
 1 Copyright © 2007 ASME

Proceedings of the ASME 2007 International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference

IDETC/CIE 2007
 September 4-7, 2007, Las Vegas, Nevada, USA

DETC2007-34761

STUDYING THE DYNAMICS OF THE ARCHITECTURE OF SOFTWARE PRODUCTS

Manuel E. Sosa1
Assistant Professor of

Technology and Operations
Management

INSEAD
Fontainebleau, FRANCE

manuel.sosa@insead.edu

Tyson Browning
Assistant Professor of
Enterprise Operations

Neeley School of Business
Texas Christian University

Fort Worth, Texas
t.browning@tcu.edu

Jürgen Mihm
Assistant Professor of

Technology and Operations
Management

INSEAD
Fontainebleau, FRANCE
jurgen.mihm@insead.edu

1 Corresponding author

ABSTRACT
This paper reports on an exploratory study of how the

architecture of a software product evolves over time. Because
software is embedded in many of today’s complex products,
and it is prone to relatively rapid change, it is instructive to
study software architecture evolution for general insights into
product design. We use metrics to capture the intrinsic
complexity of software architectures as they evolve through
successive generations (version releases). We introduce a set
of product representations and metrics that take into account
two important features used to manage the complexity in
software products: layers and modules. We also capture
organizational data associated with the product under
development. We propose a three-step approach for the
analysis and illustrate it using successive versions of an open
source product, Ant. One of our findings is that software
architectures seem to evolve in a non-linear manner similar to
the S-shaped curve that characterizes technology evolution at
the industry level. We also find several parallel patterns
among architectural and organizational dynamics.
Implications for research and practice are discussed.
Keywords: product architecture, modularity, complexity,
organizational structure, software development.

INTRODUCTION

Previous work has studied the implications of product
architecture decisions to various aspects of the firm [e.g., 1, 2,
3]. Yet, little attention has been paid to understanding how
product architectures evolve over time. How does the
architecture of a product evolve over several generations?
That is the central question we address in this paper. We
propose a theoretical framework and research approach to
study the dynamics of complex product architectures. We

illustrate our approach by examining the architecture of software
products because they are complex, exhibit fast change rates
(like fruit flies in studies of biological evolution), and offer
(through their source code) an efficient, reliable, and
standardized medium to capture their architecture.

Studying how system architectures are established and how
they evolve over time is important to help organizations cope
with changes throughout the life cycle of a product. We still do
not fully understand what underlying forces drive changes in the
architecture of products from one generation to the next. As a
result, organizations typically struggle to manage the
architectural changes associated with their products [4].

Complex systems require both decomposition and
integration, which in turn determines their architecture. The
formal literature on product decomposition and product
architecture begins with Alexander [5], who describes the design
process as the decomposition of designs into minimally coupled
groups. Simon [6] elaborates by suggesting that complex
systems should be designed as hierarchical structures consisting
of “nearly decomposable systems,” such that strong interfaces
occur within systems and weak interfaces occur across systems.
Hence, complex software and hardware products are typically
decomposed into sub-systems and components in order to be
designed. Yet, such sub-systems and components then need to
be integrated to ensure that the overall product functions as a
whole.

In the product domain, Ulrich [2, p. 419] defines product
architecture as the “scheme by which the function of a product is
allocated to physical components” and by which components
interact. The IEEE similarly defines product architecture as “the
fundamental organization of a system embodied in its
components, their relationships to each other, and to the
environment, and the principles guiding its design and

 2 Copyright © 2007 ASME

evolution” [7]. Establishing the architecture of a system
includes breaking down the product into functional and
physical elements, mapping the functional elements onto the
physical elements, and specifying the interfaces among the
interacting elements [8]. In the software domain, architecting
involves organizing or structuring the code into modules and
layers with the appropriate set of dependencies between them
[9-11].

The product architecture is typically established during
the concept development phase of product development [8]. In
a completely new system, the architecture is established from
scratch and evolves in subsequent generations of the product.
However, in most product development efforts, system
architects start with the existing architecture of the product (or
a similar one) and modify it to map the added functionality
into the product [4]. This is particularly true in software
development, where products can be developed in a more
flexible and additive manner. Software products evolve
rapidly by adding features and fixing bugs from one version to
the next, which poses important coordination challenges for
organizations that need to manage their resources carefully to
cope with such changes [12].

The fast dynamic evolution typically associated with
software development makes software products especially
attractive for a study of how complex product architectures
and organizations evolve over time. Understanding the
structure (or architecture) of systems is important because
“structure always affects function” [13, p. 268], yet the
architecture of evolving systems is complex in different ways,
which makes studying their dynamics a challenging endeavor.

This paper makes two important contributions. First, it
provides a theoretical framework, a basic set of metrics, and a
research approach for exploring the dynamics of complex
software architectures. Second, based on empirical evidence
from a case study of an open source project, we uncover
several patterns and insights regarding the dynamics of
software architectures and their relationships to organizational
dynamics. These findings indicate several promising avenues
for future research.

THEORETICAL FRAMEWORK
We argue that complexity and how designers deal with it

is the key product property we need to study to gain
understanding of the evolution of product architectures. What
is complexity? Although previous research in varied fields has
studied complex systems, neither precise definition nor
specific measures of system complexity have been agreed
upon [6, 13-16]. At a minimum, the common understanding
seems to be that complexity is a property of a system that
depends on the number of elements that form the system and
the way they interact [17]. Because the architecture of
products not only affects and reflects their complexity but also
the mechanisms to deal with it, we focus on examining the
dynamics of product complexity as a way to explore the
evolution of product architectures.

Intrinsic Software Complexity
In the context of designing hardware products, Suh [16, 18]

defines absolute complexity as the vector sum of two orthogonal
components, real and imaginary complexity. We are interested
in real complexity and will term our complexity measure
intrinsic complexity, because it is the complexity the product
intrinsically shows upon examination of the code itself.

