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This paper examines the impact of architectural decisions on the level of defects in a product. We view
products as collections of components linked together to work as an integrated whole. Previous work has

established modularity (how decoupled a component is from other product components) as a critical determinant
of defects, and we confirm its importance. Yet our study also provides empirical evidence for a relationship
between product quality and cyclicality (the extent to which a component depends on itself via other product
components). We find cyclicality to be a determinant of quality that is distinct from, and no less important
than, modularity. Extending this main result, we show how the cyclicality–quality relationship is affected by
the centrality of a component in a cycle and the distribution of a cycle across product modules. These findings,
which are based on an analysis of open source software development projects, have implications for the study
and design of complex systems.
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1. Introduction
This paper studies the relationship between the deci-
sions that establish a product’s architecture and
their consequences for product quality. Studying
this architecture–quality relationship is vital because,
despite the wealth of research on product architec-
ture, we still do not understand many aspects of how
architectural decisions actually affect product qual-
ity (Henderson and Clark 1990, Ulrich 1995, Baldwin
and Clark 2000, Sosa et al. 2004, Ramachandran and
Krishnan 2008). This paper focuses on one particu-
lar architectural property, cyclicality, whereby compo-
nents depend on themselves via other components.
Our key theoretical and empirical objective is to study
whether and how cyclicality is related to the levels of
defects in a product.

In addressing our research goal, we first con-
firm previous results suggesting that modularity, the
architectural property most salient in the literature,
prevents defects in a product. Then, as our key con-
tribution, we establish empirically that cyclicality is a
distinct architectural determinant of the level of prod-
uct defects and that its effect on product quality is as
sizeable as the effect of modularity. Finally, we deepen
our understanding of the cyclicality–quality relation-

ship by examining how product defects are related to
different facets of cyclicality, such as the centrality of
each component in a cycle and the distribution of a
cycle across product modules.

In examining this architecture–quality relationship,
we consider a product (hardware or software) as a
web of interconnected components (as in Clarkson
et al. 2004, MacCormack et al. 2006, Braha and
Bar-Yam 2007, Sosa et al. 2007b, Gokpinar et al. 2010).
Previous research on network-based architecture has
focused on (component) modularity, the extent to
which a component is decoupled (or independent)
from other components in the product, as the main
architectural feature of interest (Card and Agresti
1988, Clarkson et al. 2004, MacCormack et al. 2006,
Sosa et al. 2007b). This research has empirically estab-
lished that modularity is associated with the design of
less defective products (Card and Agresti 1988, Briand
et al. 1999, Aggarwal et al. 2007, Burrows et al. 2010).

However, there are good reasons to believe that
focusing on modularity, as the main architectural
determinant of quality, is too simplistic. Recognizing
cyclicality as another fundamental architectural prop-
erty is important for both conceptual and empirical
reasons. Conceptually, component cycles inhibit the
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proper decomposition of design problems (because
there is no self-evident sequence in which to design,
build, and test components involved in cycles) and
therefore require iterative problem solving, which
results in cognitive and organizational challenges
(Smith and Eppinger 1997a, b; Mihm et al. 2003).
In contrast, if there are no cycles, then problems can
be properly decomposed and be solved in a serial
manner, one subproblem at a time (Eppinger et al.
1994). Empirically, component modularity and cycli-
cality can co-occur and be correlated, making it diffi-
cult to determine which factor is the principal driver
of the observed effects.

To develop a thorough understanding of the
cyclicality–quality relationship, we investigate how
various aspects of cyclicality relate to product qual-
ity. Is the extent to which a component is involved
in cyclical dependency patterns a significant determi-
nant of defects? Is the effect of cyclicality on quality
as substantial as the effect of modularity? Are all com-
ponents in a cycle equally prone to defects? In any
system of even moderate complexity, components are
typically organized into modules (Simon 1996). Does
the organization of components into modules affect
the relationship between cyclicality and quality? By
addressing these questions, we aim to close an impor-
tant gap between the information systems literature
and the operations management literature. The for-
mer has not considered cyclicality to be an important
determinant of defects. And even though the latter
has developed methods to uncover cyclicality in com-
plex development settings, its research has not yet
linked cyclicality to the levels of product defects.

Previous research in information systems and com-
puter science has investigated the determinants of
defects in software products (e.g., Card and Agresti
1988, Chidamber and Kemerer 1994, Briand et al.
1999, Aggarwal et al. 2007). It has classified such
determinants into two broad categories: intracompo-
nent and intercomponent. (Intuitively, a component in
a software product is a cohesive collection of source
code.) Intracomponent determinants are concerned
with aspects characterizing the individual component,
whereas intercomponent determinants are concerned
with components’ interactions. With respect to the
most salient intracomponent determinants of qual-
ity, previous findings suggest that larger and more
internally complex components are likely to have a
higher number of defects (McCabe 1976, Henry and
Selig 1990, Kan 1995). As for intercomponent deter-
minants, previous research on software architecture
has focused on the modularity of a component as the
main feature of interest (e.g., MacCormack et al. 2006,
2008). If a component is more modular—that is, if a
component depends on few other components—then
it is likely to exhibit a lower level of defects (Card and

Agresti 1988, Card and Glass 1990, Chidamber and
Kemerer 1994, Kan 1995, Briand et al. 1999, Aggarwal
et al. 2007). Despite the multitude of determinants
that research in information systems has explored,
it has yet to recognize the importance of architectural
cyclicality as a determinant of defect proneness.

The operations management literature has also
explored different aspects of modularity (Ulrich 1995,
Baldwin and Clark 2000). Yet, beyond modularity,
researchers in this area have developed representa-
tions and methods for identifying cyclical structures
when modeling the new product development pro-
cess as a collection of networked tasks (Steward 1981,
Eppinger et al. 1994, Mihm et al. 2003). This stream
of research has led to a critical insight: tasks that are
interrelated in a cyclical manner tend to require more
managerial attention (Smith and Eppinger 1997a, b)
because cyclical structures entail design iterations that
can affect the time required to complete a develop-
ment effort (Mihm et al. 2003, Braha and Bar-Yam
2007). However, this literature has taken a modeling
approach to formulate its predictions; therefore, it has
established no empirical links between cyclicality and
outcome measures (such as product quality) and has
not been able to explore the cyclicality construct in
ways that would build a more nuanced understand-
ing of how its different facets affect product quality.

Given how difficult it is to capture a comprehen-
sive longitudinal data set that contains product archi-
tecture, quality, and resource attributes, it is hardly
surprising that the cyclicality–quality relationship has
escaped rigorous empirical examination. We over-
come this challenge by taking advantage of the
emergence of open source software to build a sub-
stantial data set that includes 28,394 observations of
7,103 product components in 111 releases of 17 Java-
based applications developed by the Apache Software
Foundation. We focus on open source software appli-
cations for several reasons: they are complex systems
in which cyclicality patterns are present (yet difficult
to identify); they exhibit relatively fast rates of change
(much like fruit flies in studies of biological evolu-
tion); and their source code constitutes an accessible,
efficient, reliable, and standardized means of captur-
ing all the architectural features relevant to our study
of product architecture. Moreover, open source devel-
opment settings typically feature centralized systems
used for tracking and managing of quality issues.

2. Theory and Hypotheses
We begin this section by taking a network view of
product architecture to (a) establish, in a calibra-
tion hypothesis, component modularity as the most
studied characteristic of product architecture, and
(b) define cyclicality and hypothesize about its con-
sequences for product quality. Yet, the network view,
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with its focus on how product components connect
with each other, ignores the hierarchical organization
of components into modules. Hence, to gain a more
comprehensive view of the effects of cyclicality on
quality, we close the section by examining how a
product’s hierarchical module structure influences the
cyclicality–quality relationship.

A network view of a product’s architecture con-
siders products as interlinked components or sub-
systems. This view emphasizes the role played by
dependencies among product components (Eppinger
and Browning 2012). A dependency is established by
any direct relationship between two product compo-
nents (Sosa et al. 2007b): spatial dependencies are the
result of two components requiring a specific spa-
tial configuration, structural dependencies arise when
there is a required transmission of mechanical loads
between components, energy dependencies emerge
due to energy flow requirements between compo-
nents, material dependencies capture the flow of mate-
rial (e.g., water, oil, steam, air) between components,
and, finally, information dependencies map how dif-
ferent components interact to process information.
Mapping the totality of dependency patterns for a
complex system such as an aircraft engine requires
capturing multiple types (Sosa et al. 2007b). However,
software products are particular in that their com-
ponents are linked exclusively by information flows.
For instance, MacCormack et al. (2006) captured the
architecture of large, open source software systems by
mapping how their components connected with each
other via function calls.

