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Abstract

Deterministic di�erential equation models indicate that partnership concurrency and non-homogeneous
mixing patterns play an important role in the spread of sexually transmitted infections. Stochastic discrete-
individual simulation studies arrive at similar conclusions, but from a very di�erent modeling perspective.
This paper presents a stochastic discrete-individual infection model that helps to unify these two ap-
proaches to infection modeling. The model allows for both partnership concurrency, as well as the infec-
tion, recovery, and reinfection of an individual from repeated contact with a partner, as occurs with many
mucosal infections. The simplest form of the model is a network-valued Markov chain, where the networkÕs
nodes are individuals and arcs represent partnerships. Connections between the di�erential equation and
discrete-individual approaches are constructed with large-population limits that approximate endemic
levels and equilibrium probability distributions that describe partnership concurrency. A more general form
of the discrete-individual model that allows for semi-Markovian dynamics and heterogeneous contact
patterns is implemented in simulation software. Analytical and simulation results indicate that the basic
reproduction number R0 increases when reinfection is possible, and the epidemic rate of rise and endemic
levels are not related by 1ÿ 1=R0, when partnerships are not point-time processes. Ó 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Infection levels are strongly determined by whether or not the contacts that transmit infection
are made repeatedly with the same individual in an ongoing relationship, the potential for si-
multaneous ongoing relationships, and whether or not reinfection from a partner is possible [1±
26]. One approach to studying these determinants uses continuous di�erential equations. Another
is to study discrete-individual models with stochastic simulation. Until recently, practical and
theoretical links between these two approaches have been lacking. GERMS [2] is a discrete-in-
dividual simulation model that has been proposed for analyzing transmission dynamics for sex-
ually transmitted infections in social networks [16] that also allows for a continuous di�erential
equation analysis in many situations. The purpose of this paper is to discuss the stochastic model
behind GERMS, and to provide links between continuous di�erential equations and the discrete-
individual simulations that describe special cases of that stochastic model.

The model structure of GERMS also allows for loss and reacquisition of infection in the
context of a continuing relationship between individuals. This is probably quite common for
mucosal infections, including gonorrhea and chlamydia. The analysis of the GERMS model
structure below provides a new understanding of how endemic infection levels are determined
when reinfection is a possibility. The analysis also extends the concept of basic reproduction
number as de®ned for continuous and homogeneous population models to discrete-individual
models and makes clear the limitations to extending this concept to situations where contacts
continue rather than consisting of a point-time encounter. The analysis and interpretation are
based on both theoretical and computer simulation results.

Section 2 examines a simple stochastic model of transmission for a susceptible±infectious±
susceptible (SIS) infection in a homogeneously mixing population. In its simplest form, that
stochastic discrete-individual SIS model can be studied as a deterministic compartmental model
when a large-population approximation is made. Pseudo-equilibrium prevalence levels are derived
using large population limit of a Markovian, closed population model when individuals are se-
quentially monogamous. The increase in the basic reproduction number R0 is quanti®ed when
reinfection is possible, as may occur with mucosal infections. A Markov chain formulation in-
dicates that R0 is a more complicated concept when transmission occurs during ongoing part-
nerships, rather than point-time encounters. In particular, the familiar formula 1ÿ 1=R0 does not
relate the endemic infection level to the expected number of secondary cases generated by a typical
case in the early stages of an epidemic when all contacts are susceptible.

Next, a new formulation of partnership concurrency is proposed that both provides a natural
stochastic generalization of deterministic social mixing functions, and allows for the analytic de-
termination of equilibrium quantities of interest, such as the number of individuals with a given
number of partners. Altmann [3,4] describes the distribution of the number of partners, given the
population-level rate of adding new partners as a function of the current number of partners. That
result is extended below by a derivation of population-level rates from individual-level parameters.

Section 3 generalizes the simpli®ed model in three ways. First, partnership and infection du-
rations can be modeled as arbitrary gamma distributed random variables, rather than requiring all
quantities of interest to be exponentially distributed. Second, the parameters of individuals are
allowed to vary from individual to individual. For instance, each individual may have a di�erent
propensity to partner or to acquire concurrent partners. Third, partnerships can be formed in a
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variety of social or geographic settings, in a way that is motivated by the structured mixing
formulation of Jacquez et al. [15]. The duration and sexual contact rate of partnerships may
depend on the context in which the partnership is formed, so that, for instance, that long-term
partnerships and partnerships with commercial sex workers can be modeled. This generalized
process is expressible as a generalized semi-Markov process, and as such, is amenable for com-
puter simulation. GERMS is a computer implementation of this general model.

Section 4 discusses discrete-event simulation experiments for the model. The results indicate
that the large population approximations provide good approximations for populations of ®ve
hundred individuals. Graphs indicate how infection levels vary above and below pseudo-equi-
librium levels. Simulations also quantify the change in endemic infection levels due to heteroge-
neity in individual parameters and partnership dynamics. The partnership-formation
approximations are shown, for practical purposes, to reasonably represent the underlying
mathematical model.

2. SIS model for simple homogeneous populations

Consider a population of NM male and NF female individuals, where a sexually transmitted
disease is spread in the context of heterosexual partnerships. Individuals are presumed to be
susceptible or infectious (SIS model), in the manner that gonorrhea has most commonly been
modeled [26]. All individuals are monogamous at any given time, although individuals may form
multiple partnerships sequentially. Transmission is presumed to occur only in the context of a
partnership. Each individual is modeled as a node in a network. Recruitment and death adds and
removes nodes from the network. For simplicity, recruitment and death are not included, so the
population is closed. An arc indicates an ongoing partnership between individuals. An individ-
ual's infection status is a property of the corresponding node, as shown in Fig. 1. Arcs are added
and removed stochastically through time as individuals form and dissolve partnerships.

As such, the population dynamics model is a network-valued stochastic process that is moti-
vated by the deterministic model of Dietz and Hadeler [8]. The state space is a stochastic network

Fig. 1. A stochastic discrete-individual infection model that represents individuals with nodes and partnerships with

arcs. Infected individuals are identi®ed with shaded nodes.
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(a set of nodes, an infection status for each node, and a set of arcs) whose state transition matrix
depends both on properties of individuals, such as the partnership propensities of individuals that
are unpartnered, and on parameters that depend on both partners, such as the duration of a
partnership. The models of [11,20,24] are also discrete-event processes, and [20,24] take place in
discrete-time. The continuous time (CT) process presented here can also be expressed as a dis-
crete-time Markov chain with uniformization (e.g., see, [26]). However, our approach to retaining
a continuous time formulation simpli®es the derivation of analytic properties below, and provides
a formal mechanism for studying the discrete-event simulation model. See also Kretzschmar [18]
for a related approach to modeling.