Obviously one element of intrinsic complexity is the
number of elements comprising the system. The other main
driver of intrinsic complexity is the coupling among the
elements. While each element in a system, to be a proper
member of that system, typically requires at least one direct
relationship with another element, many elements often have
much more than this nominal connection to the rest of the
system. The greater an element’s connectedness to other
elements, the greater its potential impact on the overall system
(all else being equal)—e.g., the greater the cost of changing the
element, as additional tests must be performed, and the greater
the likelihood of constraints. Increased connectivity increases
the possibility of change propagation [19-22]. Moreover, if
components are connected in multiple ways, this can create
loops where change feeds back, and the resulting cycles may not
dissipate for some time. We call these coupled elements.
Coupling dramatically increases complexity, because it implies
rapid growth in the number of design conditions that must be
considered and accommodated.

Dealing with Complexity: Modules and Layers
Good software architects know the value of grouping and

layering as a way to manage complexity [9]. As a result, they
organize and group elements into modules and organize modules
into layers to form a hierarchy. While having 100 elements
together might be too complicated to manage, having ten groups
of ten elements—where each group makes sense from a
functional, structural, or some other accepted perspective—
makes things simpler, even though the intrinsic complexity of
the system is the same in terms of the number of elements and
interactions [23]. Two types of groups (or modules) are
commonly used in software: (1) functional groups, where
elements perform similar types of functions but have few or no
direct data exchange relationships (e.g., a function library), and
(2) iterative groups, where elements are highly coupled, to the
point that it makes sense for them to be developed with close,
mutual consideration. The literature on modularity has measured
product modularity based on the notion that modules enclose
highly interdependent components which are more loosely
connected to other components in the product [24, 25]. Others
suggest using the eigenstructure of the product design structure
matrix (DSM) to determine the modules that are inherently more
interdependent based on their patterns of interactions [26]. In
this paper, we do not measure modularity explicitly, but instead
measure the complexity of various aspects of the product
architecture which are determined by the presence of modules
and layers.

Layering is the process of arranging modules in a
hierarchical manner. That is, layering imposes an authoritative

 3 Copyright © 2007 ASME

hierarchy among certain groups, such that elements in a higher
layer can “call” (unilaterally send outputs to or request inputs
from) an element in a lower layer, while the reverse situation
would violate the intent (or the rules) of the design [1, 27, 28].

A RESEARCH APPROACH TO STUDY SOFTWARE
ARCHITECTURE DYNAMICS

To explore the dynamics of complex software
architectures, we structure our research approach in three
steps:
• Capture the evolution of software architecture properties.

To do this it is important to use appropriate product
architecture representations and metrics that allow us to
capture the relevant aspects of both the intrinsic
complexity of software products and how software
architects deal with it using modules and layers. We
develop two sets of metrics that capture both structural
complexity and architectural evolution. We track these
metrics over time over several product generations.

• Capture the evolution of organizational attributes. In
addition to software architecture properties, it is also
important to capture process and organizational variables
associated with the establishment of the software
architecture. We focus on three types of variables: 1)
Organizational workload determined by the new
functional requirements of the product; 2) Organizational
resources dedicated to carrying the workload; and 3)
Organizational coordination associated with the informal
communication patterns among development actors during
the development effort.

• Compare the dynamics of product architectures and
organizational attributes. To understand what drives the
dynamics of software architectures, we compare product
architecture metrics and organizational attributes over
time.

REPRESENTING SOFTWARE ARCHITECTURES
To measure the complexity associated with software

architectures, we first need to represent how the components
of the product interact, how they are grouped into modules,
and how modules are organized into a hierarchy. To capture
the basic features that characterize complex system
architectures, we use two complementary representations: a
hierarchy tree and a partitioned product DSM. A tree
representation indicates module membership and layering,
whereas a product DSM captures the interactions between
components both within and across modules.

Figure 1 shows the tree representation of one of the
versions of the software product we study in this paper, Ant
1.30. The tree representation shows how the 126 components
comprising this version of the product are organized into eight
modules and three layers. To define modules and layers, we
first define the tree’s top and bottom levels. The top level is
the root node, which represents the entire product as an
integrated whole. The bottom level is the “leaf” level in which
one finds individual components that comprise the product.

Note that where one chooses to end the decomposition and
declare the lowest level is the modeler’s choice. In our analysis,
we stop at the “source file” level,2 although we could go down
further to the level of lines of code or even machine language.
However, two main arguments led to our choice: First, source
files tend to provide a set of common functionality (e.g., a set of
low-level mathematical functions) and are often maintained by a
single author, who designs them as one integrated piece of
software. Second, the main attributes of the architecture become
apparent by the “class file” level, so further decomposition
would only obscure these insights. This is consistent with
previous work focused on representing software architectures
[e.g., 22, 27].

We define a module as a group of components (or other
modules). Because a module can group other modules (in lower
levels), a hierarchy is inevitably formed between the top and
bottom levels. We distinguish two types of modules: component
modules that cluster product components (“class files”) and are
defined immediately above the leaf level, and sub-system
modules which cluster other modules (and perhaps also some
individual components). For example, Figure 1 shows eight
component modules and three sub-system modules (“ant”,
“taskdefs”, and “util”).

Next, we define layers to indicate the distance from the root
level at which modules are formed. For example, the first layer
in Figure 1 is formed by the three modules below the root node
(layer 0). Such a tree representation has three layers because one
of the modules in layer 1, “ant,” is formed by four modules: two
component modules, “types” and “*,” which cluster 12 and 23
components, respectively, and two sub-system modules,
“taskdefs” and “util,” which use another layer to cluster their
components into two modules each. It is important to note that
lower layers have higher layer numbers.

Figure 1: Tree diagram of Ant version 1.30

To represent the interactions between the components of the

product, both within and across modules (and across layers), we
use a product DSM representation. A DSM is a matrix

2 In Java, files and classes are typically the same, except for “inner classes”

(classes within classes), which we do not consider explicitly.

 4 Copyright © 2007 ASME

representation introduced by Steward [29], originally used to
analyze task interdependencies in complex development
projects [30, 31]. Such a matrix representation has also been
used to capture the architecture of complex products to
analyze the patterns of interactions between components in
complex (hardware) products [21, 32-34]. A product DSM is a
square matrix whose rows and columns are identically labeled
with the product components, and whose off-diagonal cells
indicate component interfaces. We use the convention where
the components labeling the columns depend on the
components labeling the rows.