Different systems vary significantly in their depen-
dency patterns, and these patterns affect the level of
difficulty experienced by development organizations
when designing, building, and testing products. It is
only natural that such difficulties should affect prod-
uct quality. Figure 1 depicts the three basic patterns
of dependencies that can be observed within a sys-
tem (Thompson 1967, Eppinger et al. 1994). In Fig-
ure 1(a), the three components are independent and
thus have no effect on each other (barring resource
constraints); hence, each component can be designed
independently. With respect to quality, this is a triv-
ial case. Because there is no dependency among the
components, neither are there any network-based dif-
ferences among them. Therefore, any variation in their
number of defects must be due to their inherent char-
acteristics (e.g., their internal complexity) and not to
network-related aspects. We argue next that connec-
tivity per se has a significant effect on product quality,
with specific mechanisms depending on the type or
pattern of connectivity.

Figure 1 Three Dependency Structure Patterns for
Components A, B, and C

A

C

B

A

C

B

A

C

B

(a) Independence
(b) Serial

dependence
(c) Cyclical

dependence

2.1. Effects of Component Modularity:
A Calibration Hypothesis

In Figure 1(b), components are connected in a
serial manner (i.e., component C provides input to
components A and B, and B provides input to A).
This pattern of dependency is consistent with a fun-
damental characteristic of directed graphs, reachability:
the property of being able to “walk” from one node
to another via a set of directed “edges” (Harary 1969,
Gould 1988). From a managerial viewpoint, reacha-
bility implies that components should be designed in
a serial order (i.e., C, B, and then A in Figure 1(b)).
Components A and C have opposite reachability char-
acteristics: A is reached by all other components,
whereas C reaches all other components. More gen-
erally, a component in any directed design chain is
likely to be positioned in either the so-called upstream
or downstream end of the chain. Previous work in
both the product architecture and software devel-
opment literatures has shown that such positioning
affects the component’s defect proneness.

First we consider downstream components. An
argument well grounded on the notion of design
change propagation has been established and empir-
ically verified for why downstream components are
particularly error prone. During a typical develop-
ment process, the design of each component changes
repeatedly. Such design changes may propagate from
upstream components (here, component C) to down-
stream components (component A) via their depen-
dencies (Clarkson et al. 2004, Giffin et al. 2009).
Hence, downstream components of a design chain
have been shown, for both hardware and software, to
be at increased risk of induced design changes (Card
and Agresti 1988, Krishnan et al. 1997, Terwiesch
et al. 2002). Design changes in downstream compo-
nents, triggered to adapt to design changes made in
upstream components, are likely to destabilize the
downstream components’ designs and hence increase
the risk of quality issues (Card and Agresti 1988,
Terwiesch and Loch 1999, Burrows et al. 2010).

The argument for downstream components being
more defect prone is fully in line with the expected
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benefits of component modularity. A downstream com-
ponent with low reachability is largely decoupled
from other components in the system and thus enjoys
a high level of component modularity, which by the
preceding arguments should have a positive effect on
its quality (Ulrich 1995, Baldwin and Clark 2000, Sosa
et al. 2007b, MacCormack et al. 2008).

In contrast to their downstream counterparts, a con-
clusive theory for the error proneness of upstream
components is lacking. Upstream components do not
pose the challenge of dealing with design changes
induced by the fate of other components (Braha and
Bar-Yam 2007). Not surprisingly, then, several empiri-
cal studies in the information systems literature have
found no significant relationship between upstream
components and defect proneness (Kan 1995, Briand
et al. 1999, Aggarwal et al. 2007).

Thus, consistent with past findings in the litera-
ture, we posit the following calibration hypothesis
that examines the relationship between downstream
component modularity and defect levels; we leave
the effect to upstream component modularity as an
empirical question.

Hypothesis 1 (H1) (Downstream Component
Modularity Helps). The number of defects exhibited by
a focal component is positively associated with the extent
to which such a component depends upon other product
components.

2.2. The Effect of Component Cyclicality
Figure 1(c) illustrates a second fundamental character-
istic of directed graphs and the network-based view
of architectures: cyclicality (Harary 1969, Gould 1988).1

In this panel, all of the components are involved
in a cyclical dependence. Component A depends on
input from B, which depends on input from C, which
depends on input from A. We use the term in-cycle
component for any component that is part of a cycle,
where “cycle” is the set of components for which
a dependency path exists from each component to

1 There are graph-theoretic reasons for the prominence of reachabil-
ity and cyclicality within a network view of product architectures.
A product architecture can be represented as a graph—that is, a
set of nodes and edges. All graph properties can be defined with
respect to walks (where a “walk 0 0 0 is a finite alternating sequence
of [nodes] and edges that begins with the [node] x and ends with
the [node] y and in which each edge in the sequence joins the
[node] that precedes it in the sequence to the [node] that follows it
in the sequence” (Gould 1988, p. 8)). In practice, most graph prop-
erties are defined in terms of walks. There are two fundamental
types of walks, closed and open (e.g., Gould 1988, p. 9). Open walks
determine whether (and how) the starting node reaches the end
node, so they are well suited to characterizing different reachability
aspects. Closed walks define cycles. Graphs may thus be categorized
as either cyclical or acyclical (Wasserman and Faust 1994) depend-
ing on whether they do or do not, respectively, contain at least one
closed walk.

every other. (A component that is not part of such
a cycle is referred to as a noncycle component.) Thus,
an in-cycle component depends on itself via other
components in the cycle, and component cyclicality is
the extent to which a component depends on itself via
other components—i.e., the number of components in
the cycle.

Developing in-cycle components in complex sys-
tems is especially challenging because (in contrast to
noncycle components) they form problem structures
that require (i) iterative problem solving and (ii) addi-
tional coordination efforts.

Because cyclical dependency patterns imply no nat-
ural sequence in which components can be concep-
tualized and designed, developers must address the
development of in-cycle components in an iterative
fashion. Iterative problem solving can occur in either
sequential or parallel fashion (or any combination of
them). Developers may iterate in a sequential fashion
by myopically considering and redesigning in-cycle
components one at a time until the entire cycle design
converges to a commonly accepted solution (Smith
and Eppinger 1997b, Mihm et al. 2003). Alterna-
tively, developers may iterate in parallel by consid-
ering and redesigning all in-cycle components at once
until an overarching solution for the entire system
is achieved (Smith and Eppinger 1997a, Mihm et al.
2003). Either approach, however, is likely to increase
the error-proneness of in-cycle components relative to
noncycle components. Sequential iteration is likely to
suffer from numerous repeated component redesigns
due to feedback signals coming from design revi-
sions of other components in the cycle (Mihm et al.
2003). Such repeated redesigns (which are absent or
less likely in noncycle components) increase the risk
of errors during development. In parallel iteration,
all in-cycle components are designed and redesigned
at once, which may limit the amount of revisions
necessary. However, compared to designing each
component one at a time, it entails considerable cog-
nitive effort because the amount of information that
needs to be concurrently dealt with increases drasti-
cally, which again makes in-cycle components suscep-
tible to errors (Miller 1956). In sum, because in-cycle
components are part of difficult-to-decompose design
problems that are hard to solve, they are more likely
to exhibit more defects than noncycle components,
which form part of linear or independent prob-
lem structures that do not require iterative problem
solving.

In addition to iterative problem solving, in-cycle
components are likely to require more coordination
needs than noncycle components. During the devel-
opment of complex hardware or software systems,
different components are typically developed by dif-
ferent designers or different design teams (Mockus
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et al. 2000, Sosa et al. 2004, Cataldo et al. 2006,
MacCormack et al. 2006). Hence, actors designing
components involved in cyclical problem structures
are likely to face higher coordination needs than
those designing components involved in noncycli-
cal problem structures because of either the repeated
design–build–test iterations to which such in-cycle
components are likely to be subjected or the concur-
rency of design efforts. Hence, such components are
more likely to suffer from coordination pitfalls and
thus have more defects (Gokpinar et al. 2010).

Our arguments so far have focused on the
dichotomy between in-cycle and noncycle compo-
nents. However, larger cycles are expected to be more
error prone because both iterative problem solving
and coordination needs increase with the number of
components involved in a cycle. Iterative problem-
solving approaches that must address a larger number
of components increase either the number of design
revisions before reaching convergence or the number
of components that need to be considered concur-
rently (Mihm et al. 2003). Either way, larger cycles
make iterative problem solving more problematic.
Arguments about coordination costs associated with
cycles lead to the same conclusion. The greater the
number of components involved in a cycle, the more
elements there are that at risk of a coordination break-
down. Hence, we formulate the following hypothesis.

