Why Bayesian methods in Simulation?

BAYESIAN IDEAS Inputs Simulation Model SIrOnLllJtlgtjl’?n
FOR DISCRETE EVENT SIMULATION: Statistical, O e bere ~ Voristeas [ V;
’ cr UrU XrU

WHY, WHAT AND HOW

Y, =g(0,,0.;U,)
Stephen E. Chick?!
e Example: Single Server Queue (M/M/1): 60, = (\, i) =

'Technology and Operations Management arrival and service rates (server i = 1,2)
INSEAD ’
Fontainebleau, France ) Output: Y ~ /\/(/1,,' — )\) -+ noise

@ Simulation: Analyze stochastic processes via sample path
generation. Inform decisions: pick control parameter @, to
estimate or to optimize value h(E[Y | 8,,0.])

@ Bayesian as alternative to frequentist

Why Bayesian methods? The Point of Today

2006 Winter Simulation Conference

e Glynn (1986): Uncertainty @ Chick (1997): Reviewed work to
analysis. Not « = h(E[Y]), but that date.
° Sugg_estgd broader range of @ Review some basic concepts of subjective probability, Bayesian
a(0) = h(E[Y | 0]) application. statistics, decision theory.

© Ranking and selection

@ Unknown parameters, p(6), data @ Response surface modeling o Identify several applications to simulation experiments.
from modeled system to update © Experimental design @ Summarize some implementation issues.
@ Mean E[a(O)] @ ldentify some areas for future work.

@ Distribution of a(®) induced by
©

© Credible set: 6y, 05 so
p([h(b1o0), h(Bhi)]) = 95%
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Getting down To brass tacks What is Bayes? Prior Probability Asymptotic Theorems Ded
Related work Outline

@ Getting down to brass tacks

See the WSC (2006) paper and ch.aptejr in_Henderson and Nelson @ Subjective and Bayesian methods
book for a long (but incomplete) citation list for work over the last o Assessing prior probability
10 years on: @ Asymptotic Theorems
@ Formal Bayes or decision theoretic theory @ Decisions, loss, and value of information
@ Applications: scheduling, insurance, finance, traffic modeling, @ Entropy and Kullback-Leibler Discrepancy
public health, waterway safety, supply chain and other areas e Applications
@ Bayes and deterministic simulations @ Uncertainty Analysis
@ Favorite books on subjective and Bayesian probability and @ Selecting from Multiple Candidate Distributions
decision theory @ Selecting the Best System

Public Policy and Health Economics: increasingly uses simulation © Metamodels

(in addition to decision trees, Markov chains), and increasingly © Implementation
requires probabilistic sensitivity analysis. 05
ummary
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Getting down To brass tacks What is Bayes? Prior Probability Asymptotic Theorems Ded Getting down To brass tacks What is Bayes? Prior Probability Asymptotic Theorems Ded

Getting down to brass tacks Getting down to brass tacks

We’re more than just an ar g = i We’re more than just an arena... 7 -
‘This legendary Iandmark can be the setting for your upc P ] ‘This legendary landmark can be the setting for your upcoming event. -y S ; 2=
S SO =SS SO

Probability of 7 heads in the first 10 flips? Probability of 7 heads in the first 10 flips?
How to approach the problem. .. Comte d'Alembert (18th cent.)

o Indifference says maybe 1/117

@ But wait, for one flip, probability of heads is 1/27
See Savage (1972) and Kreps (1988).
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Getting down To brass tacks What is Bayes? Prior Probability Asymptotic Theorems Ded Getting down To brass tacks What is Bayes? Prior Probability Asymptotic Theorems Ded

Getting down to brass tacks Getting down to brass tacks

We’re more than just an arena... * T =i
“This legendary Iandmark can be the setting for your upcoming event. ~ = .;;‘ = P
=l =

We’re more than just an ar

‘This legendary landmark ean be the setting for your upc =y DY

=y . -

Probability of 7 heads in the first 10 flips?
Dwight (an unreconstructed frequentist)

Probability of 7 heads in the first 10 flips?
Dwight (an unreconstructed frequentist)

° %97(1 —6)3, where § = lim, w (a.e.). ° %07(1 —6)3, where 6 = lim,_. w (a.e.).
o If we rent Madison Square garden and flip the tack repeatedly, o If we rent Madison Square garden and flip the tack repeatedly,
| can estimate 6 for you. | can estimate 6 for you.
@ What confidence and how accurately do you need to know 67 @ What confidence and how accurately do you need to know 607
Hmmm. .. ) Let's reformulate the question ...
INSEAD INSEAD
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Why am | a Bayesian? Why am | a Bayesian?

okamose il Jaed dinars i : Probability of 7 heads in the first 10 flips?

Will you accept the following bet now? You get $100 if there are 7 °| Tlv(\)/:”mg i e prelebiliy o perso'nal Jucllgments |
heads, but you pay $5 if not. ° /o T3'!07(1 —0)37(0)d0, where 7(0) is a prior probability.

o I'll update with Bayes’ rule, to get posterior probability

o(8 | x) = TOPCn 10) _ 7(O)TIL: plx | 6)
@ Guessing wouldn't be scientific. ) T p(xe | 0)dr(0)

more from Dwight

@ | can’t answer until | have a good idea of what @ is.
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Getting down To brass tacks

Why am | a Bayesian?

