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Model Structure Selection for Health Economic Evaluations: 

Taxonomy of Options and Criteria for their Use 

Summary 

Models for the economic evaluation of health technologies provide valuable 

information to decision makers.  The choice of model structure is rarely discussed in 

published studies and can affect the results produced.  Many papers describe good 

modelling practice, but few describe how to choose from the many types of available 

models.  This paper develops a new taxonomy of model structures.  The horizontal 

axis of the taxonomy describes assumptions about the role of expected values, 

randomness, the heterogeneity of entities, and the degree of non-Markovian structure.  

Commonly used aggregate models, including decision trees and Markov models 

require large population numbers, homogeneous sub-groups and linear interactions.  

Individual models are more flexible, but may require replications with different 

random numbers to estimate expected values. The vertical axis describes potential 

interactions between the individual actors, as well as how the interactions occur 

through time. Models using interactions, such as system dynamics, some Markov 

models, and discrete event simulation are fairly uncommon in the health economics 

but are necessary for modelling infectious diseases and systems with constrained 

resources.  The paper provides guidance for choosing a model, based on key 

requirements, including output requirements, the population size, and system 

complexity. 

 

Keywords: health technology assessment; cost-effectiveness analysis; modelling 

methodology; simulation; decision tree; Markov model. 



 3

Introduction 

 

The decision about which model structure should be chosen in a particular health 

economic evaluation context is only rarely discussed in published studies.  Policy 

recommendations based on a model may depend upon the explicit and implicit 

assumptions of the model.  Many evaluations use aggregate or ‘cohort’ models, which 

examine the proportions of the population undergoing different events with associated 

costs and utilities.  Patient or individual level models, which sample individuals with 

specific attributes and follow their progress over time, have recently become more 

prevalent.  The problem is that aggregate models adopt assumptions that may 

unwittingly produce inaccurate or inadequate solutions, whilst individual level models 

can adopt less stringent assumptions, but may be more time consuming to develop and 

run.  Recent debates on choice of model structure have focussed on this cohort versus 

individual level dichotomy [1].  This paper presents a taxonomy of a wide range of 

available model structures, and guidance for the selection of an appropriate model. 

 
We define a model based evaluation as a formal quantified comparison of health 

technologies, synthesising sources of evidence on costs and benefits, in order to 

identify the best option for decision makers to adopt.  Interventions can include drugs, 

surgical procedures, and psychological therapies or much broader health system 

strategies such as screening policies, public health interventions or bio-terrorism 

defence.  Outputs usually include intervention costs and a measure of morbidity and 

mortality such as quality of adjusted life years (QALYs).  Adoption may depend upon 

a single measure e.g. the expected incremental cost per QALY between technologies 

against a threshold willingness to pay (?) or equivalently, expected monetary net 

benefit (NB=?*QALY – Cost). Sometimes, decision makers are also interested in 
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other measures around uncertainty, individual or geographic variability and trends 

over time.   Recent guidance recommending probabilistic sensitivity analysis [2, 3] 

leads to a preference for fast, efficient models with a single output measure.  

 

Model structure is usually determined by considering the relationship between the 

inputs (natural history of disease, clinical pathways, evidence of interventions’ 

effectiveness, utilities associated with health states, intervention and other costs etc.), 

and the output measures required by the decision maker.  Practical considerations also 

include availability of data, the background and skill of the researcher and the type of 

software available. As the choice is usually made relatively early in projects, it is 

often hard for model developers to abandon an initial structure and start again.   

 

There are several papers whose guidance on good modelling practice distils down to a 

series of principles (e.g. transparent structure, appropriate and systematic use of 

evidence) rather than more detailed guidance on the structure that is appropriate [4, 5, 

6,7]. Sculpher et al. (2000) are slightly more detailed, recommending that model 

structure be as simple as possible, consistent with the stated decision problem and a 

theory of disease and not defined by data availability or health service inputs alone. 

They do not address the issue of which specific modelling techniques to use, but 

implicitly assume, in making their recommendations, the use of a cohort model [8].  

Some researchers have directly compared alternative model structures. Karnon’s 

economic evaluation of breast cancer showed that an individual level discrete event 

simulation and a cohort Markov model could be ‘tuned’ to produce the same results 

[9].  Koopman et al. have experimented with a hierarchy of models, designed to 

answer similar epidemiological questions [10].  Barton et al, reviewing methodology 
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in decision trees, cohort Markov models, and individual level models [11], suggest that 

the choice between these three approaches depends upon: whether pathways could be 

adequately represented by probability trees, whether a Markov model would require 

an excessive number of states, and whether interaction between patients is important. 

 

This paper extends those articles by more systematically establishing the range of 

model structure options and criteria for their selection.   