An individualÕs propensity to form new partnerships is conceived as a concept related to, but
distinct from, the rate at which two individuals actually form a partnership. Because of the
monogamy condition, male j has a partnership propensity nMj that equals 0 when he is partnered,
and that equals the base partnership propensity kMj when he is not partnered. Let nFk and kFk be
analogous quantities for female k. Because partnership status changes through time, so too may
the partnership propensities nMj and nFk. Let g represent the gender in the subscript. Table 1
summarizes this notation and notation used below.

The instantaneous rate of partnership formation (formation of an arc) between j and k is de-
termined by a mixing rate function rjk that depends on the partnership propensities and the total
numbers of individuals, nMj and nFk, that are eligible to partner with male j and female k, re-
spectively. One choice for the mixing rate function is the arithmetic mean of the partnership
propensities after normalizing for the number of possible partners

rjk �
1
2

nMj

nMj
� nFk

nFk

� �
if j and k are eligible to partner;

0 otherwise ;

(
�1�

where `eligible to partner' means that each individual currently has no partner. Appendix A.1
indicates that this mixing function is a special case of an individual-level analog of the Freder-
ickson/McFarland [28,29] properties for population-level mixing functions. The sum of the rjk

over all potential couples (j, k) is the overall rate r of partnership formation

r �
XNM

j�1

XNF

k�1

rjk �
XNM

j�1

nMj

2

 !
�

XNF

k�1

nFk

2

 !
�2�

The term nMj drops out of Eq. (2) because nMj is non-zero for exactly nMj of the rjk (nFk similarly
drops out). As nMj and nFk change through time, partnership formation is a non-homogenous
Poisson process (e.g., see, [27]). This formulation does not make the chances that a male will form
a partnership with di�erent females proportional to the partnership propensity of those females
(or vice versa). It has the nice quality, however, that it makes the overall rate r of heterosexual
partnership formation in the population the average of the total partnership potential of each
gender. If the partnership propensities are the same (k � kMj � kFk) for all individuals in a se-
quentially monogamous population, then nMj is the number of unpartnered males, nFk is the
number of unpartnered females, and r � k�nMj � nFk�=2.

Separation (removal of an arc) occurs randomly through time as well. The Markovian char-
acter of partnership dynamics is preserved by assuming that each partnership separates with rate
r, so that 1=r is the mean duration of a partnership.
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The infection process for an SIS model must account for two distinct features: transmission and
recovery. Each individual (node) is either infected or uninfected. Transmission accounts for new
infections, and the duration of infection is presumed to be exponential with mean d, so that the
recovery rate is 1/d. The rate may depend on the infected individualÕs gender. For instance, [26]
uses dM� 10 days for males and dF� 100 days for females in a study of gonorrhea.

During each partnership, exposure events such as sex-acts are modeled as a Poisson process
with rate h during the partnership, and the probability of transmission per exposure is b. Thus, if a
partnership has duration s, and it is known that one partner is infected and the other uninfected

Table 1

Notation for network-valued stochastic process

Notation

For de®ning the stochastic process

kg;` Base partnership propensity for an individual ` that has gender g (M or F)

ng;` Current partnership propensity for an individual ` that has gender g (M or F)

Ng Total number of individuals that have gender g

ng;` Number of individuals that can partner with an individual ` that has gender g

r Separation rate for partnerships

h Sex-act rate during partnerships

b Transmission probability per exposure

d Mean duration of infection (recovery rate� 1/d)

�xa; ya� Number of (males, females) with infection status a (i for infected or u for uninfected)

zab Number of couples where the male has infection status a and the female has infection status b

s The vector s � �xi; yi; xu; yu; zuu; ziu; zui; zii�
B Number of social-geographic settings (`bins') for partnership formation

fi;` Fraction of partnership propensity of individual ` that is allocated to bin i

For approximating pseudo-equilibrium infection levels

pu Fraction of unpartnered individuals that are infected

pp Fraction of partnered individuals that are infected.

~pu; ~pp Pseudo-equilibrium fraction of infected unpartnered and partnered individuals

~p Pseudo-equilibrium fraction of infected individuals in entire population

g�;` Fraction of partnerships that terminate with exactly ` infected individuals

gi;` Fraction of partnerships that terminate with ` infected individuals, assuming that the partnership

started with exactly i infected individuals

For determining the basic reproduction number

R0 Basic reproduction number

X The expected number of new infections directly caused by an infected individual given that they have

just ended a partnership

Y The expected number of new infections directly caused by an infected individual given that they just

started a partnership with an uninfected individual

Z The expected number of new infections directly caused by an infected individual given that they just

started a partnership with an infected individual

For evaluating partnership concurrency

p` Proportion of individuals with ` partners

q`k Number of partnerships between males with ` partners and females with k partners

a` Rate that some individual in the population with ` partners forms an additional concurrent partnership
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when the partnership begins, and that the infected partner will not recover prior to the end of the
partnership, the probability of transmission during the partnership is 1ÿ exp �ÿhbs�, the tail
probability of an exponential distribution. This formulation presumes that a partnership is not
necessarily initiated with a sex-act.

2.1. Sequentially monogamous populations

Suppose that there are the same number N � NM � NF of males and females in a heterosexual,
sequentially monogamous population. The discussion that follows can also be applied to disas-
sortative mixing patterns in populations of individuals with distinguishing characteristics other
than gender (e.g., distinct roles for homosexual partnerships). The state transition rate matrix for
this model is quite large, since the state must represent all nodes and the presence and absence of
each possible arc in the network. The entire state may be needed for evaluating the e�ectiveness of
individual-based control measures, such as contact tracing [16].

However, the analysis can be simpli®ed if only summary information is desired and the pop-
ulation is homogeneous. Suppose that each individual has the same base partnership propensity k,
all partnerships have the same sex-act rate h and separation rate r, and that the recovery rate 1/d
and probability of transmission per contact b are the same for both sexes. Let s � �xi; yi; xu; yu;
zuu; ziu; zui; zii� be the state vector whose elements have the following meaning: xi denotes the
number of single and infected males, yi the number of single and infected females, xu the number
of single and uninfected males, yu the number of single and uninfected females, zuu the number of
couples with two uninfected partners, ziu the number of couples where only the male partner is
infected, zui the number of couples where only the female partner is infected, and zii denotes the
number of couples where both partners are infected.

Given the simplifying assumptions of this section, this vector is also the state of a Markov chain
whose transition rates are given in Table 2. The state s0 is indicated by listing only those coor-
dinates that are changed, and the table assumes that s is not a boundary state (i.e., one or more
elements have 0 or N). For states s at the boundary, some of the transitions are not possible, and
therefore have rate 0.