Hypothesis 2 (H2) (Component Cyclicality
Hurts). The number of defects exhibited by a component
increases with component cyclicality.

2.3. The Effect of Cyclicality Centrality
Although component cyclicality is constant for all
components involved in a specific cycle, such in-cycle
components may differ in their network positions
within that cycle, which may have further conse-
quences for the number of defects affecting each of
those in-cycle components. Even though all compo-
nents in a cycle are interconnected, some components
may occupy more central positions in the cycle’s net-
work structure than do others.

Centrality, a concept developed and extensively
studied in the context of social networks (Freeman
1979, Wasserman and Faust 1994), refers to the identi-
fication of the most important or prominent nodes in
the network. Central nodes exhibit the properties of
a center node in a star-shaped graph (Freeman 1979).
They exhibit a maximum number of direct connec-
tions to, a minimum distance to, and a maximum
likelihood of being in between all other nodes in the
graph. Because we study the notion of cyclicality, we
limit the boundaries of the graph to the components
forming a cycle and the dependencies among them.

Given the above properties of central components
in a cycle, they are more likely to be involved in a

sequence of sequential iterative problem solving than
are peripheral cycle components. Hence, central in-
cycle components are at higher risk of experiencing
the unanticipated nonlinear effects that characterize
sequential iterative problem solving. To see this, con-
sider all paths that link back to a focal compo-
nent in a cycle (touching another component in the
cycle at most once). For any in-cycle component,
at least one such feedback path must exist; if there is
more than one path, then the feedback along all of
those paths needs to be incorporated into the compo-
nent design before the design iteration can converge.
In other words, more paths means more feedback and
thus a greater chance that the iteration either does
not converge or produces unwanted results (Mihm
et al. 2003). Components that are more central in the
cycle are touched by many such paths (Wasserman
and Faust 1994), which leads to our next hypothesis.

Hypothesis 3 (H3) (Increasing Cyclical Cen-
trality Hurts). The number of defects exhibited by a
component is increasing in its centrality within the cycle.

2.4. The Effect of Grouping
Components Into Modules

Complex engineered systems are typically conceived
in terms of a hierarchy of modules and submodules—
that is, “in a boxes-within-boxes form” (Simon 1996,
p. 128). It is, therefore, reasonable to examine how the
decisions to group components into modules influ-
ence the relationship between cyclicality and quality.
An example of this situation is illustrated by Figure 2,
which gives the hierarchical view of an architecture
by grouping the membership of the components in
Figure 1(c) as well as three additional components
(A1, B1, C1) into three distinct, two-component mod-
ules: MA, MB, and MC . (The modules are shaded for
visual distinction.)

Although modules can be formed in many differ-
ent ways, the dominant modularization strategy is to

Figure 2 Six-Component System Grouped Into Three Modules

MB

MC

MA
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(i) group functionally similar and highly interdepen-
dent components into modules and (ii) minimize the
dependence of modules on each other (Parnas 1972,
Simon 1996, Baldwin and Clark 2000). Thus, design-
ers typically concentrate connections among com-
ponents within modules while limiting connections
across module boundaries (Baldwin and Clark 2000);
this is known as the principle of “near decomposabil-
ity” (Simon 1996). In software development terms, fol-
lowing this strategy maximizes module cohesion and
minimizes coupling across modules (Stevens et al.
1974, Chidamber and Kemerer 1994, Briand et al.
1999). This grouping principle facilitates problem
solving by decoupling modules and thereby allowing
the design–build–test process for each module to “be
carried out with some degree of independence of the
design of others” (Simon 1996, p. 128).

We expect that a cycle (such as the one in Figure 2)
whose components are distributed across multiple
modules will be especially prone to defects. Such
defect proneness is a consequence of increased coor-
dination requirements and decreased visibility, two
factors that are more predominant across than within
module boundaries. Modules in the product domain
usually mirror developer groups in the organization
domain (Henderson and Clark 1990, Sosa et al. 2004,
MacCormack et al. 2012). Such mirroring is even true
for open source software development projects, which
often do not exhibit formal organizational group-
ings. Developers working on different modules are
likely to be cognitively more “distant” than develop-
ers developing components that are functionally sim-
ilar because “developers tend to work on problems
that are identified with areas of the code they are
most familiar. Some work on the product’s core ser-
vices, while others work on particular features that
they developed” (Mockus et al. 2000, p. 266). Special-
ization largely dictates how developers self-assign to
modules. The resulting organizational distance that
is fostered by the module structure implies a lack
of familiarity of the interdependent actors involved;
coordination breakdowns result and the risk of com-
ponent defects increases (Staats 2012).

In addition to requiring coordinated communica-
tion among developers, dependencies across module
boundaries run the risk of remaining unidentified
(Allen 1977, Sosa et al. 2004) because modules are nor-
mally considered to be self-contained entities. Hence,
cycles whose components are distributed across mul-
tiple modules are less likely to be identified as in-cycle
components. In that case, efforts to plan and manage
the iterative problem solving required by such cycles
would be compromised (Pich et al. 2002), which in
turn would lead to higher levels of defects. All these
considerations lead to our final hypothesis.

Hypothesis 4 (H4) (Modules Failing to Encap-
sulate Cycles Hurt). The number of defects exhibited
by an in-cycle component is increasing in the number of
modules involved in its cycle.

3. Empirical Study: Open Source
Software Development

To test our hypotheses, we studied open source, Java-
based software applications from the Apache Soft-
ware Foundation (http://www.apache.org/), which
is one of the largest, most established, best studied
open source communities of developers and users
who share values and a standard development pro-
cess (Roberts et al. 2006). We chose to focus on Java
because it is one of the most widely used object-
oriented programming languages and because its
source code captures component dependencies and
module constituents in an explicit and structured way.

3.1. Data
As our initial database, we identified 69 Java-based
development projects at the Apache Software Foun-
dation in mid-2008. An effective examination of the
causal relationship between architectural characteris-
tics and quality requires a longitudinal data set, so
we focused on the 37 applications for which succes-
sive major releases were available. From these 37, we
selected those for which we could access all neces-
sary data sources: bug-tracking systems (to determine
the number of bugs), precompiled (“prebuilt”) code in
so-called Java ARchive (JAR) files (to codify product
architecture features), original source code (to mea-
sure such product-related attributes as source lines of
code (SLOC)), release notes (to determine product-
related innovative features), and version management
tools (to associate bugs with the components they
affected). These filters left us with a set of 28,394
observations of 7,103 product components across 111
releases (versions) of 17 applications—an average of
256 components per version.

We compiled an integrated data set from those five
sources. First, we examined Apache’s Bugzilla and
Jira bug-tracking systems to obtain the bugs associ-
ated with each version. Each of these systems allows
users and developers to enter bug reports, which
are classified in terms of their potential severity and
are processed by the development team in a struc-
tured way. This process applies to all bugs that are
not fixed by a developer during initial program-
ming, and the databases of these bug-tracking sys-
tems record the status and resolution of each bug
associated with any version. We developed a Web
crawler to automate the gathering of these data. Sec-
ond, we downloaded the precompiled version of
each major release of each application (available as
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a JAR file) from the Apache archives or the applica-
tion’s website; we did not use minor releases because
they typically involve relatively small changes. We
used LDM (Lattix Dependency Manager), a com-
mercially available software application developed
by Lattix Inc. (http://www.lattix.com/), to build a
design structure matrix (DSM) representation from
the source code (as captured in the JAR file) and
to extract the module membership of components.
Third, we downloaded the original source code for
each version. This step involved locating and down-
loading more than 110 source packages and—because
the correspondence between Java classes and files
is nearly one to one—examining more than 28,000
source code files. Accessing these files was necessary
to measure various dimensions of the complexity of
each Java class. Fourth, we consulted each version’s
official release notes to gather information on new-
ness, age, and other important application-level con-
trols. Finally, we developed a second Web crawler
to retrieve and extract data from the “change log”
files of the version control tools, the so-called subver-
sion (SVN) repositories, to link each bug to the Java
class(es) that it affected; in other words, we counted
all of the bugs that affected each Java class, noting
that some bugs affected more than one class. From
the SVN repositories we were also able to mine data
about timing and authorship. Our analysis was based
on all the reported bugs that had been fixed or were
in the process of being fixed (they are all “patched”
bugs); we did not include “unpatched” bugs owing
to the lack of information on which components they
affected. (No selection bias was thereby introduced
into our analysis because we were able to consider
all components in all of the product versions in our
sample.) However, we did control for the number of
unpatched bugs associated with the version to which
a component belonged. Finally, we also checked that
patched and unpatched bug groups were not signif-
icantly different with respect to their ratio of severe
and nonsevere bugs.