Probability of 7 heads in the first 10 flips?
o Fair bets: | set p(E1) > p(Ep) if | prefer the first bet:

E1 $100 E2 $100
1) E1 $0 2) E2 $0

@ Exchangeability (weaker than i.i.d.)

P(X17X27 0oo 7Xn) — p(X517X527 0oo aXs,,)

for permutations s on {1,2,..., n} for arbitrary n.

What is Bayes? Prior Probability Asymptotic Theorems Ded

v
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Getting down To brass tacks

g(6p,0.,6.;U,)

Implication for Simulation: Y, =

Inputs - - . .
puts Simulation Model Simulation
Statistical, 0, ) Output
Control. Random Simulated —_—
e var - Numbers = Variates™ Y
Environmental, O U,: X,
ij rij

@ Input selection: Infinite exchangeable sequence Xj; from
modeled system to infer ith statistical input, 8,
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Getting down To brass tacks

Getting down To brass tacks

Why am | a Bayesian?

@ Exchangeability plus conceptually infinite N imply

limp o0 p(7 heads in first 10 flips) = [ 2% 67(1 — §)3dF(0)

o de Finetti (1990)-like representation

@ Ralph assumed conditional i.i.d., while Lenny derives formula
from exchangeability

@ Probability defined by bet preferences, not repeated outcomes

What is Bayes? Prior Probability Asymptotic Theorems Ded

V.
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Implication for Simulation: Y, = g(6,,0.,6.;U,)

Inputs

2 P Simulation Model Simulation
Statistical, 8, Rand Output
Control, O, andom Simulated

. - Numbers - Varlates+
Environmental,

rU ru
Inputs
Statistical, 8,
Control, 6.

Metamodel %tamodel
utput
Metamodel p
- Parameters*
Environmental, 8z

@ Input selection: Infinite exchangeable sequence Xj; from
modeled system to infer ith statistical input, 8,

@ Metamodeling: Infinite exchangeable Y, to infer W.
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Part of the process Outline

@ Getting down to brass tacks

@ Assessing prior probability
o Establish exchangeability arguments, posit potential likelihood
functions for observables, given unknown quantities
@ Assess prior distributions for unknown quantities
@ Relevant asymptotic theorems
@ Decisions, loss, and value of information

e ranking and selection,
e other experimental design issues
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Subjective Methods Principle of Indifference

- For finite exchangeable sequence, set
We need a prior distribution for unknown parameters.

For a Bernoulli outcome . .. de Finetti (1990), Savage (1972) Oy = Jt=2Xn € Lo/N,1/N, ..., (N —1)/N,1}
require You to assess your personal belief, () to describe
p(© < 0) o Indifference: discrete uniform for finite N
o D .
e Important gain in flexibility o Limit: limy_oo p(fn) — uniform[0, 1]
o Consistent with expected value decision theory @ Laplace (1812) used

uniform|[0, 1] for his prior
probability that the sun would
come up tomorrow

e Kahneman, Slovic, and Tversky (1982) describe difficulties
with elicitation ...

ome seek ‘automated’ methods ... . .
o utom m e Coordinate dependence for continuous r.v. (X; versus log X;)
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Jeffrey’s invariant prior Conjugate prior distribution

o m(f) x \H(9)|1/2d0, where H is the expected information in Bermenl) szimpling Exponential family

one observation, @ Sets, =) i X o Likelihood: p(x | 0) =
- d
log p(X | 0) o Likelihood: a(x)ho(0) exp [ijl cjgbj(H)hj(x)]
Sn _ p\n—sn
H(6) = Ex {— 902 J ; (1) p(xn|0) oc 6 (1 — 0) o Canonical conjugate prior: p(6) =
@ Prior: d
K(t)[ho(0)]™ exp 1 Cioi(0)t;
‘uniform’ with respect to the natural metric induced by the m(0) oc 0271(1 — )51, a ® _ ( )] [ZJ ! J il )J]
likelihood function (Kass 1989) beta(a, 3) distribution @ Posterior, given n data points: has
.. . . . parameters ng + n and sum of
e Jeffreys' prior for Bernoulli sampling is beta(1/2,1/2) o Posterior: _ d suffici
o e , gectsi—1(1_g)B+n—s—1 t = (t, t2,..., ty) and sufficient
@ For some likelihoods, Jeffreys' prior is improper (doesn't X ' statistics (Bernardo and Smith 1994)

a beta(a+ sy, B+ n—sp) )
(conjugate) distribution

integrate to 1). Might be used formally

v
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‘Noninformative’ Outline

© Getting down to brass tacks
@ The uniform|0, 1] distribution is conjugate for Bernoulli
sampling—a beta(1, 1) distribution.

@ ‘Noninformative’ means ‘evenly spread’—a heuristic term © Asymptotic Theorems

@ For canonical conjugate prior (for exponential family), the
posterior has parameter ng + n

@ Some think of ng + n as an ‘effective’ number of data points

‘Noninformative’ associated with a small ng

Others

@ Jaynes (1983): maximum entropy methods

o Berger (1994), Kass and Wasserman (1996): Default rules
Useful? Actually informative?
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Classic Analogs for Infinite Exchangeable Sequences Bayesian LLN

A Bayesian extension of the LLN allows for sample averages to
converge to random variables rather than to ‘true’ means.