A few observations can be made. Let z � zuu � ziu � zui � zii be the total number of partner-
ships, independent of infection status (so the range of z is 0 to N), and let pz;` be the probability
that z � `. Given the assumptions made here in Section 2.1, the rate of change of pz;` can be
determined from the ®rst two lines of Table 2 to be

dpz;0

dt
� rpz;1 ÿ Nkpz;0;

dpz;N

dt
� kpz;Nÿ1 ÿ Nrpz;N ;

dpz;`

dt
� �N ÿ �`ÿ 1��kpz;`ÿ1 � �`� 1�rpz;`�1 ÿ �`r� �N ÿ `�k�pz;`

�3�

for ` � 1; . . . ;N ÿ 1. The equilibrium distribution for the total number of partnerships z is found
by setting dpz;0=dt � � � � � dpz;N=dt � 0, and is veri®ed by algebra to be binomial �N ; k=�k� r��.
This implies that the distribution of the fraction z=N of individuals in a partnership has mean
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k=�k� r� and variance kr=�N�k� r�2�. The familiar deterministic limit as N !1 has k=�k� r�
of the population in a partnership.

Under the closed population assumption (even when the number of males and females are not
the same), once nobody is infected, nobody will be infected ever again. Since the Markov chain is
irreducible, the equilibrium probability ps for state s is ps � 0 for all states s such that someone is
infected �xi � yi � ziu � zui � zii > 0�. Because of this, the equilibrium distribution is not relevant to
studying infection levels for this model.

Pseudo-equilibrium infection levels, however, are non-zero infection levels for a stochastic in-
fection model that bear a close relation to non-zero endemic levels for analogous deterministic
di�erential equation infection models [3,4,30,31]. The pseudo-equilibrium distribution for the
number infected in a population is the stationary distribution of the number infected, conditional
on the event that absorption has not occurred. If the population size grows arbitrarily large, the
normalized fraction of infectious individuals converges weakly to the non-zero endemic level
predicted by the analogous di�erential equation model [30,31]. Here, pseudo-equilibrium levels
are approximated for the above stochastic, ®nite population SIS model by using a large popu-
lation approximation, as in [30]. The idea is to ®nd states of the system so that the expected
number of infected individuals in the population does not change through time, at least over an
in®nitesimally short time interval. See [3,4] or [31] for a more formal treatment of deterministic
limits of related stochastic models.

To simplify the discussion, consider a homosexual (rather than heterosexual) population of 2N
individuals that form sequentially monogamous partnerships. Each unpartnered individual forms
partnerships with each other unpartnered individual at a rate equal to the sample average of the
partnership propensities, as in Eq. (1). The sample prevalence levels presented here are also ap-
plicable to sequentially monogamous heterosexual populations with N individuals of each gender,
assuming that both males and females have the same parameters, but the argument is more
complex and does not provide additional insight.

Pseudo-equilibrium levels are determined here by identifying requisite constraints on the
fraction pu of unpartnered individuals that are infected and the fraction pp of partnered individuals
that are infected. Because the system is Markovian, pu is also the fraction of individuals that are

Table 2

Transition rates from state s � �xi; yi; xu; yu; zuu; ziu; zui; zii� to s0 (same as s except as noted) for an SIS infection in

simpli®ed population

s0 Rate: s to s0 Meaning

xa ÿ 1; yb ÿ 1; zab � 1 k�xa � yb�=2 Partnership formed between male with infection status a and

female with infection status b

xa � 1; yb � 1; zab ÿ 1 rzab Partnership separation between male with infection status a

and female with infection status b

ziu ÿ 1; zii � 1 hbziu Infection of female

zui ÿ 1; zii � 1 hbzui Infection of male

xu � 1; xi ÿ 1 rxi Recovery of single male

yu � 1; yi ÿ 1 ryi Recovery of single female

zub � 1; zib ÿ 1 rzib Recovery of male whose partner has infection status b

zbu � 1; zbi ÿ 1 rzbi Recovery of female whose partner has infection status b

All other s0 0 Other state changes are not possible
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infected at the moment they form a partnership. Similarly, pp is the fraction of individuals that are
infected at the moment they separate from a partnership.

First, the probability that someone infected at the end of a one partnership is still infected at the
start of the next partnership is k=�k� 1=d�. This implies that a necessary condition for pseudo-
equilibrium infection levels to be maintained is

pu � k
�k� 1=d� pp: �4�

A second requirement is determined by examining the expected number of partners who are
infected at the end of a partnership. Because the probability that each partner is infected at the
beginning of a relationship is pu, the number of infected individuals at the start of a new
partnership is 0, 1, and 2 with probability �1ÿ pu�2, 2pu�1ÿ pu� and p2

u, respectively
(see Fig. 2).

If g�;` is the fraction of partnerships that terminate with exactly ` infected individuals (`� 0, 1,
2), then the expected fraction of individuals that are infected when at the end of their partnerships
is �2g�;2 � g�;1�=2. Appendix A.2 argues that this implies

pp � 2pu�1ÿ pu�rhb� p2
ur�r� hb� 1=d� � pu�1ÿ pu�r�r� 2=d� � p2

ur=d
r2 � rhb� 3r=d � 2=d2

�5�

and further that these two relationships result in a quadratic equation for pu with roots 0 (the
equilibrium prevalence) and the pseudo-equilibrium endemic prevalence ~pu for unpartnered
individuals,

~pu � r�r� 2hb� 2=d� ÿ r2 � rhb� 3r=d � 2=d2� � �k� 1=d�=k� �
rhb

: �6�

Fig. 2. State transition probabilities for the number of infected at the beginning and end of a partnership, used to

approximate pseudo-equilibrium levels.
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Infection is not sustained for an appreciable amount of time when ~pu in Eq. (6) is non-negative.
The above argument is similar to the analysis by Dietz and Hadeler [8] that further includes birth
and death processes, as well as more general mixing functions, but di�ers in that [8] assumes a
relationship starts with a sexual contact and does not treat stochastic behavior.

From Eq. (4), the pseudo-equilibrium prevalence for partnered individuals is
~pp � ~pu�k� 1=d�=k. By taking a time-weighted average over the time spent in and out of part-
nerships, the pseudo-equilibrium fraction ~p of infected individuals in the entire population is

~p � r
k� r

~pu � k
k� r

~pp � r� k� 1=d
k� r

~pu: �7�

Again, this result is based on the well-known results [3,30,31] for large population limits for
pseudo-equilibrium distributions that show weak convergence to a deterministic equilibrium.
These fractions should be interpreted as approximations for the mean pseudo-equilibrium prev-
alence, conditional on the event that infection has not been eliminated from the population.

The basic reproduction number, R0, calculation for the above model must account for the
possibility of the infection, recovery and reinfection of a partner during a single partnership. R0 is
evaluated by conditioning on the infection and partnership status of an individual. We use a
conditional expectation argument that can be compared with the di�erential equation analysis of
Dietz and Hadeler [8] for a similar infection model.

To this end, let X be the expected number of secondary infections caused by an unpartnered
individual prior to recovery. Let Y be the expected number of secondary infections caused by an
infected individual prior to recovery, given that the infected individual initially has an uninfected
partner. Let Z be the expected number of secondary infections caused by an infected individual
prior to recovery, given that the infected individual initially has an infected partner. Each of X, Y,
Z is a function of the fraction pu of infected individuals in the unpartnered population, as well as
the infection system parameters.

