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Model Structure Selection for Health Economic Evaluations:

Taxonomy of Optionsand Criteriafor their Use
Summary
Models for the economic evaluation of health technologies provide valuable
information to decision makers. The choice of model structureis rarely discussed in
published studies and can affect the results produced. Many papers describe good
modelling practice, but few describe how to choose from the many types of available
models. This paper devel ops a new taxonomy of model structures. The horizontal
axis of the taxonomy describes assumptions about the role of expected values,
randomness, the heterogeneity of entities, and the degree of non-Markovian structure.
Commonly used aggregate models, including decision trees and Markov models
require large population numbers, homogeneous sub-groups and linear interactions.
Individual models are more flexible, but may require replications with different
random numbers to estimate expected values. The vertical axis describes potential
interactions between the individual actors, as well as how the interactions occur
through time. Models using interactions, such as system dynamics, some Markov
models, and discrete event simulation are fairly uncommon in the health economics
but are necessary for modelling infectious diseases and systems with constrained
resources. The paper provides guidance for choosing a model, based on key
requirements, including output requirements, the population size, and system

complexity.

Keywords: health technology assessment; cost-effectiveness analysis, modelling

methodology; simulation; decision tree; Markov model.



I ntroduction

The decision about which model structure should be chosen in a particular health
economic evaluation context is only rarely discussed in published studies. Policy
recommendations based on a model may depend upon the explicit and implicit
assumptions of the model. Many evaluations use aggregate or ‘ cohort’ models, which
examine the proportions of the population undergoing different events with associated
costs and utilities. Patient or individua level models, which sample individuals with
specific attributes and follow their progress over time, have recently become more
prevalent. The problem isthat aggregate models adopt assumptions that may
unwittingly produce inaccurate or inadequate solutions, whilst individual level models
can adopt less stringent assumptions, but may be more time consuming to develop and
run. Recent debates on choice of model structure have focussed on this cohort versus
individual level dichotomy [*]. This paper presents a taxonomy of awide range of

available model structures, and guidance for the selection of an appropriate model.

We define amodel based evaluation as aformal quantified comparison of health
technol ogies, synthesising sources of evidence on costs and benefits, in order to
identify the best option for decision makers to adopt. Interventions can include drugs,
surgical procedures, and psychological therapies or much broader health system
strategies such as screening policies, public health interventions or bio-terrorism
defence. Outputs usually include intervention costs and a measure of morbidity and
mortality such as quality of adjusted life years (QALY'S). Adoption may depend upon
asingle measure e.g. the expected incremental cost per QALY between technologies
against athreshold willingness to pay (?) or equivalently, expected monetary net

benefit (NB=7*QALY — Cost). Sometimes, decision makers are also interested in



other measures around uncertainty, individual or geographic variability and trends
over time. Recent guidance recommending probabilistic sensitivity analysis[?, 9|

leads to a preference for fast, efficient models with a single output measure.

Model structure is usually determined by considering the relationship between the
inputs (natural history of disease, clinical pathways, evidence of interventions
effectiveness, utilities associated with health states, intervention and other costs etc.),
and the output measures required by the decision maker. Practical considerations also
include availability of data, the background and skill of the researcher and the type of
software available. Asthe choice is usually made relatively early in projects, it is

often hard for model developers to abandon an initial structure and start again.

There are severa papers whose guidance on good modelling practice distils down to a
series of principles (e.g. transparent structure, appropriate and systematic use of
evidence) rather than more detailed guidance on the structure that is appropriate [*, °,
® 7]. Sculpher et al. (2000) are slightly more detailed, recommending that model
structure be as ssimple as possible, consistent with the stated decision problem and a
theory of disease and not defined by data availability or health service inputs alone.
They do not address the issue of which specific modelling techniques to use, but
implicitly assume, in making their recommendations, the use of a cohort model [7].
Some researchers have directly compared alternative model structures. Karnon's
economic evaluation of breast cancer showed that an individual level discrete event
simulation and a cohort Markov model could be ‘tuned’ to produce the same results
[*]. Koopman et al. have experimented with a hierarchy of models, designed to

answer similar epidemiological questions [*°]. Barton et al, reviewing methodol ogy



in decision trees, cohort Markov models, and individual level models [*'], suggest that
the choice between these three approaches depends upon: whether pathways could be
adequately represented by probability trees, whether a Markov model would require

an excessive number of states, and whether interaction between patients is important.