Classical asymptotic theorems (e.g. Billingsley 1986) ...

Theorem (Bayesian LLN)
o laws of large numbers (LLN)

If X,, and Y,, are respectively the averages of n and m
@ central limit theorem (CLT) n m 12 ly g

exchangeable random quantities X; (the two averages may or may

o law of iterated logarithm (LIL) not have some terms in common), the probability that
... have Bayesian interpretations if considered conditional on mean _ _
and standard deviation of an infinite exchangeable sequence. ‘Xn - Ym| > €

may be made arbitrarily small by taking n and m sufficiently large
(de Finetti 1990, p. 216 assumes a finite variance).
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Getting down To brass tacks What is Bayes? Prior Probability Asymptotic Theorems Ded

Outline

Theorem (Posterior Normality)

@ Getting down to brass tacks
For each n, let pn(-) be the posterior pdf of the d-dimensional

parameter 0, given x, = (x1,...,Xp), let 6, be its mode (MAP),
and define the d x d Bayesian observed information matrix ¥ % by

@ Decisions, loss, and value of information
~ PPlog pa(0 | %)

062

I = (2)

Then ¢, = Z;l/ 2(0n — 9~,,) converges in distribution to a standard

(multivariate) normal random variable (Bernardo and Smith 1994,
Prop 5.14 needs regularity conditions).

Frequentist analog: asserts that MLE is asymptotically normally
distributed about a ‘true’ 6y (Law and Kelton 2000), as opposed to

describing uncertainty about 6.
=] =]
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Getting down To brass tacks What is Bayes? Prior Probability Asymptotic Theorems Ded

Decisions under uncertainty

@ Uncertainty described by probability = modeler can assess
expected value of information (EVI) of additional data.

@ EVI is useful in experimental design.

@ EVI : value of resolving uncertainty with respect to a loss
function £(d,w) that describes losses when a decision d is
chosen when the state of nature is w.

@ Data from experiment can reduce uncertainty about w, reduce
expected loss.

INSEAD
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Example: What is the mean? If we knew. ..

Example: What is the mean? Setup

Example adapted from de Groot (1970) illustrates key concepts
used for VIP procedures (Chick and Inoue 2001b)

@ Decide if unknown mean W of normal distribution (known
0?) is smaller (decision d = 1) or larger (d = 2) than wy.
@ Exchangeable samples X, = (X1, X2, ..., X;), with
p(X;) ~ Normal (w,0?), given W = w, are available

o Goal: design experiment (choose n) to balance sampling cost
(cn) and expected opportunity cost if wrong answer chosen

_ 0 if w<wy
L(1,w) = { w—wy ifw>wg,
_ wop—w ifw<w
L) = { 0 if w> wp.

INSEAD
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Getting down To brass tacks

Example: What is the mean? How much to know. ..

What is Bayes? Prior Probability Asymptotic Theorems Ded

@ Prior: W ~ Normal (u,1/7) is conjugate. NOTE: 7 is the
precision in our uncertainty about unknown mean, W.

@ Posterior: Observing X,, = x, would result in

p(w | x,) ~ Normal (2,7;1)
, TH+ 5 Xn
z = posterior mean of W = E[W | x,] = ——%—
T+ 2
T, = posterior precision of W = 7 + n/az.

71 equals the asymptotic posterior variance approximation ¥,
from theorem

INSEAD
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Posterior mean z for unknown w influences the decision, but
depends upon n, which is selected before X,, is seen.

(]

Conditional distribution of X, given w is Normal (w,o?/n)

(]

Predictive distribution p(z) of the posterior mean
Z = E[W | X, = (T + % X5)/ 7

e Mixing over prior m(w) implies a predictive distribution
Z ~ Normal (y, 7';1)
(7 4+ n/a?)/(n/c?)

Note: 7,1 — 0 when n — 0 (no new information).

If n — oo, then Var[Z] — o2

e =
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Example: What is the mean? What is the risk. . . Example: What is the mean? Expected loss

To minimize risk (sampling cost + expected loss from potentially
incorrect decision), pick n to minimizes a nested expectation

(]

Decision depends on X, via Z; Z has normal distribution

(]

Expected loss found with standard normal loss for newsboy
p(n) = cn+ EXH[EW[E(d(X,,), W) | X,]]-

LN[S]

o General technique: set £L*(d, w) = L(d, w) — L(1, w), which E[L7(d(Xn), W)] = Ex, [Ew[L"(d(Xn), W) | Xp]]
isO0ifd=1andis wg— wif d=2. Then

[ (e =960t = o(6) — s(2 - o(s)

S

1 1
= —72° Ly[rZ2 (wo — )]

Enle @)Wy %l = {0, 1975 o

()