Fig. 3 presents a tree that shows what events can happen from the time of infection of the
individual until the end of the ®rst partnership entered after infection. The transition probabilities
are also shown. The reproduction number can be derived by examining how individuals change
states through the tree in Fig. 3. The reproduction number is de®ned here as the number of

Fig. 3. State transition probabilities for simpli®ed SIS model after introducing infection to an unpartnered individual,

used to evaluate R0.
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secondary transmissions caused by an initial individual before recovery. The SIS assumption, plus
the fact that partnerships have duration, implies that the initially infected individual may infect a
partner who then recovers and becomes reinfected before the initially infected individual recovers.
In our model, the infection, recovery, and reinfection of a single partner counts as two secondary
transmissions, assuming that the initially infected individual had not recovered before the partner
became reinfected.

There are several possible state changes for an infected, unpartnered individual (the index case).
He/she recovers prior to forming a partnership with probability 1=d=�k� 1=d�. With probability
k=�k� 1=d�, a partnership is formed ®rst. The partner is infected with probability pu (leading to Z
additional secondary infections in expectation prior to the recovery of the index case) and un-
infected with probability 1ÿ pu (leading to Y additional secondary infections in expectation). This
leads to the following relationship for X in terms of Y and Z.

X � 1=d
k� 1=d

0� k
k� 1=d

puZ� � �1ÿ pu�Y �: �8�

The three possibilities for an infected individual whose partner is infected are (a) the individual
recovers, (b) the partner recovers (and is therefore susceptible to reinfection), or (c) the part-
nership ends. These three outcomes lead to three terms in the following relationship for Z:

Z � 1=d
r� 2=d

0� 1=d
r� 2=d

Y � r
r� 2=d

X : �9�

Similarly, an individual will infect an uninfected partner with probability hb=�r� hb� 1=d�. This
generates one new secondary case and has the potential of generating Z additional secondary
infections, in expectation. Separation occurs prior to separation and recovery with probability
r=�r� hb� 1=d�, and generates X more secondary infections in expectation. This implies that

Y � r
r� hb� 1=d

X � hb
r� hb� 1=d

�1� Z� � 1=d
r� hb� 1=d

0: �10�

Appendix A.3 shows that

X � dkhb
�k� r� 1=d��r� hb� 2=d� �r� � 1=d��1ÿ pu� � 1=d�: �11�

If hb approaches in®nity (transmission is certain) and pu � 0 (e.g., at the beginning of an epi-
demic) then X becomes k�dr� 2�=�k� r� 1=d�. If it were not possible to reinfect a recovered
partner during one long partnership, then a similar analysis indicates that X would be
k�dr� 1�=�k� r� 1=d�. The expected number of secondary infections therefore exceeds the
expected number of individuals that become infected, because there is a chance that some indi-
viduals will be infected and reinfected by the same partner.

Even when limits for hb and r are not taken, the pseudo-equilibrium prevalence ~pu in the
unpartnered population satis®es Z�~pu� � 1, meaning that the expected number of new infections
generated by each infection before recovery is one. Therefore Z�pu� plays the role of the repro-
duction number R of the infection. The basic reproduction number R0 is somewhat more complex
in the context of stochastic processes than in the deterministic model context where contacts have
no duration. The reason is that one must specify what one really means by an individual starting
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out in an otherwise completely susceptible population of a large number of individuals. If the
infected individual is unpartnered, say, by becoming infected by an individual that is external to
the modeled population, then R0 � X �0�, where X �pu� indicates a dependence on the prevalence
pu in the unpartnered population. If the individual is partnered with an uninfected individual,
then R0 � Y �0�. A reasonable assumption [3] is to de®ne R0 � Z�0� as the expected number of
secondary cases, given that a newly infected individual was infected by a partner, but that the rest
of the population is susceptible. This de®nition is used in the remainder of the paper.

Note that ~p does not equal any of 1ÿ 1=X �0�, 1ÿ 1=Y �0�, 1ÿ 1=Z�0�. Since contacts occur at
rate h during the fraction of time k=�k� r� that an individual is in a relationship, the e�ective
contact rate is c � hk=�k� r�, and cbd � �hk=�k� r��bd. Further note that ~p does not equal
1ÿ 1=cbd (the well-known formula for prevalence that is derived by assuming that contacts are
part of a point process, and that reinfection is not applicable). Empirical results in Section 4.1
indicate that ~p is between 1ÿ 1=Z�0� and 1ÿ 1=cbd. The reason for the discrepancy is that
contacts are no longer a sequence of independent events, but are correlated as a result of the
partnership dynamics. This discrepancy is consistent with the general conclusions of Kretzschmar
and Dietz [19] in a study the role of partnership duration for a deterministic infection model, but
the speci®c numbers di�er as they use a di�erent mixing function. At a general level, their model
[19] also indicates that the prevalence may decrease under certain situations even when R�0� > 1.
The same may happen for the stochastic SIS model above, in that the prevalence may initially
decrease, in expectation, if all infectious individuals are initially unpartnered.

2.2. Populations with partnership concurrency

Stochastic models of concurrency are perceived as highly relevant for the analysis of infection
levels in a population. Kretzschmar and Morris [20] link the distribution of the number of
partners in a large population of individuals to epidemiological quantities of interest. They also
present a discrete-time discrete-individual model of infection, and empirically compare network
statistics to prevalence, but do not derive the equilibrium distribution of the number of partners as
a function of the parameters of their discrete-individual model. Altmann [3] describes how to
determine R0 for an arbitrary distribution of the number of partners in a homogeneously mixing
population with an SIR infection, and also derives the equilibrium distribution of the number of
individuals with a given number of partners. Whereas [3] assumes that the rate of forming an
additional partnership (as a function of the current number of partners) is a known, population-
level parameter, its value is derived below from individual-level parameters. This section also
derives R0 in the sense of [3] for the SIS model with the potential for infection, recovery and
reinfection during a single partnership.

As in Section 2.1, let k, r, h, b be the same for all individuals and partnerships, and let
N � NM � NF. Let the partnership propensity ng;` of individual ` of gender g be damped by a
factor h 2 �0; 1� as an individual increases his or her number of partners, mg;`, so that

ng;` � khmg;` : �12�
The factor h represents an individual's preference for seeking additional concurrent partners. If 00

is de®ned to be 1, then the sequential monogamy of previous sections can be represented by h � 0.
The rate that a partnership is formed between male j and female k can still be de®ned as in Eq. (1),
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and the overall rate of partnership formation is given in Eq. (2). The number of individuals
available for partnering is ng;` � N�g ÿ mg;` when everyone has a common h 2 �0; 1�, and �g is the
opposite gender, so that ng;` is approximately N�g when concurrency is allowed for everyone, as
opposed to approximately N�gr=�k� r� when all are sequentially monogamous. (Technically,
summands in Eq. (2) corresponding to the ng;` of individuals that are already in partnerships with
everyone of the opposite gender should be excluded.)