3.2. Dependent and Predictor Variables

3.2.1. Dependent Variable: Number of Bugs per
Component. The main dependent variable in our
analysis is ycis , the number of bugs explicitly associ-
ated with component c of application i (in version s).
We assign a bug to a component based on the infor-
mation reported in the bug-tracking and version con-
trol systems.

3.2.2. Independent Variables. We define three
sets of independent variables. First, we use measures
of fan-out and fan-in to test for the effects of down-
stream and upstream component modularity, respec-
tively. Second, we discuss how to identify in-cycle

components to measure component cyclicality and
cyclicality centrality (to test H2 and H3). Third, we
define a variable that captures precisely how the pres-
ence of hierarchical modules encapsulates cycles (to
test H4).

Software applications are systems of connected
components grouped into modules (Shaw and Garlan
1996, Martin 2002, Sangal et al. 2005). Modeling a sys-
tem requires defining what constitutes a component.
Although we could perform our analysis at the
level of methods or even lines of code, we use the
“Java class” as our unit of analysis. (A method is
a self-contained collection of programming instruc-
tions that typically includes variable instantiation
and control flow statements, such as “if 0 0 0 then” and
“while 0 0 0do” statements; a Java class is a collec-
tion of methods. A class in our data set contains,
on average, 10 methods. Our data set contains only
Java applications, wherein files and classes are typi-
cally coextensive.) There are three reasons for choos-
ing the Java class as our unit of analysis. First,
a class tends to provide a set of common function-
ality (e.g., a set of low-level mathematical functions)
maintained as one cohesive piece of software, often
in one source file supplied by an individual devel-
oper. Second, significant attributes of the architec-
ture are apparent at the class level, rendering further
decomposition unnecessary for our purposes. Third,
this level of decomposition is consistent with past
work on software architecture (e.g., Sangal et al. 2005,
MacCormack et al. 2006).

Our measures are based upon a design structure
matrix representation of the dependency structure of
the components in each version of each application in
our sample. A DSM is a square matrix whose rows
and columns are both labeled with N components
and whose off-diagonal cells indicate the components’
directed dependencies (Browning 2001). A depen-
dency results from a “call” made by one component
to another (Sangal et al. 2005, Cataldo et al. 2006,
MacCormack et al. 2012).2 An off-diagonal mark in
cell (i1 j) of the DSM indicates that the Java class in
column j calls the class in row i, and hence that the
class in column j depends on the class in row i. For
example, consider the left panel of Figure 3, which
shows a “flat” DSM representation of the entire Ant
(version 1.4) application with 160 components and

2 Dependencies include invocations (static, virtual, and interface),
which allow for various types of method calls; inheritances (exten-
sions and implementations), which allow a class to extend or
define new behaviors; data member references, which refer to the
field of a class; and constructs, a method call for creating an object.
We include these dependencies because they are typically integral
to the system’s design and because developers create them deliber-
ately. They comprise the various ways in which classes “connect”
with other classes in a Java-based software application.
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Figure 3 Representations of Ant 1.4: (Left) Flat DSM; (Center) Visibility Matrix; (Right) Sequenced DSM

676 directed dependencies. (The term “flat” signifies
that this DSM does not capture the arrangement of
components into modules.)

As for metrics, we follow MacCormack et al. (2008)
in using fan-out and fan-in to measure the lack of com-
ponent modularity. This is consistent with previous
work that studies modularity at the component level
and measures component modularity as the lack of
dependency among product components (Sosa et al.
2007b, Cabigiosu and Camuffo 2012). First, to mea-
sure the lack of downstream component modular-
ity needed to test H1, we calculate component fan-out
(C_FAN_OUTcis) as the fraction of product compo-
nents on which component c depends, either directly
or indirectly. With reference to Figure 1(b), for exam-
ple, the fan-out of component A is 100% because com-
ponent A depends (directly or indirectly) on all other
components in that system; in contrast, the fan-out of
components B and C are, respectively, 50% and 0%. In
general, component fan-out is derived from the visi-
bility matrix V , which is a square binary matrix of size
N (where N still denotes the number of components)
whose nonzero cells 4vi1 j 5 indicate that component
j depends on component i, either directly or indi-
rectly, via any number of intermediary components
(Sharman and Yassine 2004, MacCormack et al. 2006).
This matrix V is the binary sum of the first N powers
of the flat DSM (applying Boolean matrix multiplica-
tion). The center panel of Figure 3 shows the visibility
matrix for Ant 1.4. We calculate fan-out component
visibility as follows (see MacCormack et al. 2008):

C_FAN_OUTcis =

∑

k vkc

N − 1
1

where the numerator is the sum of all nonzero cells
in column c of V . This measure captures the fraction
of components that might affect c as their changes
propagate to c.

Although we do not explicitly hypothesize for the
effects of upstream component modularity, we still
control for its potential existence. To measure the lack

of upstream component modularity, we calculate com-
ponent fan-in (C_FAN_INcis) as the fraction of compo-
nents that depend (either directly or indirectly) on c.
Referring again to Figure 1(b), the fan-in of com-
ponent C is 100% because all other components in
that system depend (directly or indirectly) on com-
ponent C; in contrast, the fan-in of components B
and A are, respectively, 50% and 0%. We calculate fan-
in component visibility as follows:

C_FAN_INcis =

∑

k vck

N − 1
3

here the numerator is the sum of all nonzero cells
in row c of V . This measure captures the fraction of
components that might be affected by a change in
component c.

To determine whether a component is involved
in a cycle, we apply the procedure described by
Warfield (1973) to the DSM, although we substi-
tute Tarjan’s (1972) more efficient (linear order of
growth) algorithm to identify the unique sets of
in-cycle components. The right panel of Figure 3
shows the result of applying this algorithm to the
flat DSM of Ant 1.4; it reveals that Ant 1.4 con-
tains three component cycles—the three highlighted
blocks along the diagonal—which contain 6, 11, and
18 components, respectively. We can now define the
component-level indicator variable: IN_CYCLEcis = 1
if component c belongs to a component cycle of
version s of application i (and IN_CYCLEcis = 0
otherwise). Then, to capture component cyclical-
ity, we measure CYCLE_SIZEcis as the number of
components in the cycle to which component c
belongs. (CYCLE_SIZEcis = 0 for noncycle compo-
nents.) Finally, we measure the centrality of a com-
ponent within a cycle, IN_CYCLE_DEGREEcis , as the
number of other components in the cycle to which
component c belongs that are directly connected
with component c (Freeman 1979, Wasserman and
Faust 1994).

To calculate a measure that captures how modules
encapsulate cycles, we identify the module structure
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Figure 4 Hierarchical DSM of Ant 1.4, Including Module Boundaries
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of the code for version s of application i. Because
the nested subdirectory structure (and thus hierar-
chical organization of the source code into nested
modules) is captured in the name of each Java class,
we are able to associate each component uniquely
with a set of hierarchically structured modules. Fig-
ure 4 shows a hierarchical DSM representation of
Ant 1.4, which overlays the nested module struc-
ture onto the dependency structure of the product.
Although each component is uniquely assigned to a
component module (i.e., a module that contains only
components), the existence of “modules of modules”
results in the three-level hierarchical module structure
shown. Because we study the implications of group-
ing components into (component) modules as a first-
order effect of the architecture’s hierarchical aspects,
we count the number of cross-module boundaries
spanned by the cycle. That number is denoted by the
variable MODULES_CROSS_CYCLEcis .

3.3. Control Variables
Other factors may be related to the number of
bugs affecting a component. We include two sets of
control variables: system-level and component-level
factors (see Table 1, for which a more detailed ver-
sion is provided in Online Appendix A, available as
supplemental material at http://dx.doi.org/10.1287/
msom.2013.0432). Table 2 gives descriptive statistics
and pairwise correlations for the variables included
in the analysis. Among the system-level controls, the
breadth and depth of the hierarchical module struc-
ture are (as expected) positively correlated; this sug-
gests that as applications grow in the number of their

component modules, they also grow in the number
of their modules of modules. However, these two
variables are negatively correlated with the applica-
tion’s propagation cost, which indicates that applica-
tions using more hierarchical module structures have
a dependency structure that is less interconnected
(MacCormack et al. 2006). The positive correlation
between an application’s age and its average cyclo-
matic complexity is consistent with the conjecture
that older applications are made up of components
that are internally complex. Among the component-
level controls, the strong positive correlations among
cumulative changes and cumulative committers and
authors indicate that, as expected, workload and use
of resources are positively associated with each other.
Not surprisingly, the two measures of intracomponent
complexity (SLOC and the average cyclomatic com-
plexity of the methods constituting a component) are
positively correlated. Finally, the cyclicality variables
are, as expected, highly correlated among themselves
and also with component fan-in and fan-out. The pos-
itive correlations between IN_CYCLE and C_FAN_IN
and C_FAN_OUT are consistent with the fact that
these three measures depend (in different ways) on
the connectivity patterns of the focal component with
other components and how these other components
interact.