Add back E[L(1, W)], use prior for W

=il 1 =1 1
@ To minimize loss in Eq. 3, assert d(X,) =2 (‘bigger’) if E[L(d(Xn), W)] = 772 Ly[r2(wo — p)] — 72* Ln[77 (wo — p)]
posterior mean exceeds threshold, Z > wp, and assert

d(Xp) =1 (‘smaller’) if Z < wp. ° EVland EVPI
r |
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Example: What is the mean? What is the risk. . . Alternate approximation
o First-order optimality condition @ Regular exponential family: asymptotic variance
approximation ¥, from theorem simplifies to

% _ L A gtbwo— ) 2T 4 c=0
— = —T 77 (wo — - c= —
on 2% z(Wo — 2 H 1(9)/(n0—1—n),

@ For small costs ¢ — 0, the sample size is large. Since 7, — 7

_ : - ) where H is the expected information from one observation
as n — 0o, the optimal sample size n is asymptotically

(Eq. 1), if canonical conjugate prior distribution is used

@ Approximate effect of m new samples is to change posterior to

L, 1/2
o~ (ool (- wl/29))
Normal <9~,, Z,,W>.

@ Asymptotic approximations are a second useful tool to identify fg -r A1 m
criteria-based sampling plans. @ Used for OCBA (Chen 1996), sampling plans for field data
@ Extensions of these ideas used to derive VIP procedures (Ng and Chick 2001). Frequentist result to obtain Cl of

(Chick and Inoue 2001b).

desired size (Law and Kelton 2000
( )
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Outline Another loss function: discrepancy

o

@ Getting down to brass tacks Kullback-Leibler discrepancy: difference between distributions

(]

Discrete distributions p and p,

5(p |l B) = _ Bilog(pi/ai)-

@ Entropy and Kullback-Leibler Discrepanc ~
g g Continuous r.v. X with densities f and fy = f(x | 0),

? ? F(x)
foll )= | f(x)I .
3 11 F) = [ Flotog 7 T
@ One use: loss func’Eion for eliciting probaPiIity. If you believe
the distribution is f, and you lose 6(f || f) if you provide a
distribution f, then you should honestly report f (Bernardo

1979)
INSEAD INSEAD
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Discrepancy: Other uses Outline

@ Select design matrix dg of r vectors of inputs (6, Oei, Oi)
for i =1,2,...,r with output Y in order to best differentiate
the posterior distribution of the response parameters ¢ from
the prior distribution for 1 (Bayesian D-optimal, Bernardo
1979; Smith and Verdinelli 1980; Ng and Chick 2004)

Q Applications

p(¢ 1Y) @ Uncertainty Analysis
[ v 140) ([ w1 ¥y10 2 ) av

@ Select maximum entropy prior distribution (Jaynes 1983)

@ More later: input distribution selection . ..
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Applications Uncertainty Analysis Input Distribution Selection Ranking/S4 Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd

Why Uncertainty Analysis? Why Uncertainty Analysis?

@ Simple Example @ Simple Example
#j — [Simulation | — Y; = 241 + ¢ #j — [Simulation | — Y; = 2j1; + ¢
@ Input model: X; ~ Normal (,u, a)%), known o2 @ Input model: X; ~ Normal (ma)z(), known o2
e Data: X; observed (/=1,2,...,np) e Data: X, observed (¢ =1,2,...,n9)
@ Run r replications with )_(,,0 input for p @ Run r replications with )_(,,0 input for p
@ Construct 90% ClI: @ Construct 90% CI:
= 20.95% Ve 2 20.95%
Coverage? Coverage?
If 1 is known, expect coverage to be 90%. But p is not known. If 1 is known, expect coverage to be 90%. But u is not known.
@ Cl can be meaningless (several authors. . .) g
Applications Uncertainty Analysis Input Distribution Selection Ranking/S{ Applications Uncertainty Analysis Input Distribution Selection Ranking/S4
Why Uncertainty Analysis? Why Uncertainty Analysis?
@ Simple Example @ Simple Example
pj — [Simulation | — Y; = 24 + ¢ pj — [Simulation| — Y; = 24 + ¢

2
X

2
X

Input model: X; ~ Normal (,u, 03(), known o
Data: Xy observed (¢ =1,2,...,np)

Run r replications with )_(,,0 input for p
Construct 90% ClI:

Input model: X; ~ Normal (,u,oi), known o
Data: Xy observed (¢ =1,2,...,ng)

Run r replications with )_<,,0 input for p
Construct 90% ClI:

?r + ZO.QS/é%\/ Vtot Vr =i Zo.gg%\/ Vtot

For known mean response g, input parameters 6 = (61, ..., 0x)

Account for parameter uncertainty

_ ~ % Kk BHE) 6] - _ og(O)"
Viot = %+, 50 try V& 2095 Vit Vior ~ 5+ 32fy SEEEL where gradient 6, = %)
0 g‘. (asymptotics. Cheng & Holland; Ng & Chick; Wilson & Zouaoui) g
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Applications

Why Uncertainty Analysis? Estimate response

Uncertainty Analysis Input Distribution Selection Ranking/S4

Applications Uncertainty Analysis Input Distribution Selection Ranking/Sq

Uncertainty Analysis: Uncertainty Reduction

Inputs
Y, =g(0)+0cZ
01 = (p1, A1) . .
02 = (12, A2) SATUERET | —e =y | (Zf(:l Bai-1pi + 52:')\:')