In the software domain, a DSM representation has been
used to capture the interactions between “class functions” that
comprise software applications [22, 27, 28]. Typically, the
rows and columns in a product DSM are ordered so as to
maximize the density of clusters of components along the
diagonal, so that clusters (modules) encapsulate the majority
of interfaces. This approach, called clustering [31], is
generally recommended for hardware products because of the
highly symmetric nature of many spatial and structural design
dependencies between physical components [32, 33].
However, when analyzing the architecture of software
products, we instead use the clusters defined by the system
architects and partition (triangularize) the DSM, also called
sequencing [31], to uncover the dependencies that define the
truly coupled components. To this end, the usage of a
sequencing algorithm is appropriate because software products
exhibit a significantly large proportion of uni-directional
dependencies (e.g., “calls”) between components [22, 27]. In
that sense, software components are more similar to activity-
and time-based processes than hardware products. Software
components process inputs to produce outputs that will be
used by other components in the application.

Because we want to be consistent with the convention
used in software development in which software components
(e.g. Java classes) are built on top of other ones that serve as
platforms, we place the outputs of a component in the columns
of the DSM while the inputs are placed in the rows of the
DSM. As a result, a sequenced DSM is one where the rows
and columns are ordered so as to minimize the number of
marks above the diagonal, so that the elements sequenced first
in the matrix depend on the elements sequenced last. This
follows the convention of block diagrams used in software
development, in which the library and utility modules are at
the bottom of the diagram and serve as platform upon which
other software components are built. Super-diagonal marks in
the sequenced DSM represent feedback marks, where
components that are supposed to provide outputs to other
components also receive inputs from them. Note that our
partitioning-based approach to organize the software
architecture data starts with the hierarchical “clusters” (or
modules) defined by the systems architects and uses the
partitioning algorithm to identify the interdependent set of
components within each module (within each layer). Hence, in
the presence of several layers we partition each layer of the
system recursively starting from layer 1. This distinguishes

our approach to document software architectures from previous
work, both in the product and software domains, which has
typically relied on clustering algorithms or heuristics to group
the elements of the system without regard to layering [22, 34].
Moreover, it is important to emphasize that our intention is
simply to document the software architecture to analyze its
evolution over time rather than to find the optimal architecture
for a given version.

On a side note, those familiar with DSM techniques will
notice two innovations here. First, we are applying a sequencing
algorithm to a component-based DSM, a combination which did
not exist [31] prior to the work by Sangal et al. [27]. Second,
we reverse the typical order of dependency in the DSM.
Traditionally, a DSM using the convention where the
components labeling the columns depend on the components
labeling the rows would show feedback below the diagonal.
This is done because, as is conventional in software, the “higher
level” components are said to depend on the “lower level” ones
for functionality, and, unlike other time-based DSM applications
to date, all of the components indeed exist simultaneously.

In a complex software product with several layers, like in
Figure 1, we partition the DSM layer by layer so that modules
within the same layer are arranged so as to minimize super-
diagonal marks. (To sequence within each layer, we use the
algorithm originally proposed by Steward [29].) Figure 2 shows
a DSM representation of Ant 1.30. The DSM shown is a
126x126 matrix with 476 off-diagonal marks representing the
“calls” between the 126 “classes” that comprise Ant 1.30. The
DSM is sequenced by layer so that feedback marks above the
diagonal are minimized both within and across modules. This
DSM has 12 marks above the diagonal, six of them in layer 2
within module (“ant”—“*”) and six of them across modules
(four within layer 2 and two within layer 3. Note that the
branches of the tree in Figure 1 are arranged to correspond to the
sequenced DSM. The branches on the left of the tree depend on
the branches on the right.

Figure 2: Complete DSM for Ant 130

 5 Copyright © 2007 ASME

METRICS TO STUDY SOFTWARE ARCHITECTURES
We develop two types of metrics to study the dynamics of

software architectures: (1) Structural architectural metrics,
which measure various aspects of software complexity for
each version of the product, and which we track over several
product versions; and (2) Dynamic architectural metrics,
which capture architectural changes from one version to the
next.

Structural architectural metrics
We measure intrinsic complexity as a function of the

number of product components and the number of interactions
among them. Here, we disregard the hierarchical organization
of modules, treating interactions within a layer or module and
across layers and modules the same. Then, we take into
account how system architects manage intrinsic complexity
with layers and modules.

Intrinsic Complexity
At a basic level, intrinsic product complexity is a function

of the number of elements (n) and the interactions between the
elements (k) [6]. The simplest metric of complexity is just
C1 = n*k. From there, the metrics become more sophisticated.
For instance, metrics should take into account that feed-
forward and feedback interactions contribute differently to the
complexity of the product. One way to consider that begins by
simply separating the contribution of these two types of
interactions as: C1 = n*k = n*(kfeed-fwd + kfeedback).

We developed an alternative metric of system complexity,
C2, which accounts for the amplifying effects of feedback
interactions and coupled components. The details of this
metric are included in a separate appendix available from the
authors upon request. However, for initial simplicity, we base
our analyses on C1. (In the case of the Ant product, which has
a relatively small number of feedback interactions, the general
results are fairly consistent with the ones obtained using C2.)

Note that C1 assumes that complexity grows
proportionally to both the number of elements and number of
interactions in the system; it is not normalized against system
size. This is intentional, because at this point we simply want
to apply a general expression of complexity that allows us to
measure complexity in various regions inside the product.
Normalizing against size would take away this dimension of
complexity.

Obviously, capturing the notion of complexity into one
single measure is an abstraction from reality. Thus, one might
question how good our measure for capturing the complexity
of a system is, beyond its obvious face value. Since there is no
agreed upon measure of complexity, ultimately this question
can only be answered by relating alternative complexity
measures of a system with meaningful process or
organizational attributes to test which measure has better
predictive value. In that sense it is an empirical question upon
which we shed light in the next section.

The Effects of Modules and Layers
Because interactions among components are not randomly

distributed within the product, but instead are clustered within
modules, which in turn are organized into layers, we measure
complexity considering the interaction of components within the
modules themselves and then across modules per each layer. As
before, we distinguish between the complexity associated with
feed-forward and feedback interactions.

Internal complexity of component modules:

To measure the average internal complexity of the modules
that cluster product components, we consider each module
above the “bottom level” (or leaf level) as an isolated system
and determine its internal complexity by considering feed-
forward and feedback interactions separately. Then, we take a
simple average of these values across the number of component
modules present in the product. (Weighting the average by the
number of components in each module provides similar results.)
Note that the strength of the interaction between two
components is “1” when there is at least one function call from
the first component to the second, and zero otherwise. Hence,

!