This paper extends those articles by more systematically establishing the range of

model structure options and criteriafor their selection.

A Taxonomy of Model Structures

Table 1 shows the range of available approaches for health economic evaluation
models, and their relationships to each other. This section describes the taxonomy
from a conceptual perspective. The Appendix describes a variety of computational

tools for implementing the models.

Table 1: Taxonomy of Model Structures

The rows (1 to 4) describe factors involving both time and interaction between
individuals. Health economists’ current approaches are largely those in the top half of
the table. The models assume independence between individuals, and time may (row
2) or may not (row 1) be modelled explicitly. Models with interactions (rows 3, 4) are
necessary when individuals interact (e.g., infectious disease transmission) or
constraints affect individuals (e.g., finite service capacity or restricted supplies of

organs for transplantation). We distinguish discrete time and continuous time models.



The columns (A to D) separate cohort from individual level models and disentangle
assumptions concerning expected values, randomness, and the heterogeneity of
entities. Cohort models (columns A, B) quantify the proportion of people with
common characteristics. In cohort models with randomness (column B), the
Markovian property is typically assumed, meaning that the future is conditionally
independent of the past, given the present. Cohort models can account for different
attributes/covariates (e.g. multiple ages, weights, genders, other risk factors, stages of
natural history of disease etc.) by subdividing the number of states or branches, but
the number of dimensions rises exponentially (e.g. M binary attributes imply 2"
dimensions). Individua level models (columns C, D) overcome this problem by
simulating the progression of each individual with different characteristics (a
population of N individual patients with M attributes each requires MxN data entries).
Non-Markovian distributions (column D) allow greater flexibility in modelling the
timing of health-related events. Stochastic models may require many simulation runs
to quantify the output mean and variance with sufficient accuracy. More complex
individual level models (e.g. D4) can examine interactions both with other individuals
and with the environment, including the availability of resources (e.g., doctors, beds,
transplant organs). Each grid cell in the taxonomy is related to its neighbours by

varying some of the basic assumptions that underlie each model.

Aggregate Models without I nteraction

Decision Trees for Cohorts (Al, B1)




Decision trees (A1), astypically used in health economics, are among the most widely
used aggregate level models[™,*]. A decision tree outlines decisions (the square in
Figure 1), the probability or fraction of various outcomes (emanating from the
circles), and the valuation of each outcome, such asa QALY cost or net benefit
measure. The mean value of adecision is computed analytically (“rollback™) by
summing the probability of each outcome with its value, such as E[NB | Treat] = 0.9 *
09+0.1* 0.5=0.86. Thisreflects either alarge-population assumption, so that
probabilities essentially match the actual fractions of individuals with a given attribute
(alaw of large numbers argument), or an assumption that expected values for patients
are the desired outcome (rather than a distribution or variation, assuming a risk-
neutral decision maker), or both. Recursion, or looping, is not alowed, but much

more complicated scenarios are possible than in Figure 1, with many decision

strategies, long sequences and multiple outcomes from chance nodes.

Figure 1:A Decision Tree

The simulated decision tree cohort (B1) provides an alternative approach to
estimating the mean value of each decision option. In Figure 1, E[Treat] might be
estimated by Monte Carlo sampling a one million (10°) patient cohort with a Binomial
(10°, 0.9) distribution. This simulates the number of individuals on each path, but not
each individual separately. The advantage of this approach isthat it can provide a

measure of the variability of the number of individualslikely to be in each state.

Markov Modelsfor Cohorts (A2, B2)




Markov models (A2) can provide a more compact representation than the decision
tree when arepeated set of outcomes is possible through time A cohort-based Markov
transition matrix uses atransition probability per unit time for individualsin the

11 13 14

cohort to change to another state, with associated costs and utilities[~,”,”"] (Figure

2).

Figure 2: Transition Probability Matrix for aMarkov Model

This formulation assumes that the transition probabilities are constant over time.
Survival in aparticular state is therefore defined by a geometric distribution in
discrete time. Analysts often use subtle ways to extend the generaliseability of the
Markovian assumption, for example, by using different transition matrices as time
progresses. If transition probabilities depend on certain attributes, then one can
redefine states. For example, patient history can influence risk by defining states to
include healthy with previous history of illness, healthy with no previous history of

illness, etc.