03 = (13, A3) — +Brpap2 + Bspd +0Z

@ Assess Xy ~ Normal (u,—, )\’_—1) for ith source of randomness
@ Observe data Xj; are observed (i =1,2,3; £ =1,2,...,n))
e Estimate unknown (3 with ry runs (e.g. CCD from DOE)

k

~D ~ ~ ~ ~ T
o 0g(0,,8,.)_ 0g(6,,8,)
Viet =~ SALI S30%
tot = 7 + ; 90; ni 89; 4 3®Zg
Vparzz(nfl) Vresp:O(nflr_l)
INSEAD
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Applications

Uncertainty Analysis

@ Sensitivity analysis: E[g(€)] as a function of 6 (average out
stochastic uncertainty from u)

@ Uncertainty analysis: E[Y | £], with both stochastic and
parameter uncertainty, given all information &

@ Bayesian Model Average (BMA) estimates Ey[Y | £]

forr=1,..., R replications
sample parameter 6, ~ p(0 | €)
fori=1,2,....n
generate output y,; given input 6,

end loop
end loop
Generate estimate y = > K | LS~ i,
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Uncertainty Analysis Input Distribution Selection Ranking/S{

@ Goal: Reduce uncertainty,
not just quantify

Cl Coverage (Ng and Chick 2006)

@ I more replications Coverage (target 95%) Half Width
1 6
e — n=20
e m; more samples from ) e ° T
o g . L
source of randomness i AL N s . o
2 o4 1,260
. . . o x ny=80 2/
@ Optimization: o ‘
[ 1000 2000 3000 4000 0 1000 2000 3000 4000
N k

. &7 &i ‘

min + - - 08 - ”of‘s‘g

r,m r+r ' n+m s

ii- 0.4
L& s
(ro+ r)(ni + m;) T A Y
Budget, B Budget, B
r,mi > 0 ’
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Applications Uncertainty Analysis Input Distribution Selection Ranking/S4

Variations on Estimating E[Y | £]

@ Zouaoui and Wilson (2003): decouple stochastic, parameter
uncertainty; update estimate as new data becomes available
with variations on BMA

@ Andradéttir and Glynn (2004): biased estimates of E[Y | 6];
quasi-random numbers; quadrature to select inputs 6;

o Estimate distribution of conditional expectation E[Y | ©,&].
Steckley and Henderson (2003) derive asymptotically optimal
ways selecting r and n in BMA to produce a kernel density
estimator (some conditions apply)
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Applications Uncertainty Analysis Input Distribution Selection Ranking/S4 Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd

QOutline Basic Problem

@ Which distribution/parameter to pick?
@ ‘Usual’:
@ Pick g candidate input distributions (e.g. exponential, gamma,
Weibull, lognormal)
© Applications @ Goocnessof it (o muared, K.5, A-D) st
@ Concerns:
@ Cl coverage if MLE/best distribution selected

@ How to select among unrejected models? ... (Lindley 1957;
Berger and Pericchi 1996)

@ Selecting from Multiple Candidate Distributions

INSEAD INSEAD
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Applications Uncertainty Analysis Input Distribution Selection Ranking/Sq Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd

Bayesian Input Selection Outline

@ BMA applies without change for g candidates
@ Put prior on (M = m,0,,), where me€ {1,2,...,q}
@ Compute posterior p(m, ®p,|E), sample from it in BMA
@ Chick (2001): stochastic process simulation context; moment
matching method for commensurate prior distributions
@ Zouaoui and Wilson (2004): decouple stochastic uncertainty © Applications
from two types of structural uncertainty (candidate model &
parameters); variance reduction for BMA; numerical analysis
@ Model selected closest to the true model in sense of ® Selecting the Best System

Kullback-Leibler divergence (Berk 1966; Bernardo and Smith
1994; Dmochowski 1999).

INSEAD INSEAD

WSC’06 Bayesian Ideas for Simulation WSC’'06 Bayesian Ideas for Simulation




Applications Uncertainty Analysis Input Distribution Selection Ranking/Sq Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd

Ranking and selection procedures differ? VIP procedures

@ What is it for?

o Select the ‘best’ of a finite set

o : . @ Motivated by ‘statistical conservativeness' of |Z approaches
e Best identified by mean simulation response

o What are the approaches? o Two-stage: Unknown means of several systems.

o |Z, Indifference zone:
P(CS) > 1 — «, 0%, repeated applications of procedure

e VIP, Bayesian value of information procedures:
Like selection of mean bigger or smaller than threshold,
Bayesian inference, loss, EVI

o OCBA, Chen et al.:
Heuristic, allocates samples to improve Bayesian PCS using
‘thought experiment’ 2/ry — 02 /(ro + r)

e Opportunity cost and 0-1 loss (P(CS))

e Variances also unknown, different (conjugate prior, student
marginal for mean)

o Optimal solution unknown except special cases

e Asymptotic approximation, Bonferroni bound for loss

@ Sequential:

o In theory, should improve things
o Behrens-Fisher

o Economic. Chick and Gans (2005) propose a new economic o Seems to work quite well

approach, includes costs of replications and discounting,
maximizes E[NPV] of decisions with simulation.
INSEAD INSEAD
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Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd Applications

Sample Comparison with Combined Procedure, C (MDM)