 

A Taxonomy of Model Structures  

 

Table 1 shows the range of available approaches for health economic evaluation 

models, and their relationships to each other.  This section describes the taxonomy 

from a conceptual perspective.  The Appendix describes a variety of computational 

tools for implementing the models.   

 

Table 1: Taxonomy of Model Structures 

 

The rows (1 to 4) describe factors involving both time and interaction between 

individuals.  Health economists’ current approaches are largely those in the top half of 

the table.  The models assume independence between individuals, and time may (row 

2) or may not (row 1) be modelled explicitly. Models with interactions (rows 3, 4) are 

necessary when individuals interact (e.g., infectious disease transmission) or 

constraints affect individuals (e.g., finite service capacity or restricted supplies of 

organs for transplantation).  We distinguish discrete time and continuous time models.   
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The columns (A to D) separate cohort from individual level models and disentangle 

assumptions concerning expected values, randomness, and the heterogeneity of 

entities.  Cohort models (columns A, B) quantify the proportion of people with 

common characteristics.  In cohort models with randomness (column B), the 

Markovian property is typically assumed, meaning that the future is conditionally 

independent of the past, given the present.  Cohort models can account for different 

attributes/covariates (e.g. multiple ages, weights, genders, other risk factors, stages of 

natural history of disease etc.) by subdividing the number of states or branches, but 

the number of dimensions rises exponentially (e.g. M binary attributes imply 2M 

dimensions).  Individual level models (columns C, D) overcome this problem by 

simulating the progression of each individual with different characteristics (a 

population of N individual patients with M attributes each requires MxN data entries).  

Non-Markovian distributions (column D) allow greater flexibility in modelling the 

timing of health-related events.  Stochastic models may require many simulation runs 

to quantify the output mean and variance with sufficient accuracy.  More complex 

individual level models (e.g. D4) can examine interactions both with other individuals 

and with the environment, including the availability of resources (e.g., doctors, beds, 

transplant organs). Each grid cell in the taxonomy is related to its neighbours by 

varying some of the basic assumptions that underlie each model.   

 

Aggregate Models without Interaction 

 

Decision Trees for Cohorts (A1, B1) 
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Decision trees (A1), as typically used in health economics, are among the most widely 

used aggregate level models [11,12].  A decision tree outlines decisions (the square in 

Figure 1), the probability or fraction of various outcomes (emanating from the 

circles), and the valuation of each outcome, such as a QALY, cost or net benefit 

measure.  The mean value of a decision is computed analytically (“rollback”) by 

summing the probability of each outcome with its value, such as E[NB | Treat] = 0.9 * 

0.9 + 0.1 * 0.5 = 0.86.  This reflects either a large-population assumption, so that 

probabilities essentially match the actual fractions of individuals with a given attribute 

(a law of large numbers argument), or an assumption that expected values for patients 

are the desired outcome (rather than a distribution or variation, assuming a risk-

neutral decision maker), or both.  Recursion, or looping, is not allowed, but much 

more complicated scenarios are possible than in Figure 1, with many decision 

strategies, long sequences and multiple outcomes from chance nodes.  

 

Figure 1:A Decision Tree 

 

The simulated decision tree cohort (B1) provides an alternative approach to 

estimating the mean value of each decision option. In Figure 1, E[Treat] might be 

estimated by Monte Carlo sampling a one million (106) patient cohort with a Binomial 

(106, 0.9) distribution.  This simulates the number of individuals on each path, but not 

each individual separately.  The advantage of this approach is that it can provide a 

measure of the variability of the number of individuals likely to be in each state. 

 

Markov Models for Cohorts (A2, B2) 
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Markov models (A2) can provide a more compact representation than the decision 

tree when a repeated set of outcomes is possible through time A cohort-based Markov 

transition matrix uses a transition probability per unit time for individuals in the 

cohort to change to another state, with associated costs and utilities [11,13,14]  (Figure 

2).   

 

Figure 2: Transition Probability Matrix for a Markov Model 

 

This formulation assumes that the transition probabilities are constant over time.  

Survival in a particular state is therefore defined by a geometric distribution in 

discrete time.  Analysts often use subtle ways to extend the generaliseability of the 

Markovian assumption, for example, by using different transition matrices as time 

progresses.   If transition probabilities depend on certain attributes, then one can 

redefine states.  For example, patient history can influence risk by defining states to 

include healthy with previous history of illness, healthy with no previous history of 

illness, etc. 

 

It is a common misconception that analysts should use a time step defined by data 

availability (e.g. a year).  The time-step used, however, affects the model results.  