Avg module internal feed forward complexity =

nmodule • kmodule feedforward

module

"

number_of_modules

!

Avg module internal feedback complexity =

nmodule • kmodule feedback

module

"

number_of_modules

Cross-module complexity

To determine the complexity associated with the
interactions between components across modules, we calculate
feed-forward and feedback average complexities for each layer.
To do this, we estimate the strength of the interaction between
two modules by the density of the cross-boundary interaction.
That is, if one module (formed by two components) interacts
with another module (formed by three components), then there
are six possible ways in which one module can interact with the
other module. The strength of the interaction is therefore the
number of actual interactions divided by the potential number of
interactions. In this case, if there were two actual interactions,
then the strength of the cross-module interaction would be 0.33.
Finally, to measure the complexity of the layer, we consider it as
a system with m modules and interactions equal to the
summation of the cross-module interactions (ρ). Hence,

!

feed forward cross - module complexity = m • " feedforward

 interactions

!

feedback cross - module complexity = m • " feedback

 interactions

Our measures differ from previous metrics used to characterize
product architecture. Similar to Guo and Gershenson [24], we
recognize that it is important to distinguish between interactions
within and across modules. Yet, their aggregated metric is based
on the notion of density, while ours are built on the notion of
complexity described above. In the software domain,
MacCormack et al. [22] suggest using a measure of propagation

 6 Copyright © 2007 ASME

cost associated with a product architecture, based on the
reachability matrix [14, 21]. Although such a metric is
informative for assessing how changes in one component can
potentially propagate to other components in the product (and
we show it for comparison in the table of data in the
Appendix), it does not appropriately capture the complexity
dynamics of a system because it is normalized against the size
of the system. As mentioned, normalizing against system size
suppresses an important aspect of complexity that may itself
pose important organizational coordination challenges. For
example, we expect to observe different coordination effort
between an organization that develops a fully connected
product with a dozen components and an organization that
develops a fully connected product with hundreds of
components.

Dynamic architectural metrics
Dynamic metrics capture the architectural change relative

to the previous version of the product. This set of metrics is
designed to explore how software designers structure their
work and more importantly how that structure changes over
time. Especially, we want to be able to detect reorganizations
of code (often called refactoring [35]).

The hierarchical structure of a software product is
embedded in the tree as represented in Figure 1. Hence, our
metrics need to characterize the essence of the tree. Our most
prevalent static measure, Nx, is the total number of subsystem
and component modules (nodes of the tree above the leaf
level) in the tree the designers used to structure the code for
version x of the product. Note that this measure can be used
recursively for different subsections of the entire tree.

We define De,x, Da,x and Dt,x as the evolution metrics for
Nx. To measure De,x, we consider that a node has been
eliminated if in the following version the node is not part of
the same layer. Note that eliminations include shifting a node
to a lower or higher layer. Ex is the number of eliminations
from version x-1 to version x. To measure Da,x we consider
that a node has been added if the node does not exist on a
given layer in version x-1 but does exist for the version x.
Again note that additions include shifts from a lower or higher
layer. Ax is the number of additions from version x-1 to
version x. Finally, Dt,x measures the total changes due to both
additions and eliminations from version x-1 to version x.
Hence, we can define evolution metrics as follows:

!

D
e,x

=
E
x

N
x

 ;

!

D
a,x

=
A
x

N
x

 ;

!

D
t,x

=
A
x

+ E
x

N
x

Treating elimination and addition separately allows for
differentiating between simple growth and active
reorganizations of code. Making the measures relative takes
into account that what defines a major reorganization depends
on the existing architecture of the product. All measures can
be defined for each individual layer.

Other metrics could characterize the tree. Depth and
average breadth would be among the obvious candidates. The
distribution of depth per “leaf” and the distribution of breadth

per node would be more complicated measures. Alternative
evolution measures include “minimal number of moves” with
moves either being a shift in layer, an addition, or an
elimination. We prefer the measures above for their simplicity
and ease of interpretation, on one hand, and their explanatory
power on the other.

How informative are these static and dynamic architectural
metrics? Again, this is an empirical question. We will consider
them to be informative if they capture the variation in software
architecture across product versions so that they help us interpret
product changes. They will be even more insightful if we can
relate such variation to product, process, or organizational
performance indicators. That is what we investigate next for the
case of one software product, Ant.

ANT: AN EXAMPLE FROM OPEN SOURCE
SOFTWARE DEVELOPMENT

About Ant
We studied a readily-accessible, open-source software

application called Apache Ant. Ant is a Java-based tool for
automating software build processes. Further information is
available at www.apache.org.

To get information about Ant’s product architecture, we
used the openly available source code of the product. The first
version, 1.0, was released in July 2000, and six major releases
have followed, with additional minor releases in between. To
capture the architecture of the software product, we used a
commercial software application which builds a partitioned
DSM representation of the software architecture [27]. The
“bottom-level” of components is defined by the source files or
“classes,” and the interactions (or design dependencies) are
function calls. Hence, if the source code for class A references
the source code for class B, then the designer of A might need to
be aware of what class B does. The membership of the
components in layers and modules is captured in the source code
via the naming convention. That is, the naming of the classes
reflects not only the unique identifier of the class but also the
module and branch in the product hierarchy to which it belongs.
Hence, we are able to objectively and automatically capture the
product components, their interactions, and their organization
into modules and layers.

From an organizational viewpoint, Ant is developed by
volunteers [36], who fall into three categories: users,
developers, and committers. Users provide feedback to
developers in the form of bug reports and feature suggestions.
Developers contribute time, code, documentation, or resources.
A developer that makes sustained, welcome contributions may
be invited to become a committer. Committers are responsible
for Ant’s technical management. All committers have write
access to Ant’s source repositories. Committers may cast
binding votes on any technical discussion regarding the project
(www.apache.org).

The committers involved with each version of Ant are listed
in its documentation. The other developers are not. To find an

 7 Copyright © 2007 ASME

approximate list of developers, we scanned most of the e-
mails in the developer e-mail archive over the time interval
from version x-1 to version x. This method provided us with a
larger list of contributors than could be found in the
documentation, and it also allowed us to count the
approximate number of e-mails associated with each
developer.