4. Analysis and Results
The dependent variable in our analysis counts the
number of bugs affecting component c. Because our
data have both a hierarchical structure (component c
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Table 1 Control Variables

System-level factors (version s of application i)
UNPATCHED_BUGS is Number of unpatched bugs (not yet associated with specific components) in this version
AGE is Number of days between the first version available and this version
DAYS_BEFORE is Number of days between this and the previous version
DAYS_AFTER is Number of days between this and the next version
NEWNESS is Number of new features (added functionality) and improvements (modifications to existing functionality) in this version
APP_SLOC is Number of kilolines of source code in this version
APP_AVG_CC is Average cyclomatic complexity of all methods in this version (cyclomatic complexity is the minimum number of linearly

independent paths in the control flow graph of a method in a software program; McCabe 1976)
NUM_NOM_MODULES is Number of modules that contain actual components (not simply nested modules) in this version; this variable measures the

overall breadth of the hierarchical module structure in this version
HIERARCHY _DEPTH is Maximum number of levels between the leaf (component) levels and the root level in this version; this variable measures

the overall depth of the hierarchical module structure of this version
AVG_INTERFACE_USAGE is Average of Martin’s (2002, p. 267) distance metric across all modules in this version; this metric gauges the developers’

deviation from the “recommended” source code structure that best handles cross-module dependencies
PROPAGATION_COST is Average fan-in and fan-out visibility of all components in this version (MacCormack et al. 2006) as computed from the

visibility matrix V

Component-level factors (component c of application i in version s)
C_AGE cis Number of days since the component was first included in this application
C_EXPL_CHANGES cis Number of nonbug changes (improvements, new features, etc.) explicitly associated with this component in this version
C_IMPL_CHANGES cis Number of total changes (bugs, improvements, new features, etc.) implicitly associated with this component in this version

because of their introduction time (explicit assignment is not available)
C_CUM_CHANGES cis Cumulative number of changes associated with the component prior to this version
C_CUM_COMMITTERS cis Cumulative number of committers associated with the component prior to this version
C_CUM_AUTHORS cis Cumulative number of authors associated with the component prior to this version
C_INTERFACCE_USAGE cis Distance metric (Martin 2002, p. 267) for the component’s module in this version
C_AVG_CC cis Average cyclomatic complexity (McCabe 1976) of the component’s methods in this version
C_SLOC cis Number of kilolines of source code in this version of the component

belongs to application i) and a panel structure (com-
ponent c can be observed in any of several versions, s,
of application i), we must use a hierarchical mod-
eling framework with panel data (Raudenbush and
Bryk 2002). This type of analysis allows us to test
for component-level effects in the presence of system-
level covariates while controlling for the lack of inde-
pendence in observations from the same component
and also from the same application. In addition,
because our dependent variable is a bug count for
component c, we estimate a hierarchical Poisson
regression model (Cameron and Trivedi 1998). (Note
that our “count” dependent variable does not exhibit
signs of overdispersion: its variance is not signifi-
cantly larger than its mean.) For estimation purposes,
we use the xtmepoisson procedure recently imple-
mented in Stata 12 with a component-specific ran-
dom intercept that is nested in its corresponding
application-specific random intercept (Raudenbush
and Bryk 2002, Rabe-Hesketh and Skrondal 2008).
Hence, our baseline model is a random-intercept
model of the following form:

E6ycis � xcis1zis7= exp4�zis +�xcis + �ci + �i + �cis50

Consistent with the hierarchical linear modeling
approach, this model fits a multilevel, mixed-effects

Poisson regression that contains not only “fixed”
effects (the �, �-coefficients), which are analogous to
standard regression coefficients, but also “random”
intercepts (the �-parameters), which are assumed to
vary (following a Gaussian distribution) across com-
ponents and applications. Our regression models pre-
dict that the expected number of bugs affecting
component c in application i depends exponentially
on two sets of linearly independent regressors: a first
set 8zis9 defined at the system level, and a second
set 8xcis9 defined at the component level, both instanti-
ated in version s. We use raw data in our estimations,
but our results are robust to both grand-mean and
application-level centering (Kreft et al. 1995).

When testing for the hypothesized effects of cycli-
cality, we enhance our baseline model by includ-
ing random coefficients for the cyclicality variables
of interest with an unstructured covariance structure
of the random parameters (Singer and Willett 2003,
Rabe-Hesketh and Skrondal 2008). These models pro-
vide a significantly better fit to our data—than do the
corresponding random-intercept models—by relaxing
the assumption that cyclicality effects are the same
across all the applications in the sample. Intuitively,
a random-coefficient model is analogous to a model
that includes interaction effects between the variable
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of interest (here, a cyclicality variable) and a group-
level indicator variable (here, an application-level
dummy variable). Note that, given the hierarchical
nature of our data, we cannot include application-
level indicator variables.

Estimates for the �- and �-coefficients in our final
set of regression models are reported in Table 3.
Models 1–3 are random intercept models, whereas
Models 4–7 are random coefficient models. As recom-
mended by Singer and Willett (2003), we included an
application-specific random coefficient of the cyclical-
ity variable of interest only if doing so significantly
reduced the model’s deviance statistic with respect
to the nested model that excludes such a coefficient.
(In our models, a model’s deviance statistic is −2 ·

(log-likelihood statistic).) In Online Appendix B, we
include Table B, providing details of how we eval-
uated the reduction in deviance statistic associated
with the inclusion of each application-specific ran-
dom coefficient of the cyclicality variables of inter-
est. Table B also shows the standard deviations of
both component- and application-level main random
parameters of all the models shown in Table 3.

4.1. Testing the Hypotheses
Model 1 includes system-level control variables. Most
of the coefficients for these control variables are sig-
nificant, which confirms their relevance. This model
shows that components in large applications (as mea-
sured by the number of kilolines of the application’s
source code in version s) and with higher average
cyclomatic complexity are likely to exhibit a greater
number of defects. This is consistent with the infor-
mation systems literature, which suggests that both
SLOC and cyclomatic complexity are good predic-
tors of the effort required to build, test, and maintain
software applications (McCabe 1976, Henry and Selig
1990). The hierarchical grouping of components by
the modules in an application seems to influence com-
ponent quality: having more breadth and more depth
in the hierarchical module structure is associated with
fewer defects. (Given the high correlation between
NUM_NOM_MODULES and HIERARCHY_DEPTH,
we test the robustness of our results to the exclu-
sion of HIERARCHY_DEPTH and confirm that they
are not sensitive to that change.) Finally, components
in applications whose modules deviate from the code
structure recommended for handling interfaces across
modules seem to be more defect prone (Martin 2002),
and components in applications with higher propa-
gation cost seem to have, on average, fewer defects
(MacCormack et al. 2006).

Model 2 adds component-level controls. This model
controls for the number of changes (e.g., incremental
improvements and the addition of new features) asso-
ciated with the focal component c. The positive and

significant coefficients for C_EXPL_CHANGES and
C_IMPL_CHANGES suggest that, for a given com-
ponent, the number of bugs is positively correlated
with the number of non-bug-fixing changes that affect
it. In addition, we control for the amount of organi-
zational attention and resources associated with the
focal component, since its inception, in application i.
The negative and significant coefficient for cumulative
changes to the source code of component c prior
to the current version s, C_CUM_CHANGES, sug-
gests that components dealt with in previous ver-
sions of the application are less likely to be affected
by bugs in the current version. However, the greater
the number of authors and committers dealing with
a component in the past, the more likely it is that
such a component will be associated with a higher
number of bugs in the current version; in other
words, the coefficients for C_CUM_AUTHORS and
C_CUM_COMMITTERS are both positive and sig-
nificant. Given the high correlation between these
two variables and C_CUM_CHANGES, we test
the robustness of our results to the exclusion of
C_CUM_CHANGES and find that our results are
not sensitive to such exclusion. Finally, Model 2
confirms that a component’s cyclomatic complexity
(C_AVG_CC) and source lines of code (C_SLOC) are
important determinants of how many bugs it has
(Card and Glass 1990, Henry and Selig 1990).