With discrete time models, electing a smaller and smaller time slice is warranted until 

the output is no longer affected.  To determine the probabilities for different time 

intervals for a two-state transition function, one can use an equation that relates the 

probability pij of an outcome, j, from state i through time t via the instantaneous 

hazard rate rij, namely pij = trije−−1  [13].  Alternatively, the transition probability can 
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be modelled by pij = rijt  (both have the same first-order linear term in their Taylor 

series expansion).   

 

Markov models for cohorts can be processed either analytically (A2) with expected 

values or with simulated random Markov model transitions (B2).  The approach and 

rationale of Monte Carlo simulation is like that for the Simulated Decision Tree (B1). 

 

Individual Sampling Models without Interaction (CD1, CD2) 

 

Rather than tracking data for every compartment or path, individual sampling models 

(ISMs) track specific individuals.  The individuals have potentially heterogeneous 

characteristics that affect their progression through the model, yet individuals 

progress through the model independently of each other and of environmental 

constraints. Typically, ISMs generate a large numbers of simulated patient histories 

and evaluate results with a sampling algorithm (Figure 3).  

 

Figure 3 An Individual Sampling Model Algorithm 

 

Simulated Patient Level Decision Tree models (CD1) can be used to simulate 

individuals through a tree’s pathways, maintaining a record of the ‘history’ as nodes 

are processed.  Time elapses implicitly. This approach is most useful when 

probabilities, QALYs, and costs depend upon a large or conceptually infinite number 

of values, (e.g. normally distributed costs that depend upon patient glucose levels).  
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The most common implementations of ISMs in health economics are Markov models 

that are modified to simulate individuals through each time period (CD2).  One key 

advantage lies in modelling multiple co-morbidities which depend on multiple 

attributes / covariates. Examples include models of diabetes where patient co-

morbidities interact and affect the outcome [15,16,17], and other work on rheumatoid 

arthritis [18] and osteoporosis [19].  The ISM approach can be further modified to 

simulate the “time to next event” rather using equal time periods.  This can provide 

richer modelling power, computational efficiency and greater elegance in coding.  For 

example, the Birmingham Rheumatoid Arthritis Model [20,21] considers long-term 

treatment for rheumatoid arthritis with strategies defined by alternative sequences of 

disease-modifying anti-rheumatic drugs. 

 

Aggregate Models with Interaction Allowed  

 

System Dynamic Models (A3, A4) 

 

If individuals do interact, it is not always necessary to model each individual 

separately.  System dynamics, a common cohort-based approach in epidemiology and 

operational research, models the state of the system in terms of changing, continuous 

variables over time.  Crucially, it enables the rate of change in the system to be a 

function of the system’s state itself (i.e., feedback).  Typical examples of feedback 

include infectious disease outcomes, where higher levels of infection produce higher 

risks of further infection but also reduce the number of people in the susceptible pool, 

and health care service constraints, where the system performs differently when it is 
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full or over-capacity [22,23,24].  Factors affecting rates of change may include 

behavioural influences.  

 

Continuous time system dynamics models (A4) use ordinary differential equations 

(ODE), like dx/dt = f(x, t) to describe the rate of change of a state vector x.  For 

example, Equation 1 describes the rate of change in the number of infected 

individuals i (the “state”) in a population of N individuals as a function of the contact 

rate (c contacts per unit time), the probability β of infection per potentially infectious 

contact, the probability i/N that one of the (N-i) susceptibles contacts an infected, and 

the mean duration of infection D. 

Equation 1 An Infection Systems Dynamics Model expressed as Ordinary Differential Equation 

(Equation 1)      

D
i

iN
N
i

c

dt
di

−−=

−=

)(

raterecovery  population  rateinfection  population

β
 

System dynamics models can have multiple linked ODEs to specify the full model.   

 

The Euler-forward approximation to the continuous time ODE model results in a 

discrete time finite difference equation (FDE) model (A3) approximation 

 xj+1 = xj + f(xj, tj) ∆t 

where xj is the state of the system at time tj = j∆t.  [25].  The facilities for interaction 

are the same as for the continuous model. The solution to the differential or difference 

equations is specified over time so that the output resulting from a different strategy 

can be quantified.  The approach therefore provides the ability to model the 

deterministic interaction of groups of individuals but without modelling each 

individual in the system.   
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System dynamics models are commonly implemented in packages with graphical 

interfaces, which make them easier to build and use.  There have been applications 

concerned with community care, short-term psychiatric care, HIV/ AIDS [23], 

smallpox preparedness [26,27,28], CJD [29] and others. 

 

The cohort level Markov models (A2) that are evaluated using expected values are in 

fact special cases of discrete time finite difference (FDE) models (A3), but without 

the ability to model interactions (e.g., nonlinear dynamics from interpersonal infection 

transmission or resource capacity constraints).  More accurate FDE approximations to 

ODEs are available [30], and partial differential equations [24] can complement ODEs 

to enhance model richness (e.g., geographic effects). 