Uncertainty Analysis Input Distribution Selection Ranking/Sd

Procedure LL(B), for opportunity cost (linear loss)

Figure Number of systems, k

© Specify the first-stage sample size ry. Take independent of merit Proc. 2 5 10 100
replications yj1, ..., Yir,, for each system, i =1,...,k ANR All 738 3,429 8,784 42,862
@ Compute all first-stage sample means X; = > ; yji/ro and Empirical | C 0.8363 | 0.9140 | 0.9323 | 0.9763
sample variances 67 = 42]11(4}1311;)2, order statistics P(CS) 0-1(B) || 0.8527* | 0.9117 | 0.9480" | 0.9937"
S < < %ur and A :Or (62 + 62) LL(B) || 0.8500 | 0.9293* | 0.9660* | 0.9987*
(] = - = Ay ST ALk 10/ 2] o Empirical | C 1.0000 | 0.9943 | 0.9990 | 1.0000
© |If sampling budget is B, run r; more independent replications, frac. ‘good’ | 0-1(B) || 1.0000 | 0.9953 | 0.9977 | 0.9997
B+ s 06 selections | £L£(B) || 1.0000 | 0.9953 | 0.9993 | 1.0000
M = RN A Expected | C 0.8336 | 0.8379 | 0.8649 | 0.9318
s (Cf;gl"f.”f ) posterior | 0-1(B) || 0.8446* | 0.8339 | 0.8821* | 0.9717*
it PCS LL(B) || 0.8470* | 0.8462* | 0.9022* | 0.9842*
ro—1)+ i k(R —Xii _ o\ Expected | C 0.0176 | 0.0138 | 0.0104 | 0.0037
1= O /2O 6 (0 )25 - )] bound. 0-1(B) || 0.0157* | 0.0128* | 0.0075* | 0.0012*
[7] # [K] and nyq = 31 gy opp. cost | LL(B) || 0.0154* | 0.0110* | 0.0055* | 0.0005*

Q Select system with largest x; = JOT’ yii/(ro + i)

INSEAD
significant difference

Monotone decreasing means (MDM). * indicates statistically



Applications Uncertainty Analysis Input Distribution Selection Ranking/Sq Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd

VIP: Common Random Numbers VIP: Common Random Numbers

e Common random numbers (CRN) can e Common random numbers (CRN) can
sharpen contrasts between systems (e.g. sharpen contrasts between systems (e.g.
same simulated demand pattern) same simulated demand pattern)
e Two-stage with screening (Chick and Inoue e Two-stage with screening (Chick and Inoue
Stage 2
2001a) 2001a)
o Run subset of systems in stage 2 o Run subset of systems in stage 2
o Use ‘missing data’ formulas to update o Use ‘missing data’ formulas to update
e Select from even screened systems Stage 1 o Select from even screened systems Stage 1
@ Matrix intensive, heuristic provided @ Matrix intensive, heuristic provided
12345...k 12345...k
INSEAD INSEAD

Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd

VIP: Common Random Numbers Summaries

@ VIP procedures have solid basis, perform numerically quite

e Common random numbers (CRN) can well Chick and Inoue (2001, 2001a, 2002).

sharpen contrasts between systems (e.g. o Matlab: All procedures (0-1 or opportunity cost loss; two-stage
same simulated demand pattern) or independent sequential; two-stage CRN)
o C: Independent replications, two-stage or sequential, both loss

@ Two-stage with screening (Chick and Inoue ; ; _ ; )
2001a) Stage 2| Infer functions, plus variants (work in progress) to achieve Bayesian

o R Sl 6 sysies i e 2 predictive targets for PCS and EOC

o Use ‘missing data’ formulas to update @ Can show asymptotic relation between certain VIP and OCBA
o Select from even screened systems Stage 1 procedures
@ Matrix intensive, heuristic provided ’ @ Specific Bayesian procedures with new stopping rules highly
L2863 o< effective (Branke, Chick, and Schmidt 2005)
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Applications Uncertainty Analysis Input Distribution Selection Ranking/S4 Applications Uncertainty Analysis Input Distribution Selection Ranking/S{

Outline Metamodels

@ Normal linear model
P
Y = 0 Z(6:U) =g’ (0 Z(0: 4
O Aopiications > al0)3i+2(0:0) =aT @9+ ZB:V), (8
@ Gaussian random function (GRF) - kriging

@ Metamodels

INSEAD INSEAD
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Applications Uncertainty Analysis Input Distribution Selection Ranking/Sq Applications Uncertainty Analysis Input Distribution Selection Ranking/Sd

Normal linear model Gaussian random functions (GRF)

p @ Well-known in deterministic simulations, particularly in

Y = Zgé(a)ﬁﬁ +2(6;U) =g'(6)8 + Z(6; L), (5) geostatistics (Cressie 1993; Santner et al. 2003)
=1 @ Provide flexibility that the linear model does not, and are
o Model useful when g takes a long time to compute.
o Known: regression functions gi, ..., g, @ GRF for unknown nonstochastic g (no random numbers u) is

e Unknown: coefficients 3, variance of zero-mean noise Z(-)
o Conjugate prior p(3,2) (if all factors active)
o Inverted gamma distribution for unknown variance o
e Multivariate normal distribution for 3 given o2,
o Raftery, Madigan, and Hoeting (1997) describe a relatively
‘uninformative’ prior distribution, ‘good’ results