It is a common misconception that analysts should use atime step defined by data
availability (e.g. ayear). The time-step used, however, affects the model results.
With discrete time models, electing a smaller and smaller time slice is warranted until
the output is no longer affected. To determine the probabilities for different time
intervals for a two-state transition function, one can use an equation that relates the

probability p;; of an outcome, j, from state i through time t via the instantaneous

hazard rater;;, namely p;; = 1- e "' [*]]. Alternatively, the transition probability can



be modelled by pj; = rijt (both have the same first-order linear term in their Taylor

series expansion).

Markov models for cohorts can be processed either analytically (A2) with expected
values or with simulated random Markov model transitions (B2). The approach and

rationale of Monte Carlo smulation is like that for the Simulated Decision Tree (B1).

Individual Sampling M odels without Interaction (CD1, CD2)

Rather than tracking data for every compartment or path, individual sampling models
(ISMs) track specific individuals. The individuals have potentially heterogeneous
characteristics that affect their progression through the model, yet individuals
progress through the model independently of each other and of environmental
constraints. Typically, ISMs generate a large numbers of simulated patient histories

and evaluate results with a sampling algorithm (Figure 3).

Figure 3 An Individual Sampling Model Algorithm

Simulated Patient Level Decision Tree models (CD1) can be used to ssimulate
individuals through atree’s pathways, maintaining arecord of the ‘history’ as nodes
are processed. Time elapsesimplicitly. This approach is most useful when
probabilities, QALY's, and costs depend upon alarge or conceptually infinite number

of values, (e.g. normally distributed costs that depend upon patient glucose levels).



The most common implementations of ISMsin health economics are Markov models
that are modified to simulate individual s through each time period (CD2). One key
advantage lies in modelling multiple co-morbidities which depend on multiple
attributes / covariates. Examples include models of diabetes where patient co-
morbidities interact and affect the outcome [*°,*¢,*"], and other work on rheumatoid
arthritis[*®] and osteoporosis [*]. The ISM approach can be further modified to
simulate the “time to next event” rather using equal time periods. This can provide
richer modelling power, computational efficiency and greater elegance in coding. For
example, the Birmingham Rheumatoid Arthritis Model [*°,%!] considers long-term

treatment for rheumatoid arthritis with strategies defined by alternative sequences of

disease-modifying anti-rheumatic drugs.

Aggregate Models with I nteraction Allowed

System Dynamic Models (A3, A4)

If individuals do interact, it is not always necessary to model each individual
separately. System dynamics, a common cohort-based approach in epidemiology and
operational research, models the state of the system in terms of changing, continuous
variables over time. Crucially, it enables the rate of change in the system to be a
function of the system’s state itself (i.e., feedback). Typical examples of feedback
include infectious disease outcomes, where higher levels of infection produce higher
risks of further infection but also reduce the number of people in the susceptible pool,

and health care service constraints, where the system performs differently when it is
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full or over-capacity [%,%*?*]. Factors affecting rates of change may include

behavioural influences.

Continuous time system dynamics models (A4) use ordinary differential equations
(ODE), like dx/dt = f(x, t) to describe the rate of change of a state vector x. For
example, Equation 1 describes the rate of change in the number of infected
individualsi (the “state”) in apopulation of N individuals as a function of the contact
rate (c contacts per unit time), the probability b of infection per potentially infectious
contact, the probability i/N that one of the (N-i) susceptibles contacts an infected, and

the mean duration of infection D.
Equation 1 An Infection Systems Dynamics Model expressed as Ordinary Differential Equation

di
(Equation 1) dt

populationinfection rate- population recovery rate

[ o
CbN(N- I)_B

System dynamics models can have multiple linked ODEs to specify the full model.

The Euler-forward approximation to the continuous time ODE model resultsin a
discrete time finite difference equation (FDE) model (A3) approximation

X+1= % + f(x;, tj) Dt
where x; is the state of the system at time t; = jDt. [?]. The facilities for interaction
are the same as for the continuous model. The solution to the differentia or difference
equations is specified over time so that the output resulting from a different strategy
can be quantified. The approach therefore provides the ability to model the
deterministic interaction of groups of individuals but without modelling each

individua in the system.
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System dynamics models are commonly implemented in packages with graphical
interfaces, which make them easier to build and use. There have been applications

concerned with community care, short-term psychiatric care, HIV/ AIDS [#],

26 27 28

smallpox preparedness [%°,%",%8], CID [*] and others.

The cohort level Markov models (A2) that are evaluated using expected values arein
fact special cases of discrete time finite difference (FDE) models (A3), but without
the ability to model interactions (e.g., nonlinear dynamics from interpersonal infection
transmission or resource capacity constraints). More accurate FDE approximations to
ODEs are available [*°], and partial differential equations [*] can complement ODEs

to enhance model richness (e.g., geographic effects).