 

Discrete State, Continuous Time Markov Models (B3, B4) 

 

The system dynamics approach has two important assumptions – firstly, that the 

change dynamics are deterministic and secondly, that fractions of individuals can 

occur in specific health states (an infinitely divisible population assumption).  With 

large populations such assumptions may be reasonable.  Continuous time Markov 

chain (CTMC, grid cell B4) can address both a need to model an integer number of 

individuals in each health state and the variability that can occur in such systems a.  A 

CTMC can model many interactions including, for example, infectious disease 

dynamics and limited healthcare resources.  Monte Carlo simulation is often 

employed to analyze these systems, although analytical stochastic process methods 

may sometimes be employed for sufficiently simple models. 
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A CTMC that is analogous to the system dynamics model in Equation 1 is depicted in 

Figure 4.  Each circle is a potential state of the system (i people infected in a 

population of N individuals), the arrows out of a particular state represent the possible 

state transitions (from i people infected, a recovery changes the state to i-1 people 

infected, an infection changes the state to i+1 infected).  The rates may depend upon 

the current state, so that the force of infection when there are i people infected 

is NiNici /)( −= βλ , and the recovery rate is Dii /=µ .   

 

Figure 4: Continuous-time Population Markov Model Transition Probability 

 

The distribution of the time to the next event (infection or recovery) is exponentially 

distributed with mean that is one divided by the sum of the rates out of the current 

state ( )/(1 ii µλ + ).  The probability of a particular event is proportional to the 

appropriate transition rate (an infection event has probability )/( iii µλλ + ).  A CTMC 

in general can be simulated by sampling an exponentially distributed time to next 

event, then sampling the specific event type using probabilities that are proportional 

to the individual event rates.  After sampling the specific event type and updating any 

statistics, the rates may change for sampling the time to the next event.  The basic 

theory to support this sampling mechanism is Theorem 1.   

 

Theorem 1: Sampling Time to First of Many Events 

Proof: See, e.g. Çinlar [31], Also see Banks et al.p. 222 [32]. 
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In a context where k different events could happen (e.g., recoveries or potential 

infections of many classes of ill people), Theorem 1 says that the time to the next 

event can be sampled first (exponential, rate∑
=

k

m
m

1

γ ), and then the type of event to 

occur can be sampled next (event j with probability ∑
=

k

m
mj

1

γγ ).   

 

CTMC models are often analysed stochastically by simulating realisations, or sample 

paths, that describe how the state changes through time.  The number of individuals in 

each state is tracked, and each individual event must be processed, but there is no 

need to sample the identities of individual patients to maintaining their histories.  

Multiple independent realisations can be used to estimate statistics like time-varying 

means, time averages, and the probability of extreme events like outbreaks.  If the 

number of individuals in the population gets very large, and a scaling is done so that 

the fraction of individuals in each state is maintained, then plots of sample paths get 

less variable and the number infected converge to a differential equation (e.g., see 

[33,34] for epidemic models, and [35] for related results for queueing models).  Figure 5 

illustrates this by comparing the ODE infection model in Equation 1 with the 

stochastic analogue in Figure 4.  The approximation is poorer for small populations in 

general.  The upper left of Figure 5, where the possibility of infection being 

eliminated in a short time is high, gives a specific example of a poor approximation. 

 
 

Figure 5: Scaled realizations of ODE infection model Equation (1) and stochastic 

model in Figure 4 (increasing population size N; c=10; β=0.1; D=1.2 days). 
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The discrete time Markov chain (DTMC) model (B3) is like the CTMC except that it 

is updated with finite time steps, at times 0, ∆t, 2∆t, 3∆t, … for some suitably chosen 

period ∆t.  Brookhart et al. (2002) used a DTMC to model a Cryptosporidiosis 

outbreak due to water treatment failure [36].  The larger the period ∆t of the DTMC, 

the worse a DTMC approximation of the original CTMC process becomes, in part 

because individuals are allowed to have only one event affect them per time step.  The 

error in a DTMC approximation to a CTMC can practically be controlled by shrinking 

the time step size and rescaling parameters appropriately) as described above for 

simulated Markov models (B2).   

 

Individual Level Models with Interactions 

 

To model interactions, analysts often intuitively think of modelling individuals as 

separate entities.   

 

Individual level Markovian models with interactions (C3, C4) 

 

Individual level Markovian models with interactions can be thought of as an extension 

of Markovian cohort models with interaction (B3, B4).   Individual-level means that 

patient characteristics may be heterogeneous, and that histories may be tracked for 

each individual in the population.  For that reason, this falls into the class of models 

that Koopman et al. calls individual event history (IEH) models.   