@ ldentifying important factors like input distribution selection

o 2” candidate models _ o 01,...,0.,, the vector (Yi,..., Ym) has (nonindependent)
o KL discrepancy-based design criterion balances factor multivariate normal distribution, conditional on 8.

identification and parameter estimation (Ng and Chick 20 INSEAD

p
Y(0) =) a(6)5 +2(6)=g"(0)8+2(6) (6)

(=1

for known regression functions g1, ..., g, of R9, unknown
regression coefficients 3, and a zero-mean random
second-order process so that for any distinct inputs

WSC’06 Bayesian Ideas for Simulation WSC’'06 Bayesian Ideas for Simulation




Applications Uncertainty Analysis Input Distribution Selection Ranking/S4 Applications Uncertainty Analysis Input Distribution Selection Ranking/S{

Inference with GRFs More GRF

o GRF: Determined by mean g’ (8)3 and covariance function

C*(01,05) = Cov(Y(01), Y(62)) @ Assessment of uncertainty in g(60,4+1) = experimental design
technique to choose inputs to reduce response uncertainty
e Common to assume strong stationarity, so (Santner et al. 2003)

C* (61, 82) = C(0 6,) @ Also see tutorial by van Beers and Kleijnen (2004)
1,Y2) = 1 x @ Deterministic simulation: (Sacks et al. 1989; O'Hagan et al.

@ Inference for g(0) at 6,1 not yet input to simulation model 1999; Kennedy and O'Hagan 2001; Santner et al. 2003;
with correlation function R(h) = C(h)/C(0) for h € RY. van Beers and Kleijnen 2003).
Example: power exponential R(h) = [] exp[—|h;/~i|P]] for @ More work is needed for GRFs in the stochastic simulation
pi € [0,2]. context.

o Kriging (geostatistics) is best linear unbiased prediction
(BLUP) for g(6,41)

INSEAD INSEAD

Implementation Implementation
Implementation Metropolis-Hastings: An MCMC Algorithm
Issues: Tools: Target: Sample from p(6 | &)
o Maximize (MLE @ or MAP ) e Newton-Raphson, Nelder-Mead, Capable: Easily sample from q(- | 0¢-1)
: T : PR EM Sample path
@ Integrate (marginal distribution expectation-maximization (EM) o —
leorith Initialize t = 0, 6 wof
p(el ’ Xn) from p(61762 ’ xn))y clifelilin, o fort=1.2 600k (v MM W M o
or_froportlonallty constant ° Quadra.nture., normal sample a candidate 8 ~ g(- [ 8e—1) 200 S
¢t = [f(xn]0)dn(6)) approximation, data o foatn
. . compute acceptance probability
e Simulate (sample from p(6 | x,) augmentation (IP algorithm), 0 o) — i [ 1. PO a0 110 e
to estimate E[a(O)]) importance sampling (IS) o(fe-1,6) = m'”{ ’p(eum-q(eleffl)} AN
o Inversion, importance sampling generate an independent u ~ uniform[0,1] o} -/ ~
(1S), Markov Chain Monte Carlo if u < O‘(ef_*l’e) then set 0 « 0 Density Esti
(MCMC) otherwise set 0; «— 0;_1 ensity Estimate
Evans and Swartz 1995; Tanner 1996; Gilks et al. 1996; Devroye set t —t+1
2000, .... end loop
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Implementation

Implementation

Approximating Posterior Distributions: Pros and Cons

Approximating Posterior Distributions: Pros and Cons

— Exact /,\ ——Exact

- -==Normal Approx.
Exact Posterior

@ Exact

@ Good if simple closed form

known Asymptotic normality (from theorem)

@ May be hard in general ~
/ @ Normal (9,,, Z,,)

(mixtures, missing data,
marginal distribution, curse of @ Relatively easy to compute

dimensionality?)

-t

@ Requires many data points

Here, gene linkage example (Tanner (n > 20d)
1996) ] PRSI IS SR ERIEE IS @ Does not model skew, etc. ] eSS dLERISF oSS
=x

Implementation Implementation

Approximating Posterior Distributions: Pros and Cons Approximating Posterior Distributions: Pros and Cons

—— Exact

MCMC with histogram | T baa Augmentation

@ General tool to sample ormal Approx
(approximately) from posterior ——MCMC histogram

| ——Exact

Data Augmentation (IP algorithm)

& p(9\5) = fp(@]Z,S)p(Z\E), - ---Data Augmentation
average over Z = ‘missing data’

| —=— Normal Approx.