Model 3 tests for the effects of downstream com-
ponent modularity (H1). Here we include two types
of architectural variables: C_FAN_OUT (how much
component c depends on other components) and
C_FAN_IN (how much other components depend
on c). The coefficient for C_FAN_OUT is positive
and significant (consistent with H1), and significantly
larger than C_FAN_IN (p < 00001). (To test the dif-
ference of these two coefficients, we estimated an
alternative model that includes C_FAN_OUT and a
new variable defined as the sum of C_FAN_OUT
and C_FAN_IN. In that model, the coefficient esti-
mate of C_FAN_OUT tests the significance of the dif-
ference of the parameters of interest.) This model
confirms, in line with the bulk of previous research,
that the directionality of dependencies influences the
relationship between a component’s modularity and
its number of defects (e.g., Card and Agresti 1988,
Kan 1995, Briand et al. 1999, Aggarwal et al. 2007,
Burrows et al. 2010). Components that depend on
many other components are likely to be associated
with a higher number of bugs than are components
that depend on fewer other components. Observe
that, despite the positive and significant coefficient for
C_FAN_IN in this partial model, the effect becomes
insignificant when, in subsequent models, the effect
of cyclicality is also included. Such instability of the
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Table 3 Hierarchical Poisson Regressions Predicting the Number of Bugs per Component 4N = 2813945

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

UNFIXED_BUGSis 00004∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00003∗∗∗ 00002∗∗∗ 00002∗∗∗

4000015 4000015 4000015 4000015 4000015 4000015 4000015
AGEis −00002∗∗∗ −00003∗∗∗ −00002∗∗∗ −00003∗∗∗ −00003∗∗∗ −00002∗∗∗ −00002∗∗∗

4000005 4000005 4000005 4000005 4000005 4000005 4000005
DAYS_BEFOREis −00001∗∗∗ −00001∗∗∗ −00001∗∗∗ −00001∗∗∗ −00001∗∗∗ −00001∗∗∗ −00001∗∗∗

4000005 4000005 4000005 4000005 4000005 4000005 4000005
DAYS_AFTERis 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗

4000005 4000005 4000005 4000005 4000005 4000005 4000005
NEWNESSis 00001 00001 00001 00001 00001 00001 00001

4000015 4000015 4000015 4000015 4000015 4000015 4000015
APP_SLOCis 00011∗∗∗ 00012∗∗∗ 00011∗∗∗ 00015∗∗∗ 00015∗∗∗ 00015∗∗∗ 00011∗∗∗

4000045 4000045 4000045 4000045 4000045 4000045 4000045
APP_AVG_CCis 00151∗∗∗ 00137∗∗∗ 00137∗∗∗ 00125∗∗∗ 00127∗∗∗ 00128∗∗∗ 00135∗∗∗

4000145 4000135 4000135 4000135 4000135 4000135 4000135
NUM_NOM_MODULESis −00022∗∗∗ −00023∗∗∗ −00022∗∗∗ −00025∗∗∗ −00025∗∗∗ −00025∗∗∗ −00023∗∗∗

4000035 4000035 4000035 4000035 4000035 4000035 4000035
HIERARCHY_DEPTHis −00210∗∗ −00237∗∗ −00225∗∗ −00261∗∗ −00249∗∗ −00256∗∗ −00219∗∗

4001055 4001085 4001075 4001115 4001105 4001105 4001085
AVG_INTERFACE_USAGEis 30673∗∗ 40234∗∗∗ 40044∗∗ 50176∗∗∗ 40376∗∗∗ 40885∗∗∗ 40229∗∗∗

4105305 4105755 4105685 4106555 4106655 4107045 4105815
PROPAGATION_COSTis −00062∗∗∗ −00064∗∗∗ −00087∗∗∗ −00115∗∗∗ −00110∗∗∗ −00108∗∗∗ −00081∗∗∗

4000085 4000085 4000085 4000105 4000105 4000105 4000085
C_AGEcis 00000 00000 00000∗ 00000∗ 00000∗ 00000

4000005 4000005 4000005 4000005 4000005 4000005
C_EXPL_CHANGEScis 00030∗∗∗ 00027∗∗∗ 00027∗∗∗ 00027∗∗∗ 00028∗∗∗ 00029∗∗∗

4000035 4000035 4000035 4000035 4000035 4000035
C_IMPL_CHANGEScis 00070∗∗∗ 00063∗∗∗ 00047∗∗∗ 00045∗∗∗ 00045∗∗∗ 00062∗∗∗

4000135 4000135 4000135 4000135 4000135 4000135
C_CUM_CHANGEScis −00015∗∗∗ −00013∗∗∗ −00012∗∗∗ −00012∗∗∗ −00012∗∗∗ −00012∗∗∗

4000025 4000025 4000025 4000025 4000025 4000025
C_CUM-COMMITTERScis 00162∗∗∗ 00140∗∗∗ 00148∗∗∗ 00151∗∗∗ 00150∗∗∗ 00142∗∗∗

4000135 4000135 4000135 4000135 4000135 4000135
C_CUM-AUTHORScis 00054∗∗∗ 00052∗∗∗ 00047∗∗∗ 00045∗∗∗ 00046∗∗∗ 00047∗∗∗

4000095 4000095 4000095 4000095 4000095 4000095
C_INTERFACE_USAGEcis 00021 00020 00013 00026 00000 −00022

4001015 4000995 4001005 4001005 4001015 4000995
C_AVG_CCcis 00095∗∗∗ 00073∗∗∗ 00072∗∗∗ 00073∗∗∗ 00074∗∗∗ 00072∗∗∗

4000095 4000095 4000095 4000095 4000095 4000095
C_SLOCcis 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗ 00002∗∗∗

4000005 4000005 4000005 4000005 4000005 4000005
C_FAN_OUTcis 00019∗∗∗ 00015∗∗∗ 00015∗∗∗ 00015∗∗∗ 00014∗∗∗

4000015 4000015 4000015 4000015 4000015
C_FAN_INcis 00004∗∗∗ 00000 00000 00000 00001

4000015 4000025 4000025 4000025 4000015
CYCLE_SIZEcis 00013∗∗∗ 00012∗∗∗ 00009∗∗

4000055 4000045 4000045
IN_CYCLE_DEGREEcis 00016∗∗ 00017∗∗

4000085 4000085
MODULES_CROSS_CYCLEcis 00027∗∗

4000115
IN_CYCLEcis 00459∗∗∗

4001405
Log-likelihood −9,329.459 −8,745.888 −8,623.929 −8,564.721 −8,557.613 −8,554.501 −8,590.827
AIC 18,702.92 17,553.78 17,313.86 17,201.44 17,195.23 17,191.00 17,253.65

Notes. All models include component- and application-specific nested random effects as well as year fixed effects. In addition, Models 4–7 include application-
specific random coefficients of the cyclicality variables. Standard errors are given in parentheses.

∗p < 001; ∗∗p < 0005; ∗∗∗p < 0001.
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effect of C_FAN_IN in our models is fully consis-
tent with the inconclusive findings reported in the
literature addressing the relationship between fan-in
and quality (Briand et al. 1999). It also highlights the
importance of accounting for the effect of component
cyclicality when evaluating the effects of other com-
ponent architectural features.

Model 4 tests H2, which predicts a detrimen-
tal effect on quality for components with higher
component cyclicality. This model includes the pre-
dictor variable CYCLE_SIZE, the number of compo-
nents in the cycle to which component c belongs.
This model shows a positive and significant coeffi-
cient for CYCLE_SIZE, indicating that the larger the
cycle involving component c, the greater the expected
number of bugs associated with that component.
Note that Model 4 is a random-coefficient model that
includes an application-specific random slope associ-
ated with CYCLE_SIZE, relaxing the assumption that
the effect of CYCLE_SIZE is constant across all appli-
cations in the sample. This random-coefficient model
fits our data better than does the nested random-
intercept model (Singer and Willett 2003): the differ-
ence in the deviance statistic of the random intercept
model (17,209.29) and the random coefficient model
(17,129.44) is 79.85, which easily exceeds the 0.05 crit-
ical value of a �2 distribution with two degrees of
freedom (5.99). This suggests that the nested random-
intercept model should be rejected in favor of the
random-coefficient model, even though both models
strongly support H2.