Software Product Data
In this subsection we report the product data associated

with each version of Ant. We first illustrate the hierarchy of
the product data via a tree representation. Then we use DSMs
to show the interaction data (at layer 2).

The plots included in Figure 3 illustrate the evolution in
the product hierarchy of Ant. The first three versions of the
product exhibit the most significant changes. In version 1.10,
Ant is part of a bigger system that includes “Apache tools”
and “Oreilly servlet.” In version 1.20, Ant becomes a
standalone application complemented with other utilities such
as “mail” and “tar.” Version 1.20 does not show a dominant
architecture for the salient module, “ant.” The dominant
architecture appears to emerge in version 1.30 and continues
to grow in the subsequent versions.

Figure 3: Tree representations of versions of Ant

The DSMs in Figure 4 show the interactions across

component modules for each version. Note that these DSMs
show only the interactions across modules for each layer. The
cross-module interactions in layer 1 are shown by the green
cells, in layer 2 by the yellow cells, in layer 3 by the rose cells,
and by the blue cells in layer 4 (where present). The DSMs are
sequenced, so we can distinguish between feed-forward and
feedback interactions by examining the marks below and above
the diagonal, respectively. By inspection, the majority of the
cross-module interactions occur in layer 2, which is formed by
the modules comprising the “ant” module. The interactions at
layer 1 represent the interactions between “ant” and the other
utility modules such as “mail” and “tar.” The interactions at
layer 3 provide a finer level of granularity within modules of
“ant,” such as “taskdefs” and “util.”

Ant 1.10

Ant 1.20

 8 Copyright © 2007 ASME

Ant 1.30

Ant 1.40

Ant 1.50

Ant 1.60

Ant 1.65
Figure 4: DSM representations of versions of Ant

Organizational Data
As described above, Ant is developed by volunteers

forming a kind of virtual team. We gathered organizational
data along three dimensions: workload, resources, and
coordination effort.

The workload associated with Ant:

For each version, workers made up to three types of
modifications from the previous version: “changes,” “tasks,”
and “bug fixes.” Changes, as the term is used by Apache Ant,
signify a new and better way of implementing an existing
feature or capability of the software. That is, the feature was
not necessarily performing incorrectly (which would be a
bug), but someone found a way to provide the feature more
efficiently or effectively—or, the way the feature was
implemented had to be adjusted to accommodate some other
change, bug fix, or task. Tasks are new features or capabilities
added to the current version. Bug fixes are corrections of
existing features that were not performing correctly. Bug fixes
range from major to almost unnoticeable. Only the ones
deemed significant enough by the developers were actually
documented and counted.

Resources used to carry out the workload: Number of developers
As open source software, Ant’s number of developers is

determined by their volunteerism, which is of course determined
by many personal factors such as available time, enthusiasm,
interest, etc. Conventional wisdom would also suggest that the
way the software architecture handles the complexity of the
product through modules and layers has some influence here,
since it affects the learning curve for a new developer. Most
new developers start by contributing to a small, localized portion
of Ant, so the product architecture is probably not immediately
apparent to many of them. However, as their proposed changes
and fixes require checks against more and more other files and
modules (because of a large number of dependencies), they
could become discouraged by the high coordination costs.

Coordination effort: E-mail communication

The primary coordination mechanism for Ant’s virtual
development team is e-mail. There are two main e-mail forums,
called the user list and the developer list. The user list is
primarily to collect user inputs and feedback, while the
developer list is where developers and committers exchange
ideas, plans, and votes on changes, bug fixes, and tasks. We
therefore focused e-mail counts on the developer list.

Table 1 (included in the appendix) summarizes the product

and organizational data relevant for our analysis

ANALYSIS

We performed two types of analysis. First, we analyze the
evolution of software architectures by examining how product
complexity and the product architecture change over time. Then,
we compare these software architecture dynamics with the
evolution of the organizational attributes. Because of the
exploratory nature of our work at this point, our analysis is
focused on uncovering patterns of dynamics rather than
statistical inference.

Software Architecture Dynamics
In this subsection we plot various measures of product

complexity over time. The horizontal axis represents the number
of days from the first product release. Figure 5a shows the
evolution of the overall complexity of Ant measured by C1. To
distinguish between feed-forward and feedback product
complexity, Figure 5b plots the ratio of feedback to feed-forward
interactions for each version.

Figure 5: Product complexity: (a) C1 (b) Ratio

feedback/feed-forward

 9 Copyright © 2007 ASME

To evaluate how developers manage complexity using
modules and layers, we plot the average number of
components per module (Figure 6a) and the average number
of modules per layer (Figure 6b). These plots illustrate the
“volatile” nature of the architectural changes in the first few
versions before a dominant architecture emerges. After
version 1.30 the use of modules and layers stabilizes.

Figure 6: (a) Average number of components per
module and (b) Average number of modules per

layer

Because interactions between product components are not
randomly distributed, but instead are organized into modules
and layers, we measure complexity in various areas of the
product to take such an organization into account. Figure 7
shows the average internal complexity of component-modules
(both feed-forward and feedback). Although feed-forward
complexity does not show a clear pattern, feedback
complexity shows a significant increase in later versions,
which suggests that software architectures increase their use of
“shortcuts” and “design rule” violations, as indicated by the
presence of feedback interactions within component modules.
(Fowler et al. refer to this phenomenon as “software decay”
[35, p. xvi].)

Figure 7: Average internal component-module

complexity: (a) Feed-forward (b) Feedback

To take into account the effects of layers, we measure C1
separately at layers 2 and 3. Such measures capture the
complexity associated with interactions across sub-system
modules. Figure 8 shows the value of complexity (both feed-
forward and feedback) for layers 2 and 3, respectively. The
complexity at layer 2 increases significantly until version 1.50
and then decreases.

Figure 8: Cross-module complexity in layer 2: (a)

Feed-forward (b) Feedback

Looking at layer 3, Figure 9 plots C1 for the largest sub-
system module of “ant,” called “taskdefs.” Since “taskdefs” was
a component-module in version 1.10, the plots start after version
1.20. The complexity of “taskdefs” increases significantly after
version 1.30.