 

There are at least two methods to simulate CT IEH models (C4).  The first explicitly 

uses the Markovian assumption in Theorem 1 to simulate the time to the next event, 



 16

followed by the selection of which event occurs.  This differs from the use of the 

Theorem for Markovian cohort models (B4) in that a rate jlγ  is assigned for any 

event j that can occur for each individual l (rather than for each cohort).  For the 

epidemic model in Figure 4, if event 1 is identified with infection, then the infection 

rate of susceptible individual l when there are i infected individuals is 

NiNcl /)(1 −= βγ .    More generally, the parameters and rates may differ for each 

individual to reflect heterogeneous population characteristics, and rates may also 

depend upon resource constraints (e.g., the service completion rate is nonzero for at 

most one patient if there is only one server).  A second method is to use discrete-event 

simulation (see below) with exponential distributions.   

 

The analogous discrete time IEH model (C3) steps forward in discrete time intervals 

in the same way as the DTMC model.  Multiple individuals may be sampled at each 

time step, but each individual experiences at most one state transition per time step. 

 

Discrete Event Simulation (D4, D3) 

 

Probably the most flexible of all modelling techniques, continuous time discrete event 

simulation (CT, DES) (D4) describes the progress of individuals (entities), which 

undergo various processes (events) that affect their characteristics and outcomes 

(attributes) over time.  Law and Kelton [37] present an excellent introduction.  DES 

permits sampling from any distribution, Markovian or not (C3).  A queue structure 

enables interaction to take place with constraints and between entities.  The state of 

the modelled system includes the current entities, their attributes, and a list of events 

that can occur either at the current simulation time or that are scheduled to occur in 
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the future.  Events change the state at discrete times, and each event is processed one 

by one, in a non-decreasing time order.  As each event is processed, it may produce 

consequent additional events to be processed at the current simulated time, or at some 

sampled time in the future.   

 

The nomenclature DES has been applied differently in different papers in health 

economics [11], epidemiology, [38,39,40] and health care delivery system design or 

scheduling [41].  We define DES to be consistent with the operational research 

literature that developed DES theory and applications for the last 50 years [37,42,43,44], 

and for which rigorous mathematical formalisms exist [45,46].  In a healthcare DES, 

individual interacting patients are usually the entities.  Additional entities may include 

health care service system resources, such as doctors, nurses, and ambulances for 

transport.  Examples of disease models include models of the activities and non-

Markovian survival distributions related to the natural history and treatment of 

coronary heart disease [47], of vertical transmission of HIV [48], and of vaccine trial 

design [38].  While constrained resources pose no problems for most DES tools, 

special care may be required to model infection dynamics or multiple correlated 

health risks.  For example, models of multiple diseases may require multiple events 

on the future event list per patient, as well as a need to reschedule events if there are 

related underlying causes.  POST is a tool to facilitate such event management [49].  

Custom-built programs are sometimes produced to adapt to the special needs of DES 

models of infection [38, 50,51].  

 

All simulation models have sampling error for estimating mean output values (costs, 

QALYs, prevalence, etc.) that running multiple simulations can reduce.  DES has the 
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additional disadvantage of potential computational slowness associated with inserting 

and removing events from the future event list.  

 

DES models have discrete-time analogues (D3) that are not different in any 

significant methodological way to the continuous time models if the discrete time 

steps are small.  In fact, most commercial DES packages have animation graphics that 

show the entities moving through the system to aid model development and checking, 

and these typically implement a discrete-time DES variation if and when graphics are 

running.  

 

How to Decide Which Model Structure To Use 

 

The taxonomy summarises the key structural assumptions that underlie each type of 

model.  Table 2 gives a numbered checklist of additional key issues (I1 to I15), which 

can help to determine the exact approach required.   The checklist follows the 

taxonomy structure, moving through the assumptions from the top left (the aggregate 

decision tree with homogeneous states, no recycling, no interaction, and a large 

enough population to make an integer approximation valid) across to the right, and 

down to the circumstances requiring a DES approach.  The features of these separate 

issues can interact in the context of particular case studies. 

 

Table 2 Issues and Guidance on Choice of Model Structure 

 

Decision Makers’ Requirements 

 



 19

The purpose of health economic evaluations is to inform decision-making.  If the 

decision maker’s perspective requires knowledge of the variability in the results rather 

than just mean outputs (I1) then stochastic rather than deterministic models may be 

required.  Such requirements might include knowledge of the range of impact 

achievable in different geographical or organisational contexts or at different times.  

For example, Davies et al. (2002) show that, in screening for and eradicating 

Helicobacter pylori, the number of lives saved from death from gastric cancer may 

vary widely, meaning that some Health Authorities may incur large costs with little 

benefit [52].  It can be argued whether such variability should be part of the decision 

makers’ considerations, but if it is, then the appropriate model structure is required.   