Model 5 tests H3, which predicts that, if we control
for the size of the cycle, then a component‘s degree
of in-cycle centrality is positively associated with its
number of defects. The positive and significant coef-
ficient for IN_CYCLE_DEGREE lends empirical sup-
port to this hypothesis and suggests that components
in same-size cycles can differ in their number of
defects: those components occupying more central
(respectively, more peripheral) positions in their cycle
are likely to have a larger (respectively, smaller)
number of defects. Model 5 includes application-
specific random slopes for both CYCLE_SIZE and
IN_CYCLE_DEGREE because their inclusions make a
significant deviance reduction when compared to the
nested random-coefficient model that includes a ran-
dom slope of CYCLE_SIZE only (deviance reduction =

8055 > critical �2 (0.05 right tailed, 3) = 7081).
Finally, Model 6 tests H4. (Model 6 is a ran-

dom coefficient model that includes application-
specific random slopes for both CYCLE_SIZE and
IN_CYCLE_DEGREE, but not for MODULES_CROSS
_CYCLE. We do not include an application-specific
random slope for MODULES_CROSS_CYCLE because
doing so does not yield a significant reduction of
deviance statistic with respect to the nested model

that includes application-specific random slopes for
both CYCLE_SIZE and IN_CYCLE_DEGREE. Deviance
reduction = 8091 < critical �2 (0.05 right tailed, 4) =

9049.) H4 predicts that components involved in cycles
that cross a greater number of module boundaries are
more likely to exhibit a greater number of defects.
The model yields a positive and significant coef-
ficient for MODULES_CROSS_CYCLE, which indi-
cates that—beyond the effect of CYCLE_SIZE and
IN_CYCLE_DEGREE—in-cycle components are likely
(in line with H4) to have even more defects when
they are not encapsulated by a single module. In our
sample, 87% of the cycles cross at least one module
boundary, which suggests that multimodule cycles are
common. This suggests that, in an open source soft-
ware development context, developers seem to neglect
the negative consequences of dealing with cyclical
dependencies across modules or are not aware of the
existence of such cycles spanning multiple modules.

We tested the robustness of all findings reported
in this section with respect to alternative model
specifications. First, all the results are robust to the
inclusion of quadratic terms for fan-out and fan-
in, which were both negative and significant. This
alternative specification suggests that the relation-
ship between fan-out (and fan-in) and a component’s
defects may be captured by an inverted U-shape.
However, the shapes of the quadratic functions are
appreciably different for fan-out and fan-in. After
including the effect of CYCLE_SIZE in our models,
the quadratic function of fan-out does not peak within
the range of fan-out values in our sample, suggest-
ing a decreasing marginal return effect of fan-out
(instead of an inverted U-shape form). For fan-in, the
quadratic function is a “shallow” inverted U-shape
that peaks about its mean. Second, we estimate hier-
archical Poisson regression models that include—
instead of a component-specific random effect nested
in its corresponding application—a version-specific
random effect nested in its corresponding application
random effect. Our results are robust to this hierar-
chical model specification. Third, we estimate a zero-
inflated Poisson (nonhierarchical) regression model
with version-level fixed effects to ensure that our data
do not contain too many zeros. The Vuong (1989) test,
which compares a zero-inflated Poisson regression
with a standard Poisson regression (featuring version-
level fixed effects), does not significantly favor the
zero-inflated model.

Although the analysis provides strong support for
our hypotheses, a discussion of causality is in order.
First, because our dependent variable is measured
within a time span that does not commence until after
all the independent variables have been measured
(i.e., bugs are not discovered until after a version of
the product has been released), it is unlikely that the
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existence of unidentified defects leads to the establish-
ment of specific dependency patterns, such as cycli-
cal dependencies, among product components. This
reduces the risk of reverse causality. Second, the lag
between the independent variables and our depen-
dent variable mitigates the risk of unobserved factors
(e.g., contemporaneous measurement errors) affecting
both the dependent variable and our predictor vari-
ables in a similar manner. Of course, these consider-
ations are not sufficient to guarantee causality in the
strictest sense.

4.2. Effect Size of Cyclicality
In this section we not only estimate the magnitude of
the effect of component cyclicality but also compare
it with the effect size of component modularity (mea-
sured by the lack of component fan-out). To estimate
an overall effect of component cyclicality, we estimate
a random coefficient regression model that includes
IN_CYCLE as the only cyclicality variable of interest.
Such a model (Model 7 in Table 3) fits our data better
than does the corresponding nested random-intercept
model (deviance reduction = 31076 > critical �2 (0.05
right tailed, 2) = 5099). This model yields a positive
and significant coefficient of IN_CYCLE (0.459, p <
00001). According to that model, an in-cycle compo-
nent has, on average, 58.3% (e00459 − 1) more defects
than a noncycle component. In comparison, such a
model also shows a positive and significant coeffi-
cient of C_FAN_OUT (0.014, p < 00001). Hence, an
increase of a single standard deviation in a compo-
nent’s fan-out is correlated with 35.3% more defects
(e4000145421065 − 1). Thus, our regression results suggest
that, on average, the overall effect of a component
being in a cycle is of the same order of magnitude as
the effect of component fan-out.

To test the robustness of our effect size estimates
against potential confounding effects due to the high
correlations between IN_CYCLE and C_FAN_OUT
(and C_FAN_IN), we reestimate the effect size of
IN_CYCLE using a matching approach. Toward this
end, we implement a propensity score matching
approach commonly used in medical trials and eco-
nomics when seeking to evaluate a treatment effect
in nonrandomized observational studies (Rosenbaum
and Rubin 1983). The rationale behind this approach
is to define a propensity score as the conditional prob-
ability of a component being in a cycle (i.e., of being
a “treated” component) in terms of the component’s
other characteristics (e.g., its fan-out and fan-in). One
must then identify components that have both a sim-
ilar propensity score and a similar, “balanced” set of
covariates—in this case, fan-in and fan-out—for the
same range of propensity scores. Matched groups of
components with similar propensity scores and a bal-
anced set of covariates are used to estimate the average

effect of treatment on the treated (ATT) as the difference
between the expected number of bugs for the treated
units (the in-cycle components) versus the untreated
units (the noncycle components) of the matched sam-
ple. We are ultimately interested in whether such a
difference (percentage wise) in the number of bugs is
the same as (or greater than) the difference obtained
from our regression results.

For estimation purposes we use the pscore and atts
methods implemented in Stata by Becker and Ichino
(2002). The pscore method determines the propen-
sity score by estimating a logistic regression that
includes component-specific attributes likely to be
associated with the inclusion of a component in a
cycle. These component-level covariates include age,
average cyclomatic complexity, and number of source
code lines as well as fan-in and fan-out. We also
include version-level fixed effects. As expected, the
most salient predictors of being in a cycle are the
fan-in and fan-out variables (their coefficients have
z-scores that exceed 60).

Because it is virtually impossible to find two units
in a sample that have the exact same propensity
score, one must also devise an algorithm to iden-
tify matching groups that have both similar propen-
sity scores and balanced covariates. For this, we use
the stratification method executed by atts in Stata
because, by definition, it guarantees a balanced set
of matched samples if the outcome of the pscore is
also balanced (Becker and Ichino 2002). In a sample
of 6,064 components that is matched and balanced
with respect to fan-in and fan-out, we find an ATT of
0.141 (p < 00001)—in other words, the average in-cycle
component has 0.141 more bugs than the average
noncycle component in our matched sample. More
importantly, in that sample the in-cycle components
have, on average, 79.7% more bugs than the noncy-
cle components (0.318 versus 0.177). (Unfortunately,
a propensity score matching approach is not suitable
to test for the effect of a continuous variable such as
fan-out.) Overall, the results from using this match-
ing approach to estimate the effect size of cyclicality
indicate that the effect of cyclicality is (i) comparable
to the one estimated from our regression results and
(ii) not confounded with the effect of either fan-out or
fan-in.

5. Discussion
Product quality matters. The competitiveness of most
companies depends on it. Both the popular press
and academic research have documented the nega-
tive consequences of poor quality. For example, the
decline of market share among the Big Three U.S.
automakers in recent decades has been attributed to
mediocre product quality (Klier 2009); Firestone even
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faced demise when a product design fault led to sev-
eral fatal accidents (Pinedo et al. 2000). A wealth
of studies in different contexts has documented the
consequences of poor quality on firm survivability
(Li and Hamblin 2003), market share (Mohrman et al.
1995), and profits (Fuentes-Fuentes et al. 2004). Con-
versely, the long-term survival and widespread adop-
tion of systems based on open source software has
been (at least partially) attributed to code quality
(Ajila and Wu 2007). Many drivers of product quality
have been recognized, and strategies for improving it
have received widespread attention (Cua et al. 2001).
Hence, improving our understanding of the factors
that drive product is of paramount importance.

