opportunity cost (linear loss)

- Specify the first-stage sample size r_0 . Take independent replications y_{i1}, \ldots, y_{ir_0} , for each system, $i = 1, \ldots, k$
- 2 Compute all first-stage sample means $\bar{x}_i = \sum_{i=1}^{r_0} y_{ij}/r_0$ and sample variances $\hat{\sigma}_{i}^{2} = \frac{\sum_{j=1}^{r_{0}}(y_{ij}-\bar{x}_{i})^{2}}{r_{0}-1}$, order statistics $\bar{x}_{[1]} \leq \ldots \leq \bar{x}_{[k]}$, and $\lambda_{i,k} = r_0/(\hat{\sigma}_{[k]}^2 + \hat{\sigma}_{[i]}^2)$
- 3 If sampling budget is B, run r_i more independent replications,

$$r_{[i]} = \frac{B + \sum_{j \in \mathcal{S}} r_0 c_j}{\sum_{j \in \mathcal{S}} \left(\frac{c_j c_{[i]} \hat{\sigma}_j^2 \eta_j}{\hat{\sigma}_{[i]}^2 \eta_{[i]}}\right)^{1/2}} - r_0$$

$$\eta_{[i]} = (\lambda_{i,k})^{1/2} \frac{(r_0 - 1) + \lambda_{i,k} (\bar{\mathbf{x}}_{[k]} - \bar{\mathbf{x}}_{[i]})^2}{(r_0 - 1) - 1} \phi_{r_0 - 1} [(\lambda_{i,k})^{1/2} (\bar{\mathbf{x}}_{[k]} - \bar{\mathbf{x}}_{[i]})] \text{ if } \\ [i] \neq [k] \text{ and } \eta_{[k]} = \sum_{i=1}^{k-1} \eta_{[i]}$$

• Select system with largest $\bar{\bar{x}}_i = \sum_{i=1}^{r_0+r_i} y_{ij}/(r_0+r_i)$

INSEAD

VIP procedures

- Motivated by 'statistical conservativeness' of IZ approaches
- Two-stage: Unknown means of several systems.
 - Opportunity cost and 0-1 loss (P(CS))
 - Variances also unknown, different (conjugate prior, student marginal for mean)
 - Optimal solution unknown except special cases
 - Asymptotic approximation, Bonferroni bound for loss
- Sequential:
 - In theory, should improve things
 - Behrens-Fisher
 - Seems to work quite well

INSEAD

Sample Comparison with Combined Procedure, \mathcal{C} (MDM)

Figure		Number of systems, k			
of merit	Proc.	2	5	10	100
ANR	All	738	3,429	8,784	42,862
Empirical	\mathcal{C}	0.8363	0.9140	0.9323	0.9763
P(CS)	0-1(B)	0.8527*	0.9117	0.9480*	0.9937*
	$\mid \mathcal{LL}(\mathcal{B}) \mid$	0.8500	0.9293*	0.9660*	0.9987*
Empirical	\mathcal{C}	1.0000	0.9943	0.9990	1.0000
frac. 'good'	0-1(B)	1.0000	0.9953	0.9977	0.9997
selections	$\mid \mathcal{LL}(\mathcal{B}) \mid$	1.0000	0.9953	0.9993	1.0000
Expected	\mathcal{C}	0.8336	0.8379	0.8649	0.9318
posterior	0-1(B)	0.8446*	0.8339	0.8821*	0.9717*
PCS	$\mid \mathcal{LL}(\mathcal{B}) \mid$	0.8470*	0.8462*	0.9022*	0.9842*
Expected	C	0.0176	0.0138	0.0104	0.0037
bound,	0-1(B)	0.0157*	0.0128*	0.0075*	0.0012*
opp. cost	$\mathcal{LL}(\mathcal{B})$	0.0154*	0.0110*	0.0055*	0.0005*

Monotone decreasing means (MDM). * indicates statistically significant difference

VIP: Common Random Numbers

- Common random numbers (CRN) can sharpen contrasts between systems (e.g. same simulated demand pattern)
- Two-stage with screening (Chick and Inoue 2001a)
 - Run subset of systems in stage 2
 - Use 'missing data' formulas to update
 - Select from even screened systems
- Matrix intensive, heuristic provided

Stage 1

12345...k

INSEAD

WSC'06

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking/Se

Bayesian Ideas for Simulation

2001a)

WSC'06

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking/S

Summaries

• VIP procedures have solid basis, perform numerically quite well Chick and Inoue (2001, 2001a, 2002).