Discrete State, Continuous Time Markov Models (B3, B4)

The system dynamics approach has two important assumptions — firstly, that the
change dynamics are deterministic and secondly, that fractions of individuals can
occur in specific health states (an infinitely divisible population assumption). With
large populations such assumptions may be reasonable. Continuous time Markov
chain (CTMC, grid cell B4) can address both aneed to model an integer number of
individuals in each health state and the variability that can occur in such systemsa. A
CTMC can model many interactions including, for example, infectious disease
dynamics and limited healthcare resources. Monte Carlo simulation is often
employed to analyze these systems, although analytical stochastic process methods

may sometimes be employed for sufficiently simple models.

12



A CTMC that is analogous to the system dynamics model in Equation 1 is depicted in
Figure4. Each circleisapotential state of the system (i peopleinfected in a
population of N individuals), the arrows out of a particular state represent the possible
state transitions (from i people infected, a recovery changes the state to i-1 people
infected, an infection changes the state to i+1 infected). The rates may depend upon
the current state, so that the force of infection when there are i people infected

isl, =cbi(N - i)/ N, and the recovery rateism =i/D.

Figure 4: Continuous-time Population Markov Model Transition Probability

The distribution of the time to the next event (infection or recovery) is exponentially
distributed with mean that is one divided by the sum of the rates out of the current

state (1/(1 ; + m)). The probability of a particular event is proportional to the
appropriate transition rate (an infection event has probability |, /(I, + m)). A CTMC

in general can be simulated by sampling an exponentially distributed time to next
event, then sampling the specific event type using probabilities that are proportional
to the individual event rates. After sampling the specific event type and updating any
statistics, the rates may change for sampling the time to the next event. The basic

theory to support this sampling mechanism is Theorem 1.

Theorem 1: Sampling Time to First of Many Events

Proof: See, e.g. Cinlar [*'], Also see Banks et al.p. 222 [*9].
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In a context where k different events could happen (e.g., recoveries or potential

infections of many classes of ill people), Theorem 1 says that the time to the next

k
event can be sampled first (exponential, rateé_ g,, ), and then the type of event to

m=1

k
occur can be sampled next (event j with probabilitygj/é_ Om)-
m=1

CTMC models are often analysed stochastically by simulating realisations, or sample
paths, that describe how the state changes through time. The number of individualsin
each state is tracked, and each individual event must be processed, but there is no
need to sample the identities of individual patients to maintaining their histories.
Multiple independent realisations can be used to estimate statistics like time-varying
means, time averages, and the probability of extreme events like outbreaks. If the
number of individuals in the population gets very large, and a scaling is done so that
the fraction of individuals in each state is maintained, then plots of sample paths get
less variable and the number infected converge to a differential equation (e.g., see

[*® 3] for epidemic models, and [*°] for related results for queueing models). Figure5
illustrates this by comparing the ODE infection model in Equation 1 with the
stochastic analoguein Figure 4. The approximation is poorer for small populationsin

general. The upper left of Figure 5, where the possibility of infection being

eliminated in a short time is high, gives a specific example of a poor approximation.

Figure 5: Scaled realizations of ODE infection model Equation (1) and stochastic

model in Figure 4 (increasing population size N; c=10; b=0.1; D=1.2 days).
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The discrete time Markov chain (DTMC) model (B3) is like the CTMC except that it
is updated with finite time steps, at times 0, Dt, 2Dt, 30, ... for some suitably chosen
period Dt. Brookhart et al. (2002) used a DTMC to model a Cryptosporidiosis
outbreak due to water treatment failure [*°]. The larger the period Dt of the DTMC,
the worse a DTMC approximation of the original CTMC process becomes, in part
because individuals are allowed to have only one event affect them per time step. The
error inaDTMC approximation to a CTMC can practically be controlled by shrinking
the time step size and rescaling parameters appropriately) as described above for

simulated Markov models (B2).

Individual Level M odelswith I nteractions

To model interactions, analysts often intuitively think of modelling individuals as

separate entities.

Individual level Markovian models with interactions (C3, C4)

Individual level Markovian models with interactions can be thought of as an extension
of Markovian cohort models with interaction (B3, B4). Individual-level means that
patient characteristics may be heterogeneous, and that histories may be tracked for
each individual in the population. For that reason, thisfallsinto the class of models

that Koopman et al. callsindividual event history (IEH) models.