Q Set i =0; go(#) = current

estimate of p(0]|€) @ Complicated models possible
@ Generate 7,2, . .., z, from @ Output analysis issues
gi(0) by (convergence)
o :_?(rg)ple 01, .-, 0m from . o Time-average (IP was average
@ Sample zi, ..., zy from ! of distributions) ,/-f

p(Z16:,€) ’_._./ @ MCMC can average ’_,.f

Q gi11(0) = X7, p(8lz;, €)/m distributi t
j=1 b ] LIRSS SR LLRIEF I IS Istributions, too J e PP eSS E IR ELIFFIIS
INSEAD INSEAD
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Implementation
Some Tools

Handcode: Matlab, C, Gauss

WinBUGS (Spiegelhalter et al. 1996)
(http://www.mrc-bsu.cam.ac.uk/
bugs/welcome.shtml)

R (http://www.r-project.org/),
S-PLUS packages, BOA add-on

@
X
(http://www.public-health. mogel

_ i
uiowa.edu/boa/) - dnoh(muau)

muli] <- alpha + beta * (x[i] - xbar)

Uncertainty analysis in spreadsheet

. . . alpha ~ dnorm(0.0,1.0E-6)
Monte Carlo applications are available beta ~ dnom(0.0,1.0E-6)
(e.g. Winston 2000).

Most DEDS Commercial Tools:

cumbersome to implement BMA
INSEAD

} =
tau ~ dgamma(0.001,0.001) sigma <- 1/ sqrt(tau)

S

Bayesian Methods for Stochastic Process Simulation

Themes:
o Represent all uncertainty with probability, update with Bayes'
rule, expected value of information for sampling decisions
o Use simulation to efficiently estimate quantities of interest for
a Bayesian analysis
Bayesian, decision theory fits well with managerial /economic
mindset

Applications: input distribution selection, uncertainty analysis,
experimental design, ranking and selection

Asymptotic approximations helpful when exact optimal
solutions are hard to find

INSEAD
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s [ Getting down To brass tacks _Appiications _Implementation_ SEESSEEEEEE
Research opportunities include Andradéttir, S., and P. W. Glynn. 2004.

Computing Bayesian means using simulation.
Georgia Tech, ISYE Technical Report.

WSC'06 Bayesian Ideas for Simulation

@ More links to economics of simulation analysis

@ Input modeling and uncertainty analysis (kernel estimation of Berger, J. O. 1994.
conditional means; the effect of different candidate
distributions on uncertainty; prior distributions elicitation;
calibration /inverse problem)

An overview of robust Bayesian analysis.
TEST 3:5-124.

Berger, J. O., and L. R. Pericchi. 1996.

The intrinsic Bayes factor for model selection and prediction.

@ Response modeling (extend the Gaussian random field work
for stochastic simulation; nonasymptotic sampling plans for
input parameter inference to optimally reduce output
uncertainty; reasoning about models; calibration. . .)

Journal of the American Statistical Association 91:109-122.

Berk, R. 1966.

Limiting behaviour of posterior distributions when the model is

@ Experimental design (quantiles, non-expected value goals;
CRN for unknown input parameters for ranking and selection;
non-Gaussian output for ranking and selection, GRFs) Incorrect.

@ Improved computational tools (e.g. MCMC, software interii! Annals of Mathematical Statistics 37 (1): 51-58.
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Expected information as expected utility. IEEE Transactions on Automatic Control 41 (8): 1227-1231.

Annals of Statistics 7:686—690.
Chick, S. E. 1997.

Bernardo, J. M., and A. F. M. Smith. 1994. Bayesian analysis for simulation input and output.
Bayesian theory. In Proc. 1997 Winter Simulation Conference, ed. S. Andradéttir,
Chichester, UK: Wiley. K. Healy, D. Withers, and B. Nelson, 253-260.

Piscataway, NJ: IEEE, Inc.
Billingsley, P. 1986.

Probability and Measure. 2nd ed. Chick, S. E. 2001.

New York: John Wiley & Sons, Inc. Input distribution selection for simulation experiments: Accounting
for input uncertainty.

Branke, J., S. E. Chick, and C. Schmidt. 2005. Operations Research 49 (5): 744—758.

Selecting a selection procedure.

Technology and Operations Management Area, INSEAD, Working Chick, S. E., and N. Gans. 2005.

Paper. The economics of simulation selection procedures.
Technical report, INSEAD, Technology and Operations

Chen, C.-H. 1996. Management Area working paper.

A lower bound for the correct subset-selection probability and it INSEAD

application to discrete event simulations. Chick, S. E., and K. Inoue. 2001a.
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New procedures for identifying the best simulated system using New York: McGraw-Hill.
common random numbers.

Management Science 47 (8): 1133-1149. Doy, L A0,

Nonuniform random variate generation.
Chick, S. E., and K. Inoue. 2001b. In Handbook in Operations Research and Management Science:

New two-stage and sequential procedures for selecting the best Simulation, ed. S. G. Henderson and B. L. Nelson. Elsevier.
simulated system.

Operations Research 49 (5): 732-743. DIeEeneld, J. HeEk:

Intrinsic priors via Kullback-Leibler geometry.
Cressie, N. A. 1993. In Bayesian Statistics 5, 543-549.
Statistics for spatial data. Oxford University Press.

New York: J. Wiley.
Evans, M., and T. Swartz. 1995.

de Finetti, B. 1990. Methods for approximating integrals in statistics with special

Theory of Probability, v. 2. emphasis on Bayesian integration problems.

New York: John Wiley & Sons, Inc. Statistical Science 10 (3): 254-272.

de Groot, M. H. 1970. N Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. 1996. .
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Optimal statistical decisions. Markov chain monte carlo in practice.
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