The literature has already identified product archi-
tecture as a major factor (Ulrich 1995, Ulrich and
Eppinger 2012). However, previous research has
focused on modularity as the most salient architec-
tural characteristic in the architecture–quality rela-
tionship (e.g., Briand et al. 1999, Aggarwal et al.
2007, Burrows et al. 2010). Our study demonstrates
that a second architectural feature, cyclicality, is sim-
ilarly important. We empirically link cyclicality to
quality, and we identify particular aspects of cycli-
cality that significantly affect quality. First, we find
that component cyclicality is a significant predictor
of component defectiveness whose effect is of the
same order of magnitude as is modularity. Second,
in untangling the cyclicality construct, we learn that
a component’s centrality in a cycle plays a significant
role: components that occupy a more central posi-
tion in a cycle are more prone to defects than are
components that occupy peripheral positions. Finally,
we show that architecture is determined not only by
the dependency structure but also by the hierarchi-
cal grouping of components into modules: the defect
proneness of product components increases with the
number of module boundaries crossed by their cycli-
cal dependencies.

Establishing an empirical link between component
cyclicality and the level of defects of product compo-
nents highlights the importance of studying the rela-
tionship between architectural properties of product
components and other dimensions of performance.
Given the iterative nature and higher coordination
needs associated with in-cycle components, we would
expect these components not only to be more defec-
tive, but also to be at higher risk of missing sched-
ule and budget targets, and thus to negatively impact
multiple dimensions of product development. Yet,
empirical evidence for this assertion is currently lack-
ing. In addition, looking at the dynamic evolution of
products, one could argue that cycles play a signifi-
cant role in how products evolve (MacCormack et al.
2006, 2008; Sosa et al. 2007a): considering again the

iterative approaches and coordination needs associ-
ated with in-cycle components, one could expect these
components to exhibit different rates of redesign,
upgrade, and removal than noncycle components.

Our work also has implications for understanding
product architecture on a conceptual level. Our results
show that the interplay of the module and depen-
dency structures relates to product quality. This inter-
play (and its consequences for quality) is intriguing,
because the forces that shape a product’s module
structure are substantially different from those that
shape its dependency structure. According to the clas-
sical trope of the architecture literature, establishing
a hierarchical module structure entails breaking the
product into several major building blocks or subsys-
tems and then mapping the product’s functionality
to each (Ulrich 1995). This process is repeated, top-
down, in a nested manner, for each subsystem until
all functions of a system have been assigned to com-
ponents (Ulrich and Eppinger 2012), resulting in the
system’s intended architecture (i.e., the modules that
system architects and managers deliberately set up as
the system’s building blocks). In contrast, the prod-
uct’s dependency structure, which determines the
existence of cycles in the product, is the result of myr-
iad local decisions that are typically made by tech-
nical personnel who optimize performance in terms
of the local criteria associated with their components.
Such decisions are made in a bottom-up manner
and thus, from the viewpoint of management, simply
“emerge,” resulting in the system’s actual architecture.
Our results highlight the importance of aligning both
aspects of architecture by showing how misalignment
between module structure and dependency structure
(e.g., modules failing to fully encapsulate cycles) has
a negative effect on quality. This means that system
architects should—as early in the design process as
possible—look beyond the hierarchy of a system or
product’s modules to examine its actual dependency
structure where cycles reside. Defect proneness can be
mitigated by properly aligning the product’s hierar-
chical modules with its dependency structure.

Given our results, the information systems litera-
ture should explicitly take into account the role of
architectural cyclicality when studying the factors that
drive software performance. For instance, an impor-
tant software architecture decision in the information
systems literature is the refactoring of computer code.
Software code quality tends to “decay” over time
because additions and changes to the code often fail
to follow the prescribed design rules, such as where
to add allowable dependencies. Refactoring improves
the internal structure of the code by “redistribute[ing]
classes, variables and methods across the class hierar-
chy in order to facilitate future adaptations and exten-
sions” (Mens and Tourwé 2004, p. 126) and is vital
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for the long-term survival of a software application.
However, source code decay may be driven by the
divergence of the actual and intended architectures
(even if they were originally aligned) as dependency
decisions continue to be made in a distributed way
by a large number of decision makers (whereas archi-
tecture decisions are seldom revisited, and even then
by only a central architect or small group of archi-
tects). This divergence may well call for realignment,
which is the purpose of refactoring. Several methods
have been proposed to help identify code segments
in need of refactoring (e.g., Kataoka et al. 2001, Simon
et al. 2001), yet these methods have overlooked the
need to monitor the existence and characteristics of
cycles as important determinants in the refactoring.
The analysis presented in this paper suggests that the
dependency structure—and especially the presence of
cycles—is an important additional clue in the search
for code elements to be refactored.

Our findings suggest two architectural action fields
that managers should consider to improve product
quality in a typical development process.

Visualize the architecture. It is crucial for managers
to understand the key components of product archi-
tectures: dependencies among components (espe-
cially when they form cycles) and nested modules
that group components. Visualizing the architecture
is fundamental for improving one’s understanding
of both its technical and organizational aspects,
because product architecture decisions influence for-
mal and informal organizational structures (Sosa
et al. 2004, MacCormack et al. 2006, Eppinger and
Browning 2012).

Identify and manage component cycles. Managers
should routinely identify component cycles (stem-
ming from the product’s dependency structure) as
well as the actors responsible for their design, because
the cycles and actors both will require disproportion-
ate attention. To identify component cycles, managers
must actually disregard the constraints imposed by
the particular arrangement of components into nested
modules. Our empirical results suggest several steps
that can be taken to mitigate the negative effects of
identified cycles. First, try to break the cycle by rerout-
ing the critical dependencies that form them, espe-
cially where they stem from components central to the
cycle. If a cycle cannot be broken, then its size should
be reduced, because larger cycles are more detrimen-
tal in placing a larger fraction of components at risk
of defects. Third, reduce cycle complexity, especially
for components that are central to the cycle. Reducing
their centrality in the cycle can improve code qual-
ity. Fourth, ensure that modules encapsulate cycles.
Finally, although managers must identify and mon-
itor component cycles in the short run, they should
preempt cycles in the long run by establishing and

enforcing design rules (Baldwin and Clark 2000) that
specify types of allowable component relationships
(Sangal et al. 2005).

Our study has some limitations. In particular, the
analysis was performed on a sample of Java-based
applications developed by the open source Apache
Software Foundation. To be able to understand the
limits of any attempt to generalize our findings, two
important attributes of our empirical context merit
discussion. First, because the organizational structures
in open source development settings are typically
geographically distributed, the product architectures
that emerge from such settings are likely to be
less interconnected than the architectures of prod-
ucts developed in closed source development set-
tings (MacCormack et al. 2012). We could, therefore,
expect the occurrence of cycles to be less salient in
open source than in closed source projects. Yet, with-
out further studies on closed settings, it is unclear
whether the effect of cyclicality would be any differ-
ent in equivalent open and closed settings. Second,
although open source development does not neces-
sarily rely on formal organizational structures defined
by any particular firm, nor on face-to-face communi-
cations for informal interpersonal coordination, coor-
dination efforts between interdependent actors take
place through different mechanisms such as commit-
ters who act as project leaders and online discus-
sion lists that enable direct communication among
authors (Mockus et al. 2000). Hence, studies in other
settings are needed before our findings can be fully
generalized.

We have been able to apply methods—developed
in the context of exploring the task structure of devel-
opment processes—to the wealth of data available
in the open source space, thereby linking the con-
cept of cyclicality to quality outcomes and explicating
cyclicality’s different facets. Our findings raise impor-
tant questions. This paper has focused on the con-
sequences of a product’s cyclical dependencies, but
what are their antecedents? Where in the product are
cycles likely to form? Under what circumstances do
they arise? How do they grow or shrink? Can we
define an architecture that is optimal in terms of min-
imizing defects? (For a first attempt in this direction,
see Sosa et al. 2011.) How do architectural and orga-
nizational patterns interact and coevolve over time?
(See Colfer and Baldwin 2010, MacCormack et al.
2012.) How would such coevolution influence defect
proneness and other performance metrics? Further
exploration of the consequences of cycles might ask
how the presence of cycles affects the time required
to fix defects. Addressing these questions poses inter-
esting challenges for future research. This paper pro-
vides an important step toward the development of
an empirically validated theory of product architec-
ture design.
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