There are at |east two methods to smulate CT IEH models (C4). Thefirst explicitly

uses the Markovian assumption in Theorem 1 to simulate the time to the next event,
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followed by the selection of which event occurs. This differs from the use of the

Theorem for Markovian cohort models (B4) in that arate g, isassigned for any

event j that can occur for each individual | (rather than for each cohort). For the
epidemic model in Figure 4, if event 1 isidentified with infection, then the infection
rate of susceptible individual | when there are i infected individualsis

g, =cb(N-i)/N. Moregeneradly, the parameters and rates may differ for each

individual to reflect heterogeneous population characteristics, and rates may also
depend upon resource constraints (e.g., the service completion rate is nonzero for at
most one patient if thereis only one server). A second method isto use discrete-event

simulation (see below) with exponential distributions.
The analogous discrete time |EH model (C3) steps forward in discrete time intervals
in the same way asthe DTMC model. Multiple individuals may be sampled at each

time step, but each individual experiences at most one state transition per time step.

Discrete Event Simulation (D4, D3)

Probably the most flexible of all modelling techniques, continuous time discrete event
simulation (CT, DES) (D4) describes the progress of individuals (entities), which
undergo various processes (events) that affect their characteristics and outcomes

(attributes) over time. Law and Kelton [*']

present an excellent introduction. DES
permits sampling from any distribution, Markovian or not (C3). A queue structure
enables interaction to take place with constraints and between entities. The state of

the modelled system includes the current entities, their attributes, and alist of events

that can occur either at the current simulation time or that are scheduled to occur in
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the future. Events change the state at discrete times, and each event is processed one
by one, in anon-decreasing time order. Aseach event is processed, it may produce
conseguent additional events to be processed at the current ssmulated time, or at some

sampled time in the future.

The nomenclature DES has been applied differently in different papersin health

38 39 4

epidemiology, [*,%°,*] and health care delivery system design or

economics["],

scheduling [*]. We define DES to be consistent with the operational research
literature that developed DES theory and applications for the last 50 years [¥',*2,4*],
and for which rigorous mathematical formalisms exist [**,*]. In a healthcare DES,
individual interacting patients are usually the entities. Additional entities may include
health care service system resources, such as doctors, nurses, and ambulances for
transport. Examples of disease models include models of the activities and non-
Markovian survival distributions related to the natural history and treatment of
coronary heart disease [*'], of vertical transmission of HIV [*¥], and of vaccine trial
design [*®¥]. While constrained resources pose no problems for most DES tools,
special care may be required to model infection dynamics or multiple correlated
health risks. For example, models of multiple diseases may require multiple events
on the future event list per patient, as well as a need to reschedule eventsiif there are
related underlying causes. POST isatool to facilitate such event management [*9].
Custom-built programs are sometimes produced to adapt to the special needs of DES

models of infection [ %Y.

All smulation models have sampling error for estimating mean output values (costs,

QALY s, prevaence, etc.) that running multiple smulations can reduce. DES has the

17



additional disadvantage of potential computational slowness associated with inserting

and removing events from the future event list.

DES models have discrete-time analogues (D3) that are not different in any
significant methodological way to the continuous time models if the discrete time
steps are small. In fact, most commercial DES packages have animation graphics that
show the entities moving through the system to aid model development and checking,
and these typically implement a discrete-time DES variation if and when graphics are

running.

How to Decide Which Model Structure To Use

The taxonomy summarises the key structural assumptions that underlie each type of
model. Table 2 gives a numbered checklist of additional key issues (11 to 115), which
can help to determine the exact approach required. The checklist follows the
taxonomy structure, moving through the assumptions from the top left (the aggregate
decision tree with homogeneous states, no recycling, no interaction, and a large
enough population to make an integer approximation valid) across to the right, and
down to the circumstances requiring a DES approach. The features of these separate

issues can interact in the context of particular case studies.

Table 2 Issues and Guidance on Choice of Model Structure

Decison Makers Reguirements
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The purpose of health economic evaluations isto inform decision-making. If the
decision maker’ s perspective requires knowledge of the variability in the results rather
than just mean outputs (11) then stochastic rather than deterministic models may be
required. Such requirements might include knowledge of the range of impact
achievable in different geographical or organisational contexts or at different times.
For example, Davies et al. (2002) show that, in screening for and eradicating
Helicobacter pylori, the number of lives saved from death from gastric cancer may
vary widely, meaning that some Health Authorities may incur large costs with little
benefit [*?]. It can be argued whether such variability should be part of the decision

makers considerations, but if it is, then the appropriate model structureis required.