Figure 9: Cross-module complexity in layer 3: (a)

Feed-forward (b) Feedback

Figure 7 examines the evolution of the internal complexity
of component modules (both feed-forward and feedback
complexity, but note the different y-axis scales). Figure 7b
shows how component modules become more interdependent
over time as the number of feedback dependencies increased the
coupling of their components. Figures 8 and 9 show the
evolution of complexity of the most relevant sub-system
modules of Ant at layers 2 and 3, respectively. In both cases, a
significant increase in complexity is observed once the dominant
architecture is established in version 1.30. Moreover, when
examining the complexity of sub-system “ant” (at layer 2), a
peak in complexity is achieved in version 1.50, after which the
subsequent versions show a decline in complexity (Figure 8).
That is, it seems developers focused on reducing the
dependencies across the modules that form “ant.” Moreover,
such a reduction in complexity is not accompanied by reducing
the complexity of “taskdefs” (at layer 3), which remains
relatively stable after version 1.50 (see Figure 9), but instead is
achieved by removing dependencies across modules (at layer 2)
and by adding new components to existing modules rather than
creating new ones.

Finally, we explicitly analyze how designers deal with

complexity by monitoring the changes in the module and layer
structure from one version to the next. First, Figure 10 plots the
number of modules (Nx) and thus shows the evolution of the
total number of modules in the code. As with the intrinsic
complexity in Figure 5a, the overall tendency seems to represent
continuous growth, which conforms with the general belief that

 10 Copyright © 2007 ASME

an architecture starts out simple and then grows to become
more and more complex. (The local peak at version 1.20 is
due to the fact that the former version used code from a
different branch of the apache tree that later became
incorporated into the “ant” tree. This artificially increased the
number of modules in version 1.20.)

Figure 10: Number of component modules

Figures 11 and 12 reveal that the dynamics of this

evolution are more complicated than the overall growth in
modules might suggest. Figure 11 plots metrics Da,x, De,x and
Dt,x for the modules of Ant for versions under analysis.
Clearly, the earlier versions are characterized not only by
additions in the architecture but also by eliminations of some
modules. Figure 12 plots the same metrics for the components
(or leaves of the product tree), and interestingly the pattern is
mirrored. Taking both results into account, it becomes
apparent that the shift from version 1.20 to version 1.30 of the
code is characterized by a major reorganization in which not
only virtually the entire tree is eliminated, but a major portion
of the leaf code is redone. From then on the code base mainly
grows with the shift from version 1.40 to 1.50 marking a
minor reorganization. In that sense the pure growth model
needs to be modified. For Ant, code evolved with growth and
reorganizations interacting.

These plots provide the basis for some interesting (albeit
tentative) insights about the development of software products
like Ant. First, Figure 5 shows that the intrinsic complexity of
Ant and the efforts of designers to deal with it through code
structuring increase over time in a non-linear manner
following an S-shaped curve. This suggests that the
architecture of software products follows a cycle similar to the
one followed by new technologies at the industry level [37,
38]. Figure 6a, 11 and 12 suggest that the dominant version for
Ant is established after version 1.30. Two aspects of the
analysis lead us to draw this conclusion. Figure 6a shows that
after the dominant architecture is established, the average size
of modules remains relatively stable. Hence, as new
components are added to the product, new modules are created
to maintain the average size of modules. Figures 11 and 12
suggest that the architects, while coding, found that the
original architecture had its limitations and needed to be
redone. They used the first versions as learning vehicles that
provided them with insights to establish the final architecture

in version 1.30 so that they could build the functionality
thereafter – with version 1.50 introducing a minor revision.
Hence, these dynamic metrics allow for a differentiated
evaluation of code evolution.

Figure 11 Changes in modules between versions

Figure 12: Changes in leaf nodes between versions

Comparing Product and Organizational Dynamics
How do software architecture dynamics compare with

organizational dynamics? We address this question in this
subsection. The following plots summarize the organizational
attributes associated with each major release. Figure 13 shows
the workload associated with both “product changes and tasks”
(i.e. number of product improvements and new features) and the
number of “documented bug fixes.”

Figure 13: Workload associated with Ant

Figure 14 shows the amount of resources and the

coordination effort dedicated to Ant development. We capture

 11 Copyright © 2007 ASME

this by plotting the number of developers involved, the
number of e-mails exchanged on each release, and the number
of e-mails per developer. Note that the number of “product
improvements and new features” (Figure 13) and the “number
of e-mails” exhibit correlated patterns, suggesting that the
coordination effort is significantly associated with the added
features rather than the bug fixing. Yet, it would be interesting
to explore further what proportion of e-mails were associated
with bug fixing versus intended product changes.

Figure 14: (a) # of developers; (b) # of e-mails;

(c) # e-mails per developer

To better compare architectural and organizational
metrics, we overlap product complexity metrics and
organizational metrics in the same plot. Figure 15 shows how
product complexity (C1) and the overall workload exhibit
similar patterns. Interestingly, there is a strong association
between the complexity across modules at layer 2 and
“product changes” (Figure 16).

Figure 15: Comparing overall workload and product

complexity

Figure 16: Comparing “ant” module complexity and

workload

We also compare product complexity and coordination
effort by comparing the complexity of the most relevant module
(“ant”) and the number of “e-mails per developer.” Figure 17
shows the similar evolution of these two metrics.

Figure 17: Comparing product complexity and

coordination effort

Comparing the evolution of product complexity metrics and
organizational features such as workload and coordination effort
leads to important insights. First, there is a significant
relationship between the dynamics of the product architecture
and the organization. Product changes and bug fixes increase in
a way similar to the complexity of the overall product (Figure
15). Moreover, when examining product complexity at a finer
level of granularity, we found that the most informative level of
analysis (for the case of Ant) is layer 2, which is the one that
contains the most important sub-system module of the product
(“ant”). Figure 16 shows the strong association between the
evolution of “ant” complexity and “product changes,” and
Figure 17 shows the strong association between “ant”
complexity and the coordination effort, measured by the number
of e-mails per developer exchanged prior to each release. Hence,

 12 Copyright © 2007 ASME

it seems product changes are strongly associated with cross-
module interactions of the sub-system “ant,” which in turn are
strongly associated with the coordination effort needed to
implement such changes. The causal loop diagram shown in
Figure 18 summarizes the links we observed between the
workload, product complexity, and coordination effort during
the development of Ant. It remains to be investigated if there
is a feedback link from the coordination effort to the
workload.