 

Decision makers such as NICE now expect probabilistic sensitivity analysis (PSA) to 

quantify the uncertainty in mean outputs due to parameter uncertainty (I3).  A 

deterministic model will provide the mean output for a given parameter set directly.    

In individual sampling models, the mean output for a given parameter set is estimated 

from (sometimes hundreds or thousands of) sampled individuals and the PSA will 

thus be relatively time consuming.   The need for PSA should not directly drive model 

structure decisions but will influence them. There are interesting developments to 

facilitate PSA including Gaussian meta-models of individual level models [53,54] and 

quantifying the efficient number of individuals needed in each sample [55].   

 

The choice of states and risk factors and the identification of their relationship to each 

other should normally precede the choice of model structure.   There are occasions, 

however, when the decision makers require a very quick answer to a problem and 

there is a temptation to provide a model with a simple cohort structure without testing 
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the underlying assumptions.  At the other extreme, some decision makers require a 

model that can be adapted over time to examine different populations and include 

emerging evidence on new risk factors or treatments.   In these circumstances, the 

analyst should consider the use of an individual sampling model and, in particular, 

discrete event simulation which is more flexible [I4]. 

 

Sub-division into states 

In all models the states represent the natural history of disease, treatments and their 

effects.  In cohort models the states are often subdivided according to risk factors and 

may be further subdivided into short time periods to approximate non-Markovian 

distributions [I6].   The representation of risk factors in a cohort model leads to the 

danger of an explosion in the number of states, discussed previously [I7].  It is clearly 

desirable to keep the number of states as small as possible [8].  Risk factors may be 

combined if they have little impact on the results of interest to the decision maker.   

 

The states in a cohort model are assumed to represent a homogenous population and 

the implicit use of averages by deterministic models may cause statistical bias in 

estimates of the mean outputs.  For example, if the heart attack risk (per unit time) 

increases with age, then the average of the heart attack rates in a population is higher 

than the heart attack rate at the average age.   The larger the age groups, the worse this 

problem will be. This is a consequence of Jensen’s inequality, which states that 

E[f(X)] ≥  f(E[X]) when f() is a convex function (heart attack risk) and X is a random 

variable (a covariate like age)[31,56].  More generally, if risk factors are not linearly 

related to the covariates, there may be some bias in QALY and cost measures.  

Individual level modelling can cope with a non-linear interaction between the risk and 
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outcome [I5], for example the relationship between the level of cholesterol and the 

risk of coronary heart disease [57]. 

 

Resource constraints 

Another example of the inappropriate use of expected values is in the presence of 

variability and resource constraints [I14].  Deterministic models that use average 

service times and mean demand rates can under-estimate or completely miss queuing 

delay effects.   If the event times are non-Markovian, then the queuing effects may 

differ even more (Pollacek-Khintchine formula) [56].  If health outcomes or delivery 

costs are linked to delays before intervention, stochastic models are required.  Where 

there are explicit resource constraints and non-Markovian time to event distributions 

[I15], discrete event simulation may be the best choice.  Non-Markovian distributions 

are recommended as the most natural way to model process improvements in health 

care delivery, such as reductions in the variability in patient arrival and service 

delivery times [58]. 

 

Model run time and population size 

 

Aggregate models sometimes need thousands or millions of states, possibly to cope 

both with the number of co-variates (“the curse of dimensionality”) and to ‘fix’ non-

Markovian effects.  The resulting models may lack transparency and be slow to run.  

Individual sampling models can solve these problems, but on the other hand, need 

time consuming multiple replications to get good estimates of means.   Discrete event 

simulation may be particularly slow because of the need to maintain a future events 
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list.  Variance reduction methods are available to reduce the number of replications, 

and hence the time needed [37].   

 

The time taken by individual sampling models will increase with the size of the 

population to be modelled whereas deterministic cohort models presume a law of 

large numbers effect.  For large populations therefore, providing the non-linearity 

assumptions are met, a cohort model may be an appropriate choice.   

 

It may be important, however, that the population remain large in individual states.  

For example, in infectious disease models, the stochastic effects of local die-out of 

infection in states with small numbers of individuals may results in very different 

dynamics from deterministic models [59].  For diseases that are transmitted primarily 

through smaller social structures (e.g. local families and local neighbourhood 

transmission), then stochastic models may be preferred since the implicit large 

population assumptions for deterministic models do not apply. 

 

Discussion 

 

This new taxonomy grid extends the palette of modelling approaches beyond those 

commonly used in health economics.  This paper describes the underlying theory 

linking each approach and criteria for selection. 