Decision makers such as NICE now expect probabilistic sensitivity analysis (PSA) to
quantify the uncertainty in mean outputs due to parameter uncertainty (13). A
deterministic model will provide the mean output for a given parameter set directly.
In individual sampling models, the mean output for a given parameter set is estimated
from (sometimes hundreds or thousands of) sampled individuals and the PSA will
thus be relatively time consuming. The need for PSA should not directly drive model
structure decisions but will influence them. There are interesting devel opments to

53 54

facilitate PSA including Gaussian meta-models of individual level models[>°,>"] and

quantifying the efficient number of individuals needed in each sample [*].

The choice of states and risk factors and the identification of their relationship to each
other should normally precede the choice of model structure. There are occasions,
however, when the decision makers require avery quick answer to a problem and

there is a temptation to provide a model with a simple cohort structure without testing
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the underlying assumptions. At the other extreme, some decision makers require a
model that can be adapted over time to examine different populations and include
emerging evidence on new risk factors or treatments. In these circumstances, the
analyst should consider the use of an individual sampling model and, in particular,

discrete event simulation which is more flexible [14].

Sub-division into states

In all models the states represent the natural history of disease, treatments and their
effects. In cohort models the states are often subdivided according to risk factors and
may be further subdivided into short time periods to approximate non-Markovian
distributions [16]. The representation of risk factors in a cohort model leads to the
danger of an explosion in the number of states, discussed previously [I7]. Itisclearly
desirable to keep the number of states as small as possible [8]. Risk factors may be

combined if they have little impact on the results of interest to the decision maker.

The states in a cohort model are assumed to represent a homogenous popul ation and
the implicit use of averages by deterministic models may cause statistical biasin
estimates of the mean outputs. For example, if the heart attack risk (per unit time)
increases with age, then the average of the heart attack rates in a population is higher
than the heart attack rate at the average age. The larger the age groups, the worse this
problem will be. Thisis a consequence of Jensen’sinequality, which states that
E[f(X)] 3 f(E[X]) when f() isaconvex function (heart attack risk) and X isarandom
variable (a covariate like age)[***°]. More generally, if risk factors are not linearly
related to the covariates, there may be some biasin QALY and cost measures.

Individual level modelling can cope with a non-linear interaction between the risk and

20



outcome [15], for example the relationship between the level of cholesterol and the

risk of coronary heart disease [*'].

Resource constraints

Another example of the inappropriate use of expected valuesisin the presence of
variability and resource constraints [114]. Deterministic models that use average
service times and mean demand rates can under-estimate or completely miss queuing
delay effects. If the event times are non-Markovian, then the queuing effects may
differ even more (Pollacek-K hintchine formula) [*°]. If health outcomes or delivery
costs are linked to delays before intervention, sochastic models are required. Where
there are explicit resource constraints and non-Markovian time to event distributions
[115], discrete event simulation may be the best choice. Non-Markovian distributions
are recommended as the most natural way to model process improvementsin health
care delivery, such as reductions in the variability in patient arrival and service

delivery times [*®].

Mode run time and population size

Aggregate models sometimes need thousands or millions of states, possibly to cope
both with the number of co-variates (“the curse of dimensionality”) and to ‘fix’ non-
Markovian effects. The resulting models may lack transparency and be slow to run.
Individual sampling models can solve these problems, but on the other hand, need
time consuming multiple replications to get good estimates of means. Discrete event

simulation may be particularly slow because of the need to maintain a future events
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list. Variance reduction methods are available to reduce the number of replications,

and hence the time needed [*'].

The time taken by individual sampling models will increase with the size of the
population to be modelled whereas deterministic cohort models presume a law of
large numbers effect. For large populations therefore, providing the non-linearity

assumptions are met, a cohort model may be an appropriate choice.

It may be important, however, that the population remain large in individual states.
For example, in infectious disease models, the stochastic effects of local die-out of
infection in states with small numbers of individuals may resultsin very different
dynamics from deterministic models [*°]. For diseases that are transmitted primarily
through smaller social structures (e.g. local families and local neighbourhood
transmission), then stochastic models may be preferred since the implicit large

popul ation assumptions for deterministic models do not apply.