Figure 18: Linking workload, product complexity,

and coordination effort

DISCUSSION

Implications for Software Developers
It is important to monitor the architecture of the product

and identify the key sub-system modules that drive most of the
product changes. Interactions across modules require
particular managerial attention.

It is also important to define the most appropriate level of
granularity at which to analyze the architecture. Based on our
case study, it seems like one or two sub-system modules are
the ones that concentrate most of the development effort.
Hence, particular effort should be put into understanding the
architecture of these salient modules. In the case of Ant, the
most informative module is the sub-system module “ant” in
layer 2, which contained over 90% of the product components.
Understanding the drivers of architectural complexity in “ant”
by focusing on the interactions across the modules that form it
would be a major predictor of the coordination effort
associated with Ant development.

As for the architectural evolution of Ant, it is important to
emphasize that the architecture of a new product does not
magically emerge in the first version of the product.
Establishing the architecture of the product is a dynamic
process that goes through distinct phases which require
different managerial competences. The initial phase is a phase
characterized by experimentation in which a search for the
optimal architecture takes place. After a few versions, a
dominant configuration emerges and the growth phase takes
off. This phase focuses on taking advantage of the established
architecture to improve and increase the functionality of the
product. Eventually, limits to growth start appearing and the
complexity of the architecture saturates, which might call for a
refactoring of parts of (or the entire) product architecture.

What does the dynamic evolution of the product data tell
us? It confirms that massive reorganizations of code are part
of software development. This is somewhat in contrast with
large-scale development efforts in other mature industries. In
large assembly projects such as cars and airplanes, major

reorganizations are avoided once the project has been started. In
that sense we can see the prototyping approach of software
development at work. But while reorganizations happen, they
nonetheless tend to subside towards the later stages of
development. As a result, the Ant project followed a prototyping
approach during the beginning and became a more linear project
towards the end of building the functionality.

Theoretical Implications
This paper presents a structured research approach to

investigate the dynamics of software architectures. We have
developed architectural metrics of product complexity that
capture not only intrinsic complexity but also the mechanisms
by which developers manage complexity (i.e. modules and
layers). We propose a three-step approach to study the dynamics
of software architectures over a large number of products so that
theoretical propositions about architectural dynamics can be
tested statistically: (1) capture the architectural dynamics, (2)
capture the organizational dynamics, and (3) compare product
and organizational dynamics. Our current efforts are focused on
applying this approach across several software products.

One of our basic findings is that the dynamics of software
architectures follow an S-shaped path. That is, the complexity of
the architecture slowly increases in the first few versions of the
product as the effort is focused on organizing the architecture
(mapping functional and “physical” elements of the product).
Once the dominant architecture emerges, then significant growth
in complexity will be visible, until limits to growth saturate the
current architecture, leading to some additional reconfiguration
of the dominant architecture. This is consistent with the model
of technology evolution based on industry studies that have
examined the emergence and adoption of new technologies [37,
38].

Another interesting outcome from this study pertains to the
ability of our approach to identify the layer(s) and module(s)
wherein most of the complexity and architectural dynamism
reside. This is extremely important for modelers to know, since
it has been noted that product architecture models can differ
greatly depending on the chosen level of analysis [39].

Studying the product and organizational dynamics of Ant
has allowed us to address some methodological challenges
associated with studying software architectural dynamics. Yet,
many open questions remain to be addressed in future research.
Does software complexity always increase over time? How do
open source and “closed source” software architectures differ?
How does the architecture of the product impact the
participation of new developers? Our current research efforts
aim to find insightful answers to these questions.

ACKNOWLEDGEMENTS
We appreciate the support from Lattix Inc., which provided

us with the software application needed to document the
architecture of software products. We thank Neeraj Sangal for
insightful feedback throughout this research. We appreciate the
assistance of Marc Ortiz and Guilin Tang during the data
collection of organizational attributes of Ant. We also appreciate

 13 Copyright © 2007 ASME

the comments from three anonymous reviewers from the
ASME Design Theory and Methodology conference.

REFERENCES
[1] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of

Modularity, vol. 1. Cambridge, MA: MIT Press, 2000.
[2] K. T. Ulrich, "The Role of Product Architecture in the

Manufacturing Firm," Research Policy, vol. 24, pp. 419-440,
1995.

[3] A. A. Yassine and L. L. Wissmann, "The Implications of
Product Architecture on the Firm," Systems Engineering, vol.
10, pp. 118-137, 2007.

[4] R. M. Henderson and K. B. Clark, "Architectural Innovation:
The Reconfiguration of Existing Product Technologies and the
Failure of Established Firms," Administrative Science Quarterly,
vol. 35, pp. 9-30, 1990.

[5] C. Alexander, Notes on the Synthesis of Form. Cambridge, MA:
Harvard University Press, 1964.

[6] H. A. Simon, The Sciences of the Artificial, 2nd ed. Cambridge,
MA: MIT Press, 1981.

[7] IEEE, "IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems," Institute of
Electrical and Electronics Engineers Standards Association,
IEEE Std 1471-2000, Sep. 21 2000.

[8] K. T. Ulrich and S. D. Eppinger, Product Design and
Development, 3rd ed. New York: McGraw-Hill, Inc., 2004.

[9] M. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline. Upper Saddle River, NJ: Prentice Hall,
1996.

[10] D. L. Parnas, "On the Criteria To Be Used in Decomposing
Systems into Modules," Communications of the ACM, vol. 15,
pp. 1053-1058, 1972.

[11] D. L. Parnas, "Designing Software for Ease of Extension and
Contraction," Transactions on Software Engineering, vol. 5,
1979.

[12] A. D. MacCormack, R. Verganti, and M. Iansiti, "Developing
Products on "Internet Time": The Anatomy of a Flexible
Development Process," Management Science, vol. 47, pp. 133-
150, 2001.

[13] S. H. Strogatz, "Exploring Complex Networks," Nature, vol.
410, pp. 268-276, 2001.

[14] J. N. Warfield, A Structure-Based Science of Complexity:
Transforming Complexity into Understanding. Amsterdam:
Kluver Publishing, 2000.