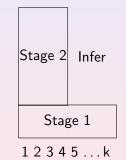
Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking,

- Matlab: All procedures (0-1 or opportunity cost loss; two-stage or independent sequential; two-stage CRN)
- C: Independent replications, two-stage or sequential, both loss functions, plus variants (work in progress) to achieve Bayesian predictive targets for PCS and EOC
- Can show asymptotic relation between certain VIP and OCBA procedures
- Specific Bayesian procedures with new stopping rules highly effective (Branke, Chick, and Schmidt 2005)

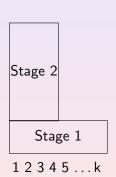
INSEAD

VIP: Common Random Numbers

- Common random numbers (CRN) can sharpen contrasts between systems (e.g. same simulated demand pattern)
- Two-stage with screening (Chick and Inoue 2001a)
 - Run subset of systems in stage 2
 - Use 'missing data' formulas to update
 - Select from even screened systems
- Matrix intensive, heuristic provided



INSEAD



INSEAD

VIP: Common Random Numbers

• Common random numbers (CRN) can

same simulated demand pattern)

Matrix intensive, heuristic provided

sharpen contrasts between systems (e.g.

• Two-stage with screening (Chick and Inoue

• Use 'missing data' formulas to update

Run subset of systems in stage 2

Select from even screened systems

Outline

- - Subjective and Bayesian methods
 - Assessing prior probability
 - Asymptotic Theorems
 - Decisions, loss, and value of information
 - Entropy and Kullback-Leibler Discrepancy
- 2 Applications
 - Uncertainty Analysis
 - Selecting from Multiple Candidate Distributions
 - Selecting the Best System
 - Metamodels
- 4 Summary

INSEAD

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Ranking/

Normal linear model

$$Y = \sum_{\ell=1}^{p} g_{\ell}(\boldsymbol{\theta}) \beta_{\ell} + Z(\boldsymbol{\theta}; \mathbf{U}) = \mathbf{g}^{T}(\boldsymbol{\theta}) \boldsymbol{\beta} + Z(\boldsymbol{\theta}; \mathbf{U}),$$
 (5)

- Model
 - Known: regression functions g_1, \ldots, g_p
 - Unknown: coefficients β , variance of zero-mean noise $Z(\cdot)$
- Conjugate prior $p(\beta, \sigma^2)$ (if all factors active)
 - Inverted gamma distribution for unknown variance σ^2
 - Multivariate normal distribution for β given σ^2 ,
 - Raftery, Madigan, and Hoeting (1997) describe a relatively 'uninformative' prior distribution, 'good' results
- Identifying important factors like input distribution selection
 - 2^p candidate models
 - KL discrepancy-based design criterion balances factor identification and parameter estimation (Ng and Chick 2004) INSEAD

Metamodels

Normal linear model

Getting down To brass tacks Applications Implementation S

$$Y = \sum_{\ell=1}^{p} g_{\ell}(\boldsymbol{\theta}) \beta_{\ell} + Z(\boldsymbol{\theta}; \mathbf{U}) = \mathbf{g}^{T}(\boldsymbol{\theta}) \boldsymbol{\beta} + Z(\boldsymbol{\theta}; \mathbf{U}), \quad (4)$$

Gaussian random function (GRF) - kriging

INSEAD

Getting down To brass tacks Applications Implementation S Uncertainty Analysis Input Distribution Selection Rank

Gaussian random functions (GRF)