 

It is the responsibility of model developers, rather than policy makers, to select the 

most appropriate modelling approach.  It is particularly important to think creatively 

about the techniques to be used where there are interactions and large uncertainties.  
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This is because different modelling approaches can produce very different results; one 

example is the comparison of the different smallpox models [26,27,28,50]. 

 

The taxonomy grid is incomplete in the sense that further combinations of approaches 

and assumptions are also practised. A DES tool can track counts of individuals in 

various states rather than maintain data on each individual.  A recent model of 

microbial drinking water infection combined ODE / CTMC models (for microbe 

concentration) with a stochastic ODE (for infection outcomes in humans) rather than 

using an unacceptably slow stochastic individual level model[60].  Mixed DES/ODE 

models can assess the interacting effects of system capacity, service delays, screening 

quality, and health outcomes [61]. 

 

Multiple modelling approaches can be used for model validation.  For example, Chick 

et al. (2000) did this as part of a study to show how long-term partnership 

concurrency can strongly influence the prevalence of sexually transmitted diseases 

[51].  Output from differential equation, CTMC and DES models were compared to 

insure that the DES was coded correctly, then the DES explored how mixing patterns 

affected STD prevalence. Such exercises are an important part of ‘structural 

sensitivity analysis’, which can sometimes be ignored in favour of probabilistic 

sensitivity analysis on parameters only.  It may be valuable not to define the ‘best’ 

model but rather to establish whether decisions would be different if different 

structures are used.   

 

The influence of model development time on model structure selection will remain.  It 

is often related to the experience of the modeller, the complexity of the system and the 
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software available. If the decision problem allows, simple models with a small 

number of states are quicker to develop and run and easy to understand.  However, 

where multiple risk factors and non-Markovian delays are present, an individual level 

model may be both quicker to code and more transparent to the decision maker.  

Policy makers also need to be sensitive to the time required to provide appropriate 

models for the purpose required.   

 

National decision makers such as NICE and equivalent bodies in other countries 

contribute heavily to methodology development, but there are also decision makers at 

international and more local levels, who utilise evidence on costs and benefits.  NICE 

are interested in mean cost per QALY gained and PSA, which can appear to 

encourage researchers to use cohort model structures, but modellers need to be aware 

that PSA should not drive a decision to use an inappropriate structure.  For other 

decision makers more detailed models may be needed to provide disaggregated 

output, such as cost estimates over time and variability between different geographical 

regions. 

 

Finally, it is apparent that there is a great need for a wider awareness of the variety of 

techniques and their applicability.  Many of these techniques are in the domain of 

Operational Research, epidemiology, and statistics.  Increased training, 

communication and ‘buying in’ will help the Health Economics discipline.  This is a 

high priority because the use of modelling and evidence synthesis for evaluating 

health technologies has developed substantially over the last 10 years. The use of the 

full range of techniques set out in the taxonomy grid and the criteria for appropriate 

model selection is the route by which the discipline will develop.  
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Appendix 

The online appendix at http://faculty.insead.edu/chick/papers/HTAModel-

AppTable.html summarizes implementation issues for the models in the taxonomy, 

and provides links to software reviews and vendors (the inclusion of a product or 

vendor is not intended to imply endorsement, and vice versa). 
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Tables and Figures 
 

Figure 1:A Decision Tree 
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Figure 2: Transition Probability Matrix for a Markov Model 

From\To: Healthy Ill 
Healthy 0.95 0.05 
Ill 0.25 0.75 
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Figure 3 An Individual Sampling Model Algorithm 

 
For i=1, 2, …, n 
 Sample the patient attributes (e.g. risk factors) θi 
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Figure 4: Continuous-time Population Markov Model Transition Probability  
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Figure 5: Scaled realizations of ODE infection model Equation (1) and stochastic model in 
Figure 4 (increasing population size N; c=10; β=0.1; D=1.2 days). 
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Theorem 1: Sampling Time to First of Many Events 

Theorem 1 : If kTTT ,...,, 21  are independent random variables for the times to 
events 1, 2,…, k with exponential distribution jT  ~ exponential(rate jγ ), and 

mean jjT γ/1][E = , for j=1, 2, …k, 

 then the time to first event { }kTTTT ,...,,min 21min =  has exponential (rate 

∑
=

k

m
m

1

γ ) distribution, and the probability that minTT j =  is ∑
=

k

m
mj

1

γγ .   
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Table 1: Taxonomy of Model Structures 

   A B C D 
   Cohort/Aggregate Level/Counts Individual Level 

   Expected value, 
Continuous state, 

Deterministic 

Markovian, Discrete 
State, Stochastic 

Markovian, Discrete 
State, Individuals 

Non-Markovian, Discrete-
State, Individuals 

 
1 

U
nt

im
ed

  
Decision Tree 

Rollback 

 
Simulated Decision 

Tree (SDT) 