[15] S. A. Kauffman, The Origins of Order: Self-Organization and
Selection in Evolution. New York: Oxford University Press,
1993.

[16] N. P. Suh, Axiomatic Design: Advances and Applications. New
York: Oxford University Press, 2001.

[17] S. K. Ethiraj and D. Levinthal, "Modularity and Innovation in
Complex Systems," Management Science, vol. 50, pp. 159-173,
2004.

[18] N. P. Suh, "Theory of Complexity, Periodicity, and the Design
Axioms," Research in Engineering Design, vol. 11, pp. 116-131,
1999.

[19] T. Jarratt, C. Eckert, and P. J. Clarkson, "Development of a
Product Model to Support Engineering Change Management,"
presented at Proceedings of the TCME 2004, Lausanne,
Switzerland, 2004.

[20] P. J. Clarkson, C. Simons, and C. Eckert, "Predicting Change
Propagation in Complex Design," Journal of Mechanical
Design, vol. 126, pp. 788-797, 2004.

[21] D. M. Sharman and A. A. Yassine, "Characterizing Complex
Product Architectures," Systems Engineering, vol. 7, pp. 35-60,
2004.

[22] A. MacCormack, J. Rusnak, and C. Y. Baldwin, "Exploring the
Structure of Complex Software Designs: An Empirical Study of
Open Source and Proprietary Code," Management Science, vol. 52,
pp. 1015-1030, 2006.

[23] V. Tang and V. Salminen, "Towards a Theory of Complicatedness:
Framework for Complex Systems Analysis and Design," presented
at 13th International Conference on Engineering Design (ICED),
Glasgow, Scotland, 2001.

[24] F. Guo and J. K. Gershenson, "A Comparison of Modular Product
Design Methods on Improvement and Iteration," presented at
ASME International Design Engineering Technical Conferences
(Design Theory & Methodology Conference), Salt Lake City, UT,
2004.

[25] J. K. Gershenson, G. J. Prasad, and Y. Zhang, "Product
Modularity: Measures and Design Methods," Journal of
Engineering Design, vol. 15, pp. 33-51, 2004.

[26] K. Hölttä, E. S. Suh, and O. d. Weck, "Tradeoff Between
Modularity and Performance for Engineered Systems and
Products," presented at International Conference on Engineering
Design (ICED), Melbourne, Australia, 2005.

[27] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, "Using
Dependency Models to Manage Complex Software Architecture,"
presented at 20th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages And Applications (OOPSLA),
San Diego, CA, 2005.

[28] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, "The
Structure and Value of Modularity in Software Design," ACM
SIGSOFT Software Engineering Notes, vol. 26, pp. 99-108, 2001.

[29] D. V. Steward, "The Design Structure System: A Method for
Managing the Design of Complex Systems," IEEE Transactions
on Engineering Management, vol. 28, pp. 71-74, 1981.

[30] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, "A
Model-Based Method for Organizing Tasks in Product
Development," Research in Engineering Design, vol. 6, pp. 1-13,
1994.

[31] T. R. Browning, "Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New
Directions," IEEE Transactions on Engineering Management, vol.
48, pp. 292-306, 2001.

[32] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, "A Network
Approach to Define Modularity of Components in Product
Design," Journal of Mechanical Design, 2007.

[33] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, "Identifying
Modular and Integrative Systems and Their Impact on Design
Team Interactions," Journal of Mechanical Design, vol. 125, pp.
240-252, 2003.

[34] T. U. Pimmler and S. D. Eppinger, "Integration Analysis of
Product Decompositions," presented at ASME International
Design Engineering Technical Conferences (Design Theory &
Methodology Conference), Minneapolis, 1994.

[35] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Reading,
MA: Addison-Wesley, 1999.

[36] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, "Understanding the
Motivations, Participation, and Performance of Open Source
Software Developers: A Longitudinal Study of the Apache
Projects," Management Science, vol. 52, pp. 984-999, 2006.

[37] W. J. Abernathy and J. Utterback, "Patterns of Industrial
Innovation," Technology Review, vol. 80, pp. 40-47, 1978.

 14 Copyright © 2007 ASME

[38] J. M. Utterback, Mastering the Dynamics of Innovation: How
Companies Can Seize Opportunities in the Face of
Technological Change. Boston, MA: Harvard Business School
Press, 1996.

[39] S. K. Fixson, "Product Architecture Assessment: A Tool to Link
Product, Process, and Supply Chain Design Decisions," Journal of
Operations Management, vol. 23, pp. 345-369, 2005.

APPENDIX: SUMMARY OF DATA

Table 1: Summary of product and organizational data for Ant’s major releases
 Version

Variable 1.10 1.20 1.30 1.40 1.50* 1.60* 1.65*
Release Date 7/19/2000 10/24/2000 3/3/2001 9/3/2001 7/10/2002 12/18/2003 6/2/2005
Days Since Last Release N/A 97 130 184 310 526 532

Product Data
Components (n) 70 122 126 178 293 352 380
Component Modules (m) 4 13 8 13 21 24 25
Layers 3 4 3 3 3 4 4
Dependencies (k) 206 465 476 706 1137 1434 1389
Dependencies below
diagonal (feed forward) 204 446 464 687 1086 1355 1307

Dependencies above
diagonal (feedback) 2 19 12 19 51 79 82

Product complexity, C1=n*k 14420 56730 59976 125668 333141 504768 527820
Product complexity, C2 2124 9974 8183 15617 32958 46719 51735
Propagation cost
(% reachable dyads) 11.5% 15.5% 14.6% 12.4% 13.0% 15.5% 16.7%

Organizational data
Developers & Committers 88 78 91 66 56 155 149
New Developers N/A 48 40 0 9 130 117
"Changes" N/A 42 26 83 147 131 94
Bugs Fixed (documented) N/A 5 17 36 62 122 116
Tasks Added N/A 19 13 18 23 24 2
E-mails (developer list) 2494 2728 4581 6404 16912 18438 14256

*The measures for these versions include interim minor versions; e.g., 1.5 was released 310 days after 1.4, but during that time
there was a 1.4.1. The bugs fixed as part of 1.4.1 are counted as part of those fixed for 1.5 (i.e., everything since 1.4), etc.