- Well-known in deterministic simulations, particularly in geostatistics (Cressie 1993; Santner et al. 2003)
- Provide flexibility that the linear model does not, and are useful when g takes a long time to compute.
- GRF for unknown nonstochastic g (no random numbers \mathbf{u}) is

$$Y(\boldsymbol{\theta}) = \sum_{\ell=1}^{p} g_{\ell}(\boldsymbol{\theta}) \beta_{\ell} + Z(\boldsymbol{\theta}) = \mathbf{g}^{T}(\boldsymbol{\theta}) \beta + Z(\boldsymbol{\theta})$$
 (6)

for *known* regression functions g_1, \ldots, g_p of \mathbb{R}^d , unknown regression coefficients β , and a zero-mean random second-order process so that for any distinct inputs $\theta_1, \dots, \theta_m$, the vector (Y_1, \dots, Y_m) has (nonindependent) multivariate normal distribution, conditional on β .

Inference with GRFs

ullet GRF: Determined by mean $\mathbf{g}^T(\theta)eta$ and covariance function

$$C^*(\theta_1, \theta_2) = \mathsf{Cov}(Y(\theta_1), Y(\theta_2))$$

• Common to assume strong stationarity, so

$$C^*(\theta_1, \theta_2) = C(\theta_1 - \theta_2)$$

- Inference for $g(\theta)$ at θ_{r+1} not yet input to simulation model with correlation function $R(\mathbf{h}) = C(\mathbf{h})/C(0)$ for $\mathbf{h} \in \mathbb{R}^d$. Example: power exponential $R(\mathbf{h}) = \prod \exp[-|h_i/\gamma_i|^{p_i}]$ for $p_i \in [0,2]$.
- ullet Kriging (geostatistics) is best linear unbiased prediction (BLUP) for $g(heta_{r+1})$

INSEAD

WSC'06

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S

Implementation

Issues:

- Maximize (MLE $\hat{\theta}$ or MAP $\tilde{\theta}$)
- Integrate (marginal distribution $p(\theta_1 \mid \mathbf{x}_n)$ from $p(\theta_1, \theta_2 \mid \mathbf{x}_n)$), or proportionality constant $c^{-1} = \int f(\mathbf{x}_n \mid \theta) d\pi(\theta)$)
- Simulate (sample from $p(\theta \mid \mathbf{x}_n)$ to estimate $E[\alpha(\Theta)]$)

Tools:

- Newton-Raphson, Nelder-Mead, expectation-maximization (EM) algorithm, . . .
- Quadrature, normal approximation, data augmentation (IP algorithm), importance sampling (IS)
- Inversion, importance sampling (IS), Markov Chain Monte Carlo (MCMC)

Evans and Swartz 1995; Tanner 1996; Ġilks et ál. 1996; Devroye 2006,

INSEAD

More GRF

Getting down To brass tacks Applications Implementation S

- Assessment of uncertainty in $g(\theta_{r+1}) \Rightarrow$ experimental design technique to choose inputs to reduce response uncertainty (Santner et al. 2003)
- Also see tutorial by van Beers and Kleijnen (2004)
- Deterministic simulation: (Sacks et al. 1989; O'Hagan et al. 1999; Kennedy and O'Hagan 2001; Santner et al. 2003; van Beers and Kleijnen 2003).
- More work is needed for GRFs in the stochastic simulation context.

INSEAD

WSC'0

Bayesian Ideas for Simulation

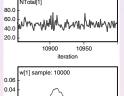
Getting down To brass tacks Applications Implementation

end loop

Metropolis-Hastings: An MCMC Algorithm

Target: Sample from $p(\theta \mid \mathcal{E})$ Capable: Easily sample from $q(\cdot \mid \theta_{t-1})$

Initialize
$$t=0$$
, θ_0 for $t=1,2,\ldots$ sample a candidate $\theta \sim q(\cdot \mid \theta_{t-1})$ compute acceptance probability
$$\alpha(\theta_{t-1},\theta) = \min\left\{1, \frac{p(\theta\mid\mathcal{E})\cdot q(\theta_{t-1}\mid\theta)}{p(\theta_{t-1}\mid\mathcal{E})\cdot q(\theta\mid\theta_{t-1})}\right\}$$
 generate an independent $u\sim \mathrm{uniform}[0,1]$ if $u\leq \alpha(\theta_{t-1},\theta)$ then set $\theta_t\leftarrow\theta$ otherwise set $\theta_t\leftarrow\theta_{t-1}$ set $t\leftarrow t+1$