 
Individual Sampling Model (ISM): 

Simulated Patient-Level Decision Tree (SPLDT) 

 
2 

N
o 

In
te

ra
ct

io
n 

A
llo

w
ed

 

Ti
m

ed
 

 
Markov Model 

(Evaluated 
Deterministically) 

 
Simulated Markov 

Model (SMM) 

 
Individual Sampling Model (ISM): 

Simulated Patient-Level Markov Model (SPLMM) 
 (variations as in quadrant below for  
patient level models with interaction) 

 
3 

D
is

cr
et

e 
T

im
e 

 
System Dynamics 
(Finite Difference 
Equations, FDE) 

 
Discrete Time Markov 
Chain Model (DTMC) 

 
Discrete-Time 

Individual Event 
History Model  

(DT, IEH) 

 
Discrete Individual 

Simulation  
(DT, DES) 

 
4 

In
te

ra
ct

io
n 

A
llo

w
ed

 

C
on

tin
uo

us
 

T
im

e 

 
System Dynamics 

(Ordinary Differential 
Equations, ODE) 

 
Continuous Time 

Markov Chain Model 
(CTMC) 

 
Continuous Time 
Individual Event 
History Model  

(CT, IEH) 

 
Discrete Event Simulation 

(CT, DES) 
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Table 2 Issues and Guidance on Choice of Model Structure   

 Issue Example Choice of model 
I1       
 

Does the decision maker 
require knowledge of 
variability to inform the 
decision? 

Effects of intervention are 
small and variable over time 

Need for stochastic output  
(columns B to D) 

I2 Is the decision maker 
uncertain about which sub-
groups are relevant and likely 
to change his/her mind? 

Decision maker may want to 
sub-divide the risk groups or 
test new interventions 

Individual level models are 
more flexible to further 
covariates or changed 
assumptions  
(columns C and D) 

I3 Is Probabilistic Sensitivity 
Analysis (PSA) required? 

Decision maker uses cost-
effectiveness acceptability 
curves or expected value of 
information 

Deterministic model may be 
preferred (column A) but need 
for PSA should not drive model 
structure decisions   

I4 Do individual risk factors 
affect outcome in a non-linear 
fashion? 

Effects of age, history of 
disease, co-morbidity 

Need to subdivide states in an 
aggregate model. Need to 
consider individual level 
modelling if the number is 
large.  
(columns C and D) 

I5 Do covariates have multiple 
effects, which cause 
interaction? 

Co-morbidities in diabetes 
affect renal failure and 
retinopathy 

Individual level modelling 
likely to be necessary.  
(columns C and D) 

I6 Are times in states non-
Markovian? 

Poor survival after an 
operation, moving from one 
age group to another, length 
of stay in hospital 

Need to use “fixes” in 
Markovian models or use non-
Markovian models  
(columns D) 

I7 Is the dimensionality too 
great for a cohort approach? 

Large number of risk factors 
and /or subdivision of states 
to get over non-Markovian 
effects 

Individual level modelling 
likely to be necessary.  
(columns C and D) 

I8 Do states ‘recycle’? Recurrence of same illness.  
E.g. heart attack, stop 
responding to drugs 

Decision tree approach is 
probably not appropriate  
(rows 2 to 4) 

I9 Is phasing or timing of events 
decisions important? 

In smokers, if lung cancer 
occurs before bronchitis, then 
patient may die before 
bronchitis occurs 

Possible to have different 
branches in the decision tree but 
Markov model or simulation 
may be necessary.  
(rows 2 to 4) 

I10 Is there interaction directly 
between patients? 

Infectious disease models Models with interaction  
(rows 3, 4) 

I11 Is there interaction due to 
constrained resources? 

Models with resource 
constraints 

Models with interaction  
(rows 3, 4) 

I12 Could many events occur in 
one time unit? 

Disaster, outbreak of 
infection, risk of co-
morbidities (e.g. diabetes) 

Need for small time intervals or 
continuous time models  
(row 4) 

I13 Are interactions occurring in 
small populations? 

Use in hospital catchments 
area rather than nationally 

Need to consider individual 
level modelling because of the 
inaccuracies in using fractions 
of individuals  
(columns C, D, rows 3, 4) 

I14 Are there delays in response Rapid treatment with Need for stochastic output and 
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due to resource constraints 
which then affect cost or 
health outcome 

angioplasty and stents after a 
myocardial infarction 

interaction  
(columns C, D, rows 3, 4) 

I15 Is there non-linearity in 
system performance when 
inherent variability occurs? 

A marginal change in 
parameters produces a non-
linear change in the system 
ITU is suddenly full and 
newly arriving patients 
must transfer elsewhere 

DES useful 
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