Suppose that p` is the fraction of individuals in a large population with exactly ` partners. The
same p` is used for both genders because of the symmetry in partnering and infection parameters,
and to simplify the arguments. The equilibrium value of p` can be approximated by determining
large population limits for the average partnership propensity and break-up rate, as a function of
the number of concurrent partners of an individual. From Eqs. (1) and (12), the rate at which a
speci®c male with ` partners forms a partnership with a speci®c female with k partners is

r`k � 1

2

kh`

N ÿ `
�

� khk

N ÿ k

�
:

By assumption, Np` males have ` partners, and Npk females have k partners. Let q`k be the number
of partnerships between males with ` partners and females with k partners. There are Np`Npk ÿ q`k
possible partnerships that can form between a male with ` partners and a female with k partners.
The rate that such a partnership is formed is therefore

Np`Npk ÿ q`k
2

kh`

N ÿ `
�

� khk

N ÿ k

�
:

Sum over k to get the rate a` that a male with ` partners forms a partnership with anyone,

a` �
XNÿ1

k�0

�Np`Npk ÿ q`k��kh`=�N ÿ l� � khk=�N ÿ k��
2

:

It is useful to de®ne the following large population approximation ~a` for a`:

~a` � Np`
kh` � c

2
� a`; �13�

where c �PNÿ1
i�0 khipi is a large population approximation for the average partnership propensity.

As N increases without bound (scale q`k proportional to N to maintain a constant proportion of
partnerships between males with ` partners and females with k partners) the following are true.
The in®nite sum c converges to a ®nite value because h < 1. Both a`=N and ~a`=N converge to
p`�kh` � c�=2. And the total partnership formation rate, normalized by the population size,
converges to the large population limit

PNÿ1
`�0 a`=N ! c.

The equilibrium fraction p` of individuals with ` partners can then be determined. In equilib-
rium, the overall break-up rate Np`�`r� for the Np` males with ` partners must equal the overall
partnership formation rate a`ÿ1 for the Np`ÿ1 males with `ÿ 1 partners. The large population
approximation ~a` for a` implies that

p`
p`ÿ1

� kh`ÿ1 � c
2`r

for ` � 1; . . . �14�

The additional constraint
P

p` � 1 then determines each p`. The p` can then be used to determine
epidemiological quantities of interest, such as the rate of epidemic rise.
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If R0 is interpreted as the expected number of secondary cases produced by a `typicalÕ case early
in the epidemic, an argument similar to that found in [3] can be modi®ed to determine R0 in the
context here. De®ne g` to be the average number of secondary cases produced by an initial case
with ` partners. If one samples individuals with probability that is weighted by the number of
partners, then an individual with ` partnerships is sampled randomly with probability `p`=

P
j jpj,

and

R0 �
P

` `p`g`P
` `p`

:

Assume that the initial case in question is infected by one infected partner, and that the other `ÿ 1
partners are initially uninfected. Let v be the expected number of times that each of the `ÿ 1
susceptible partners will become infected (including reinfections) before the initial case recovers.
Those susceptible partners will be infected with probability hb=�hb� r� 1=d�. Further, the
probability that an infected partner recovers before the end of a partnership is �1=d�=�2=d � r�.
Because of the Markovian assumptions, a partner that recovers is reinfected by the initial case
another v times, in expectation, if the initial case is still infected, and 0 times, if the initial case also
recovered. These observations imply that

v � hb
hb� r� 1=d

1

�
� 1=d

2=d � r
v

�
:

so that

v � hb� r� 1=d
hb

�
ÿ 1=d

2=d � r

�ÿ1

:

Take an expectation over the number of susceptible partners at the time of transmission to obtain
the expected number of infection transmissions to susceptible individuals that were partnered with
the base case at the time of infection

v

P
`�`ÿ 1�`p`P

` `p`
:

A recurrence relation for the number of additional partnerships m` formed before recovery by a
person with ` partners can be derived by conditioning on whether recovery, partnership forma-
tion, or separation occurs ®rst:

m0 � 1=d
a0 � 1=d

0� a0

a0 � 1=d
1� � m2�;

m` � 1=d
a` � 1=d � `r 0� a`

a` � 1=d � `r 1� � m`�1� � `r
a` � 1=d � `r m`ÿ1; for `P 1:

Each new partner becomes infected v times in expectation. If new partners are presumed to be
uninfected, the expected number of new infections to new partners is v

P
` `p`m`=

P
` `p`. The basic

reproduction number is therefore

R0 � v

P
` `p`�m` � �`ÿ 1��P

` `p`
: �15�
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Again, the interpretation is the expected number of new infections during the initial stages of
infection. This derivation does not conclude that endemic prevalence is 1ÿ 1=R0. Equations for
the pseudo-equilibrium prevalence for this concurrency model have not yet been derived.

3. A more general infection transmission system

The simple model in Section 2 ignores a number of real-world complexities that may a�ect the
prevalence of infection. This section describes three model extensions that relax initial assump-
tions in order to improve the model's ability to approximate reality. Each extension has been
implemented in the GERMS simulation model described in [2,16].

Infection and partnership durations might not be represented best by exponential distributions.
Infection durations are therefore allowed to have a gamma (da; db) distribution, so that the mean
da=db and variance da=d2

b can be better controlled to suit modeler preference. Partnerships are also
allowed to have a duration that has a gamma (ra; rb) distribution.

Heterogeneity of individuals may be needed to model individuals with di�erent propensities for
partnering and concurrency. All individual-related parameters are therefore allowed to vary from
person to person. For instance, the base partnership propensities kMj, kFk and concurrency at-
tenuation factors hMj, hFk are allowed to vary from person to person. Sequentially monogamous
individuals have h � 0.

Heterogeneous mixing is required to account for the in¯uence of social and geographic mixing
patterns on infection dynamics. Jacquez et al. [15] proposed a structured mixing model that de-
scribes the rate at which members of di�erent social groups meet in di�erent activity settings. This
motivates the inclusion of activity settings (called a `bins' in [2,16]) in the present model. Each
activity setting b (for b � 1; . . . ;B) has a geographical location (x, y coordinate) and social
contexts. Social contexts are represented by allowing only certain subsets of individuals to form
partnerships in each activity setting. Example contrasts for social contexts include core/non-core,
heterosexual/homosexual, and well-insured/poorly-insured individuals. Each activity setting may
be the site of partnership formation for individuals from one or more social groups, and each
individual may be a member of one or more social groups.

To implement this form of heterogeneous mixing, a parameter fb;Mj is used to describe the
fraction of the partnership propensity for male j allocated to activity setting b. Male j is only
allowed to form partnerships in activity setting b if fb;Mj > 0. The partnership propensity nb;Mj of
male j in activity setting b is de®ned to be

nb;Mj � fb;MjkMjh
nMjj
j :

Similar notation, nb;Fk; fb;Fk, is used for female k. The choice of fb;Mj and fb;Fk can be guided by the
geographic closeness of individuals to activity settings, and may depend on an individual's social
context.