Sample path

Density Estimate

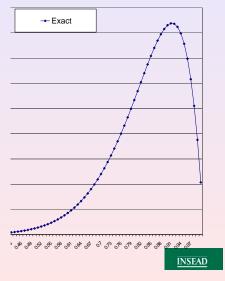
Getting down To brass tacks Applications Implementation S

Approximating Posterior Distributions: Pros and Cons

Exact Posterior

- Exact
- Good if simple closed form known
- May be hard in general (mixtures, missing data, marginal distribution, curse of dimensionality?)

Here, gene linkage example (Tanner 1996)



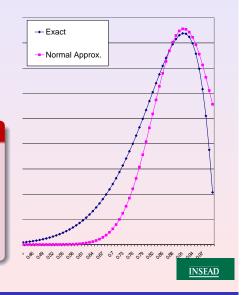
Bayesian Ideas for Simulation

Approximating Posterior Distributions: Pros and Cons

Asymptotic normality (from theorem)

Getting down To brass tacks Applications Implementation S

- Normal $(\tilde{\theta}_n, \Sigma_n)$
- Relatively easy to compute
- Requires many data points (n > 20d)
- Does not model skew, etc.



WSC'06

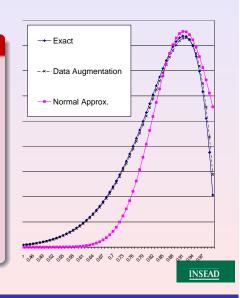
Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S

Approximating Posterior Distributions: Pros and Cons

Data Augmentation (IP algorithm)

- $p(\theta|\mathcal{E}) = \int p(\theta|Z,\mathcal{E})p(Z|\mathcal{E}),$ average over Z = 'missing data'
 - Set i = 0; $g_0(\theta) = \text{current}$ estimate of $p(\theta|\mathcal{E})$
 - ② Generate z_1, z_2, \ldots, z_m from $g_i(\theta)$ by
 - **1** Sample $\theta_1, \ldots, \theta_m$ from
 - 2 Sample z_1, \ldots, z_m from $p(Z|\theta_i,\mathcal{E})$
 - $\mathbf{3} \ g_{i+1}(\theta) = \sum_{j=1}^{m} p(\theta|z_j, \mathcal{E})/m$

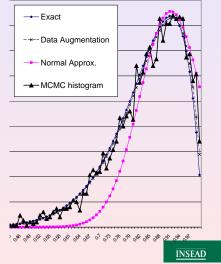


Getting down To brass tacks Applications Implementation S

Approximating Posterior Distributions: Pros and Cons

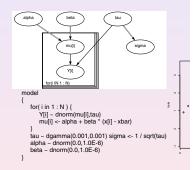
MCMC with histogram

- General tool to sample (approximately) from posterior
- Complicated models possible
- Output analysis issues (convergence)
- Time-average (IP was average of distributions)
- MCMC can average distributions, too



Some Tools

- Handcode: Matlab, C, Gauss
- WinBUGS (Spiegelhalter et al. 1996) (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml)
- R (http://www.r-project.org/), S-PLUS packages, BOA add-on (http://www.public-health. uiowa.edu/boa/)
- Uncertainty analysis in spreadsheet Monte Carlo applications are available (e.g. Winston 2000).
- Most DEDS Commercial Tools: cumbersome to implement BMA



INSEAD

WSC'06

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S

Research opportunities include

- More links to economics of simulation analysis
- Input modeling and uncertainty analysis (kernel estimation of conditional means; the effect of different candidate distributions on uncertainty; prior distributions elicitation; calibration/inverse problem)
- Response modeling (extend the Gaussian random field work for stochastic simulation; nonasymptotic sampling plans for input parameter inference to optimally reduce output uncertainty; reasoning about models; calibration...)
- Experimental design (quantiles, non-expected value goals;
 CRN for unknown input parameters for ranking and selection;
 non-Gaussian output for ranking and selection, GRFs)
- Improved computational tools (e.g. MCMC, software interop)