Discussion

This new taxonomy grid extends the palette of modelling approaches beyond those
commonly used in health economics. This paper describes the underlying theory

linking each approach and criteria for selection.

It is the responsibility of model developers, rather than policy makers, to select the
most appropriate modelling approach. It is particularly important to think creatively

about the techniques to be used where there are interactions and large uncertainties.
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Thisis because different modelling approaches can produce very different results; one

example is the comparison of the different smallpox models[%,> %>

The taxonomy grid is incomplete in the sense that further combinations of approaches
and assumptions are also practised. A DEStool can track counts of individualsin
various states rather than maintain data on each individual. A recent model of
microbial drinking water infection combined ODE / CTMC models (for microbe
concentration) with a stochastic ODE (for infection outcomes in humans) rather than
using an unacceptably slow stochastic individual level model[*]. Mixed DES/ODE
models can assess the interacting effects of system capacity, service delays, screening

quality, and health outcomes [*].

Multiple modelling approaches can be used for model validation. For example, Chick
et al. (2000) did this as part of a study to show how long-term partnership
concurrency can strongly influence the prevalence of sexually transmitted diseases
[*!]. Output from differential equation, CTMC and DES models were compared to
insure that the DES was coded correctly, then the DES explored how mixing patterns
affected STD prevalence. Such exercises are an important part of ‘ structural
sensitivity analysis’, which can sometimes be ignored in favour of probabilistic
sensitivity analysis on parameters only. It may be valuable not to define the * best’
model but rather to establish whether decisions would be different if different

structures are used.

The influence of model development time on model structure selection will remain. It

is often related to the experience of the modeller, the complexity of the system and the
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software available. If the decision problem allows, simple models with a small
number of states are quicker to develop and run and easy to understand. However,
where multiple risk factors and non-Markovian delays are present, an individua level
model may be both quicker to code and more transparent to the decision maker.
Policy makers also need to be sensitive to the time required to provide appropriate

models for the purpose required.

National decision makers such as NICE and equivalent bodies in other countries
contribute heavily to methodology development, but there are also decision makers at
international and more local levels, who utilise evidence on costs and benefits. NICE
are interested in mean cost per QALY gained and PSA, which can appear to
encourage researchers to use cohort model structures, but modellers need to be aware
that PSA should not drive a decision to use an inappropriate structure. For other
decision makers more detailed models may be needed to provide disaggregated
output, such as cost estimates over time and variability between different geographical

regions.

Finaly, it is apparent that there is a great need for awider awareness of the variety of
techniques and their applicability. Many of these techniques are in the domain of
Operational Research, epidemiology, and statistics. Increased training,
communication and ‘buying in” will help the Health Economics discipline. Thisisa
high priority because the use of modelling and evidence synthesis for evaluating
health technologies has devel oped substantially over the last 10 years. The use of the
full range of techniques set out in the taxonomy grid and the criteria for appropriate

model selection is the route by which the discipline will develop.
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Appendix

The online appendix at http://faculty.insead.edu/chick/papers’HTAModel-

AppTable.html summarizes implementation issues for the models in the taxonomy,
and provides links to software reviews and vendors (the inclusion of a product or

vendor is not intended to imply endorsement, and vice versa).
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Tablesand Figures

Figure 1:A Decision Tree

1.1 DecisionOutcome Net Benefit

/q/v Cure 0.9
Treat \
1 ™A Gide effect 0.5

NO }/v No change 0.7

action

-/ ™ Degradation 0.6
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Figure 2: Transition Probability Matrix for a Markov Model

From\To: Healthy Il
Healthy 0.95 0.05
1 0.25 0.75
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Figure 3 An Individual Sampling Model Algorithm

Fori=1,2,...,n
Sample the patient attributes (e.g. risk factors) g;
Determine the path of patient i through the model whose
probabilities may depend upon g;
Determine cost ¢; and utility (QALY) u; for individual i
End For

Estimate the mean cost and utility E[(CU)] by &, =

o

a ()
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Figure 4: Continuous-time Population Markov Model Transition Probability
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Figure5: Scaled realizations of ODE infection model Equation (1) and stochastic modd in
Figure 4 (increasing population size N; c=10; b=0.1; D=1.2 days).
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Theorem 1: Sampling Timeto First of Many Events

Theorem 1: If T,,T,,...,T, areindependent random variables for the times to
events 1, 2,..., kwith exponential distribution T, ~ exponentia (rate g ), and
mean E[T;]=1/g;,forj=1,2, ..k

thenthetimeto firstevent T, = min{Tl,TZ,...,Tk} has exponential (rate

: k
é}lgm ) distribution, and the probability that T, =Ty, is g, g}lgm _
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Table 1: Taxonomy of Model Structures