Partnering continues in each activity setting along the lines of the model presented in Section
2.1, except that the additional subscript b must be added. In particular, the instantaneous rate that
male j and female k form a partnership in activity setting b is

rb;jk �
1
2

nb;Mj

nb;Mj
� nb;Fk

nb;Fk

� �
if j and k are eligible to partner in b;

0 otherwise:

(
�16�
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Here, `eligible to partner in b' means that (i) j and k are not already partnered to each other, (ii)
both j and k can form partnerships in activity setting b, and (iii) both j and k either allow for
partnership concurrency or are sequentially monogamous but unpartnered. De®ne the indicator
variables cb;jk and eb;Mj by

cb;jk � 1 if j and k are eligible to partner in activity setting b;
0 otherwise;

�

eb;Mj � 1 if there is at least one female eligible to partner with male j in activity setting b;
0 otherwise:

�
The rate rb;j that male j forms a partnership in activity setting b is therefore

rb;j �
XNF

k�1

rb;jk � eb;Mj

2
nb;Mj

 
�
XNF

k�1

cb;jk nb;Fk

nb;Fk

!
: �17�

The factor eb;Mj ensures that an individual with no eligible partners will not form a partnership,
and nb;Mj drops out of the denominator in the ®rst term on the right-hand side of Eq. (17) because
there are nb;Mj values of k such that cb;jk � 1. The probability that individual j is selected to
participate in a partnership formed in activity setting b is proportional to rb;j. The rate rb of
partnership formation in activity setting b is

rb �
XNM

j�1

XNF

k�1

rb;jk �
XNM

j�1

eb;Mj nb;Mj

2

 !
�

XNF

k�1

eb;Fk nb;Fk

2

 !
: �18�

The overall partnership formation rate is therefore r � r1 � � � � � rB. To complete the speci®cation
of the partnership dynamics for this general model, the duration of partnerships formed in activity
setting b is assumed to have a c distribution whose parameters (rb;a;rb;b). This allows for long-
term partnerships to be formed in one activity setting, and commercial sex partnerships to be
formed in another. For short-term relationships in activity setting b, the sex-act rate parameter hb

may need adjustment to ensure that the probability of transmission per short-term partnership is
modeled correctly, as the GERMS model does not presume that a relationship begins with a sex
act.

4. Simulation experiments

Simulation experiments were employed to empirically observe the stochastic variation of the
infection process around pseudo-equilibrium levels, and to check if the large-population limits are
reasonable for small population sizes. See [2] for a further discussion of the GERMS simulation
environment used to implement these experiments, including a description of an approximation
for the partnership formation process that improves the runtimes while preserving the appropriate
asymptotic limits.
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4.1. Sequentially monogamous populations

The ®rst set of simulation experiments examines relationships between R0, the theoretical
pseudo-equilibrium prevalence, and simulated endemic values for the monogamous population
with homogeneous personal and mixing characteristics. The population is closed, with N� 1000
males and N� 1000 females that seek sequentially monogamous partnerships in a single activity
setting. The `base model' assumes that all individuals have a common partnership propensity
k � 1=14 days, separation rate r � 1=14 days, contact rate during partnerships h� 3/7 (3 per
week), with per-contact transmission probability b � 0:3 when exactly one partner is infected. The
infection duration is exponentially distributed with mean d� 55 days, a value that is reasonable
for untreated gonorrhea. Pseudo-equilibrium values were observed by (i) simulating partnership
dynamics without infection for 1 year to attain close-to-equilibrium partnership dynamics, (ii)
infecting approximately 20% of the population, (iii) simulating ®ve more years allow transient
e�ects to dissipate, then (iv) collecting prevalence statistics over an additional 15 years of simu-
lated time. Similar experiments varied a single parameter from the base case.

The time-average of the prevalence during that 15 years is presented in Table 3, along with a
batch-mean [32] con®dence interval (30 batches of 6 months each). Statistical tests of indepen-
dence for the batch means indicate that autocorrelation is insigni®cant, except for a small positive
one-step correlation for the base case. For the base case, then, the CI may be slightly overcon-
®dent. The simulated batch mean compares quite well with the theoretical pseudo-equilibrium
prevalence of Eq. (7). Table 3 also presents the expected number of secondary infections
(R0 � Z�0�) in the terminology used in the end of Section 2.1) due to an individual that was in-
fected by a partner at the beginning of the epidemic, as well as 1ÿ 1=R0. Clearly the endemic,
pseudo-equilibrium level does not equal 1ÿ 1=R0, using that de®nition of R0. The endemic level is
under-predicted by that equation. Nor does the pseudo-equilibrium level equal 1ÿ 1=�cbd�, the
endemic level predicted by deterministic models which have exposures occurring as point contacts
with no duration. The actual endemic level is rather lower than predicted by 1ÿ 1=�cbd�. The
discrepancy is due to the fact that contacts are not independent events at speci®c points in time,
but in fact are part of a correlated sequence of events that take place in the context of sexual
partnerships, a sequence that further depends on the infection status of each partner.

The lack of correspondence between the expected number of secondary infections R0, an in-
dividual-level concept, and population levels of infection is similar to what we have noted in other

Table 3

Comparison of basic reproduction number, the prevalence predicted by a theoretical model, and the simulated prev-

alence for an SIS infection in a homogeneous, monogamous population

Experiment R0 � Z�0� 1ÿ 1=R0 1ÿ 1=�cbd� Pseudo-

equilibrium

prevalence, ~p

Observed mean

prevalence

(simulation)

95% con®dence

intervals

(simulation)

Base case 1.25 0.200 0.717 0.298 0.298 (0.288, 0.308)

Base, but k � 1=7 1.69 0.408 0.788 0.570 0.570 (0.563, 0.577)

Base, but r � 1=21 1.22 0.180 0.764 0.307 0.303 (0.291, 0.315)

Base, but b � 0:5 1.53 0.346 0.830 0.515 0.513 (0.507, 0.518)

Base, but d� 50 1.14 0.123 0.689 0.190 0.199 (0.189, 0.209)
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non-random mixing simulations [17]. A point time proportionate mixing process is needed for the
correspondence to be valid.

4.2. Populations with partnership concurrency

A second set of simulation experiments examines how the prevalence is a�ected by changing some
of the population and infection dynamics to take advantage of the generality described in Section 3.
Table 4 summarizes how the base case population was modi®ed for each simulated population. The
average prevalence is calculated over a 15-year period, as for the ®rst set of experiments.

Table 4

Summary of second set of simulations (population of 2000 individuals) to evaluate prevalence as model parameters are

changed (Fig. 4 displays the simulated prevalence)

Name of run Description Average prevalence

Base case 1000 males, 1000 females; Common k � 1=14; common r � 1=14;

recovery rate 1/d� 1/55; sequential monogamy (h � 0); sex-act

rate h� 3/7; transmission probability per act b � 0:3.