INSEAD

Bayesian Methods for Stochastic Process Simulation

- Themes:
 - Represent all uncertainty with probability, update with Bayes' rule, expected value of information for sampling decisions
 - Use simulation to efficiently estimate quantities of interest for a Bayesian analysis
- Bayesian, decision theory fits well with managerial/economic mindset
- Applications: input distribution selection, uncertainty analysis, experimental design, ranking and selection
- Asymptotic approximations helpful when exact optimal solutions are hard to find

INSEAD

WSC'06

Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S

Andradóttir, S., and P. W. Glynn. 2004.

Computing Bayesian means using simulation.

Georgia Tech, ISYE Technical Report.

Berger, J. O. 1994.

An overview of robust Bayesian analysis.

TEST 3:5-124.

Berger, J. O., and L. R. Pericchi. 1996.

The intrinsic Bayes factor for model selection and prediction.

Journal of the American Statistical Association 91:109-122.

Berk, R. 1966.

Limiting behaviour of posterior distributions when the model is incorrect.

Annals of Mathematical Statistics 37 (1): 51–58.

Bernardo, J. 1979.

etting down To brass tacks Applications Implementation S

Expected information as expected utility.

Annals of Statistics 7:686-690.

Bernardo, J. M., and A. F. M. Smith. 1994.

Bayesian theory.

Chichester. UK: Wilev.

Billingsley, P. 1986.

Probability and Measure. 2nd ed.

New York: John Wiley & Sons, Inc.

Branke, J., S. E. Chick, and C. Schmidt. 2005.

Selecting a selection procedure.

Technology and Operations Management Area, INSEAD, Working Paper.

Chen, C.-H. 1996.

A lower bound for the correct subset-selection probability and its application to discrete event simulations.

WSC'06 Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S

New procedures for identifying the best simulated system using common random numbers.

Management Science 47 (8): 1133-1149.

Chick, S. E., and K. Inoue. 2001b.

New two-stage and sequential procedures for selecting the best simulated system.

Operations Research 49 (5): 732-743.

Cressie, N. A. 1993.

Statistics for spatial data.

New York: J. Wiley.

de Finetti. B. 1990.

Theory of Probability, v. 2.

New York: John Wiley & Sons, Inc.

de Groot, M. H. 1970.

Optimal statistical decisions.

INSEAD

Getting down To brass tacks Applications Implementation S

IEEE Transactions on Automatic Control 41 (8): 1227-1231.

Chick, S. E. 1997.

Bayesian analysis for simulation input and output.

In Proc. 1997 Winter Simulation Conference, ed. S. Andradóttir.

K. Healy, D. Withers, and B. Nelson, 253-260.

Piscataway, NJ: IEEE, Inc.

Chick, S. E. 2001.

Input distribution selection for simulation experiments: Accounting for input uncertainty.

Operations Research 49 (5): 744–758.

Chick, S. E., and N. Gans. 2005.

The economics of simulation selection procedures.

Technical report, INSEAD, Technology and Operations Management Area working paper.

Chick, S. E., and K. Inoue. 2001a.

INSEAD

WSC'06 Bayesian Ideas for Simulation

Getting down To brass tacks Applications Implementation S

New York: McGraw-Hill.

Devroye, L. 2006.

Nonuniform random variate generation.

In Handbook in Operations Research and Management Science: Simulation, ed. S. G. Henderson and B. L. Nelson. Elsevier.

Dmochowski, J. 1999.

Intrinsic priors via Kullback-Leibler geometry.

In Bayesian Statistics 5, 543-549.

Oxford University Press.

Evans, M., and T. Swartz. 1995.

Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems.

Statistical Science 10 (3): 254-272.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. 1996.

Markov chain monte carlo in practice.