A B C D
Cohort/Aggregate Level/Counts Individual Level
Expected value, Markovian, Discrete Markovian, Discrete | Non-Markovian, Discrete-
Continuous state, State, Stochastic State, Individuals State, Individuals
Deterministic
8|3 Decision Tree Simulated Decision Individual Sampling Model (ISM):
1 E E Rollback Tree (SDT) Simulated Patient-Level Decision Tree (SPLDT)
< |5
&
g 3 Markov Model Simulated Markov Individual Sampling Model (ISM):
2| E | E (Evaluated Model (SMM) Simulated Patient-Level Markov Model (SPLMM)
S F Deterministically) (variations as in quadrant below for
patient level models with interaction)
% o System Dynamics Discrete Time Markov Discrete-Time Discrete Individual
3 -§ 3 E (Finite Difference Chain Model (DTMC) Individual Event Simulation
g |aF Equations, FDE) History Model (DT, DES)
< (DT, IEH)
5[,
813 o System Dynamics Continuous Time Continuous Time Discrete Event Simulation
418 2 £ | (Ordinary Differentia | Markov Chain Model Individual Event (CT, DES)
= | §F Equations, ODE) (CTMC) History Model
O (CT, IEH)
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Table 2 Issues and Guidance on Choice of Model Structure

Issue Example Choice of model

11 | Doesthe decision maker Effects of intervention are Need for stochastic output
require knowledge of small and variable over time | (columns B to D)
variability to inform the
decision?

12 | Isthe decision maker Decision maker may want to | Individua level models are
uncertain about which sub- sub-divide the risk groupsor | more flexible to further
groups arerelevant and likely | test new interventions covariates or changed
to change his’her mind? assumptions

(columns C and D)

13 Is Probabilistic Sensitivity Decision maker uses cost- Deterministic model may be

Analysis (PSA) required? effectiveness acceptability preferred (column A) but need
curves or expected value of for PSA shoul d not drive model
information structure decisions

14 | Doindividua risk factors Effects of age, history of Need to subdivide statesin an
affect outcome in anon-linear | disease, co-morbidity aggregate model. Need to
fashion? consider individual level

modelling if the number is
large.
(columns C and D)

I5 | Do covariates have multiple Co-morbiditiesin diabetes Individua level modelling
effects, which cause affect renal failure and likely to be necessary.
interaction? retinopathy (columns C and D)

16 | Aretimesin states non- Poor survival after an Need to use “fixes’ in
Markovian? operation, moving from one Markovian models or use non-

age group to another, length Markovian models
of stay in hospita (columns D)

I7 | Isthedimensionality too Large number of risk factors | Individua level modelling

great for a cohort approach? | and /or subdivision of states likely to be necessary.
to get over non-Markovian (columns C and D)
effects

I8 | Do states ‘recycle ? Recurrence of sameillness. Decision tree approach is

E.g. heart attack, stop probably not appropriate
responding to drugs (rows 2 to 4)
19 | Isphasing or timing of events | In smokers, if lung cancer Possible to have different
decisions important? occurs before bronchitis, then | branches in the decision tree but
patient may die before Markov model or smulation
bronchitis occurs may be necessary.
(rows 2 to 4)

110 | Isthereinteraction directly Infectious disease models Models with interaction
between patients? (rows 3, 4)

11 | Isthereinteraction dueto Models with resource Models with interaction
constrained resources? constraints (rows 3, 4)

112 | Could many events occur in Disaster, outbreak of Need for small time intervals or
one time unit? infection, risk of co- continuous time models

morbidities (e.g. diabetes) (row 4)
113 | Areinteractionsoccurringin | Usein hospital catchments Need to consider individual
small populations? arearather than nationally level modelling because of the
inaccuracies in using fractions
of individuals
(columns C, D, rows 3, 4)
114 | Aretheredelaysinresponse | Rapid treatment with Need for stochastic output and
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due to resource constraints
which then affect cost or
health outcome

angioplasty and stents after a
myocardia infarction

interaction
(columns C, D, rows 3, 4)

115

I's there non-linearity in
system performance when
inherent variability occurs?

A margina changein
parameters produces a norn-
linear change in the system
ITU issuddenly full and
newly arriving patients
must transfer elsewhere

DES useful
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