595

Concurrency for all Same as `base case', except that everyone can have concurrent

partnerships (h � 0:1)

993

Concurrency for 10% Same as `base case', except that exactly 10% of the males and

females can have concurrent partnerships (h � 0:1)

710

Extra activity setting Same as `concurrency for 10%', except that monogamous

individuals form partnerships exclusively in activity setting 1, and

others split the partnership propensity in two settings

725

Fig. 4. Prevalence for several simulated scenarios (Table 4 describes the scenarios further).
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Fig. 4 displays the prevalence, as a function of time, for each scenario. The `base case' for this
second set of experiments is the same as the base case for the ®rst set of experiments. The prev-
alence clearly varies through time around the pseudo-equilibrium, after infection was introduced
at time 12 months in the simulation. Partnership concurrency plays a signi®cant role. If everyone
may have concurrent partnerships (`concurrency for all'), with a relatively low level of concurrency
(h � 0:1), then the prevalence increases to 993 from 595. Even if only 10% of the population have
the ability to form concurrent partnerships (`concurrency for 10%'), the prevalence is raised sig-
ni®cantly over the base case (710 vs 595). Prevalence was also examined under the assumption that
individuals that form concurrent partnerships tend to form partnerships with each other, rather
than mixing homogeneously with the entire population (`extra mixing group'). The mixing was
moderately non-homogeneous (all monogamous individuals form partnerships exclusively in ac-
tivity setting 1, and the 10% of the population that can have concurrent partnerships split their
partnership propensity equally between activity setting 1, and a second activity setting reserved
exclusively for individuals that can form concurrent partnerships). This non-homogeneity changed
the prevalence very mildly compared to the importance of concurrency alone.

4.3. Evaluation of concurrency approximations

The last simulation experiment evaluates the approximations in Section 2.2 that predict the
expected number of individuals in a population with a given number of partners. Iterative
methods were used to compute the solutions for the relevant equations from Section 2.2. Both
numerical error and the fact that a large-population approximation is used introduce the potential
for inaccuracies into prediction.

The simulated population consisted of N� 1000 males and N� 1000 females with a common
partnership propensity k � 1=14 days, separation rate r � 1=14 days, contact rate during part-
nerships h� 3/7 (3 per week), with per-contact transmission probability b � 0:3, and a concur-
rency damping factor h � 0:3. The recovery rate was 1/d� 1/55. Both the theoretical analysis of
Section 2.2 and the simulated estimates of the number of individuals with a given number of
partners are presented in Table 5. Individuals with ®ve or more partners are grouped together due
to the small numbers associated with that level of concurrency. The approximations do quite well,
although the theoretical values typically lie a very small amount outside the 95% con®dence in-
tervals for each quantity. This minor deviation is probably best explained as a result of the ap-

Table 5

Comparison of simulation estimates with the expected number of individuals with a given number of partners in

equilibrium (out of a population of 2000)

Number of concurrent partners Theoretical number of individuals

(approximation)

Simulated number of individuals

(95% CI from batch means)

0 988.5 (983.3, 988.5)

1 802.5 (801.8, 802.2)

2 185.2 (185.3, 185.8)

3 22.0 (22.3, 22.4)

4 1.8 (1.74, 1.76)

5 or more 0.11 (0.119,0.131)
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proximations for the partnership generation rate described in [2], as the other large-population
approximations all seem to hold extremely well for the other quantities of interest for sequentially
monogamous populations.

For this experiment with partnership concurrency, R0 in Eq. (15) evaluates to 2.223. The
pseudo-equilibrium number of infected individuals estimated by the simulation is
1136:1� =ÿ 8:78 out of 2000. This quantity is near, but several standard deviations higher than,
2000�1ÿ 1=2:223� � 1100. If individuals could not be infected twice by the same partner during a
given relationship, but were otherwise susceptible to reinfection by other partners during other
infections, then an analysis similar to that in Section 2.2 indicates that R0 would be 2.004. This
corresponds to a prevalence of 1002 out of 2000. This illustrates the potential for reinfection
during a partnership to in¯uence the prevalence of infection.

5. Discussion and conclusions

The stochastic, discrete-individual infection transmission model presented above has parame-
ters that correspond to deterministic model parameters for homogeneous populations. Because of
this, a number of analytical results are available to describe equilibrium partnership dynamics and
endemic infection levels. Moreover, the simulation implementation of the generalized version of
the model allows one to study the e�ects of relaxing the homogeneity assumptions. This suggests
that model exploration can proceed in stages, with deterministic models being used to explore
some high-level issues. The general stochastic discrete-individual model can then be used to re®ne
or extend the analysis. Potential uses include the study of stochastic variation in endemic infection
levels through time, the evaluation of heterogeneity e�ects in the partnership formation process,
and the observation of the e�ects of a non-exponential infection duration on the prevalence of
infection. A further use is the exploration of individual-level social contact patterns and their role
in the transmission of infection [16].

The particular heterosexual mixing formulation presented above has some desirable properties
but it is not as general as the formulations presented by Castillo-Chavez and co-authors [5,6]. A
major advantage of the speci®c formulation here is that analytical equilibrium results are available
to help validate the simulation implementation of the model. The paper also derives population-
level parameters for partnership concurrency from individual-level parameters, which may im-
prove the ability of a modeler to set model parameters in a range consistent with ®eld observations.

Contact processes that have partnerships with any duration cause a dissociation between the
individual-level de®nition of R0 and population-level consequences that are associated with R0 in
models with point-in-time random mixing processes. It is therefore inappropriate to use the basic
reproduction number to determine both the rate of epidemic rise and the endemic level of infection
when point-time contacts are not a valid model, even when a number of standard homogeneous
population assumptions are valid. The reason is that infection opportunities are not independent
events when contacts occur in the context of partnerships that have a non-zero duration. The
potential for infection, recovery and reinfection of an individual that is in regular contact with an
infected partner is also shown to increase the endemic prevalence of infection in a population.

Discrete-individual simulation experiments in continuous time indicate that the large-scale
approximations are useful for populations with just a few thousand individuals, in the sense that
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batch mean con®dence intervals for the endemic levels contain the theoretical endemic prevalence.
Additional experiments (results not shown) indicate that the approximations are also reasonable
with 500 individuals.

These results help to bridge the gap between deterministic di�erential equation analysis and
stochastic discrete-individual simulation models for the study of infectious diseases. There re-
mains much more to be done, but the above mathematical formulation and insights for computer
implementation may serve as a useful basis for further research.
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Appendix A

A.1. Mixing functions

A signi®cant amount of work has been done to develop mixing rate functions for deterministic
models [5,6,8]. The GERMS model formulation builds upon that work by applying the mixing
rate to the individual, rather than population level. Consider, for example, the Fredrickson±
McFarland properties [28,29] for a deterministic mixing rate u�nMj; nFk� when there are nMj�nFk�
males (females) available for partnering:

(i) u�0; nFk� � u�nMj; 0� � 0 (no partnership formation if no males or females are available),
(ii) au�nMj; nFk� � u�anMj; anFk� (rate of formation is proportional to the population size),
(iii) u�nMj � a; nFk � b� > u�nMj; nFk� when a; b > 0. (rate is non-decreasing in population size).
GERMS also has the following individual-level characteristic: if the base partnership pro-

pensity of all individuals is multiplied by a, then the rate of partnership formation is multiplied by
a, too.

By reinterpreting the population-level concept u with the pair-level concept rjk, and letting the
number of individuals nMj and nFk be replaced by the normalized partnership propensities nMj=nMj

and nFk=nFk, respectively, one obtains alternate mixing rates analogous to deterministic popula-
tion-level mixing functions already used in demographic studies [6]. Assuming that j and k can
form a partnership, the arithmetic average of Eq. (1) might be substituted with rjk �
min�nMj=nF; nFk=nM�; the harmonic mean

rjk � �nMjnFk=nFnM�=�nMj=nF � nFk=nM�;
or the geometric mean rjk � �nMjnFk=nFnM�1=2

. A mixing rate determined by the partnership
propensity of females alone is rjk � nFk=nM. By convention, rjk � 0 if a division by 0 occurs
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in the formula. Each of these functions models di�erent characteristics of how individuals
enter new partnerships. A good choice of the function rjk should depend on the character-
istics of the population being studied, and need not be limited to those functions described
here.

A.2. Derivation of pseudo-equilibrium prevalence for homogeneous SIS infection

Let pu and pp be the fraction of infected individuals in the unpartnered and partnered popu-
lations, respectively. Two relationships that must hold in equilibrium are derived by examining
the Markov chain experienced by a `typical' individual during a cycle of partnership formation
and separation. Let g�;` be the fraction of partnerships that terminate with exactly ` infected
individuals (`� 0, 1, 2), and let gi;` be the fraction of partnerships that terminate with ` infected
individuals, given that the partnership started with exactly i infected individuals. This notation is
also included in Table 1.

First, someone infected at the end of a partnership is infected at the start of the next partnership
with probability k=�k� 1=d�. For infection levels to remain stable, the following relation must
therefore be true:

pu � k
�k� 1=d�pp:

A second relationship between pu and pp is established by analyzing the infection process during a
partnership. To determine the g�;`, the values gi;` are required, as well as the probability that a
partnership starts with a given number of infected partners. Assuming uniform mixing, the
probability that a partnership starts with 0, 1 and 2 infected individuals is �1ÿ pu�2, 2pu�1ÿ pu�,
and p2

u, respectively. The gi;` are readily determined from conditioning on the next event (infection,
recovery, or separation), whose continuous rates are illustrated in Fig. 2.

The rates are readily translated into the following relationships:

g0;0 � 1; g1;0 � 1=d
r� hb� 1=d

� 1=d
r� hb� 1=d

g2;0; g2;0 � 2=d
r� 2=d

g1;0:

These relationships imply that

g0;0 � 1; g1;0 � �1=d��r� 2=d�
�r� h/� 1=d��r� 2=d� ÿ 2hb=d

;

g2;0 � 2=d2

�r� hb� 1=d��r� 2=d� ÿ 2hb=d
:

Similarly,

g1;1 � r�r� 2=d�
�r� hb� 1=d��r� 2=d� ÿ 2hb=d

; g2;1 � 2r=d
�r� hb� 1=d��r� 2=d� ÿ 2hb=d

;

g1;2 � rhb
�r� hb� 1=d��r� 2=d� ÿ 2hb=d

; g2;2 � r�r� hb� 1=d�
�r� hb� 1=d��r� 2=d� ÿ 2hb=d
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By noting that

�r� hb� 1=d��r� 2=d� ÿ 2hb=d � r2 � rhb� 3r=d � 2=d2;

it is easily veri®ed that gi;0 � gi;1 � gi;2 � 1, as required. The fraction of infected individuals at the
instant a partnership is broken up is then

pp � 2g�;2 � g�;1
2

;

where

g�;2 �
X2

i�0

p�start with i�gi;2 � 2pu�1ÿ pu�rhb� p2
ur�r� hb� 1=d�

r2 � rhb� 3r=d � 2=d2
;

g�;1 �
X2

i�0

p�start with i�gi;1 � 2pu�1ÿ pu�r�r� 2=d� � p2
u2r=d

r2 � rhb� 3r=d � 2=d2
:

Combining terms leads to the relationship in Eq. (5). Recall that pu � ppk=�k� 1=d� to obtain

0 � pu r�r
�

� 2hb� 2=d� ÿ r2
ÿ � rhb� 3r=d � 2=d2

� k� 1=d
k

� ��
ÿ p2

u rhb� �:

This equation has two roots. The ®rst is the equilibrium prevalence, pu � 0, and the other is the
root in Eq. (6). The overall pseudo-equilibrium prevalence is then the weighted average of the
prevalence in the partnered and unpartnered populations, as claimed in Eq. (7).

A.3. Derivation of basic reproduction number R0 for simple SIS model

Let X, Y, Z be de®ned as in Section 2.1, and Eqs. (8)±(10). Substitute Z into the equation for Y
so that

Z � 1=d
r� 2=d

r
r� hb� 1=d

X
�

� hb
r� hb� 1=d

�1� Z�
�
� r

r� 2=d
X ;

Z � 1=d
r� 2=d

hb
r� hb� 1=d

� 1=d
r� 2=d

r
r� hb� 1=d

�
� r

r� 2=d

�
X

� 1=d
r� 2=d

hb
r� hb� 1=d

Z:

Therefore,

Z � 1=d
r� 2=d

hb
r� hb� 1=d

�
� 1=d

r� 2=d
r

r� hb� 1=d

�
� r

r� 2=d

�
X
�

1

�
ÿ 1=d
�r� 2=d

hb
r� hb� 1=d�

�ÿ1=2

:

,
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Algebra indicates that

Z � hb=d � r�r� hb� 2=d�X
�r� 2=d��r� hb� 1=d� ÿ hb=d

� hb=d
�r� 1=d��r� hb� 2=d� �

r
�r� 1=d�X :

Substitute Z into the equation for Y to obtain

Y � r
r� hb� 1=d

�X � � hb
r� hb� 1=d

1

�
� hb=d
�r� 1=d��r� hb� 2=d� �

r
�r� 1=d�X

�
;

which simpli®es to

Y � r
r� 1=d

� �
X � hb�r� 2=d�
�r� 1=d��r� hb� 2=d� :

The above expressions for Y and Z can be substituted into the equation for X to get

X � k
k� 1=d

puhb=d
�r� 1=d��r� hb� 2=d�
��

� pur
�r� 1=d�X

�
� �1ÿ pu�r

r� 1=d
X

�
� �1ÿ pu�hb�r� 2=d�
�r� 1=d��r� hb� 2=d�

��
:

This simpli®es to the assertion of Eq. (11).
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