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ABSTRACT 
This paper reports on an exploratory study of how the 

architecture of a software product evolves over time. Because 
software is embedded in many of today’s complex products, 
and it is prone to relatively rapid change, it is instructive to 
study software architecture evolution for general insights into 
product design.  We use metrics to capture the intrinsic 
complexity of software architectures as they evolve through 
successive generations (version releases).  We introduce a set 
of product representations and metrics that take into account 
two important features used to manage the complexity in 
software products:  layers and modules. We also capture 
organizational data associated with the product under 
development. We propose a three-step approach for the 
analysis and illustrate it using successive versions of an open 
source product, Ant.  One of our findings is that software 
architectures seem to evolve in a non-linear manner similar to 
the S-shaped curve that characterizes technology evolution at 
the industry level.  We also find several parallel patterns 
among architectural and organizational dynamics.  
Implications for research and practice are discussed. 
Keywords:  product architecture, modularity, complexity, 
organizational structure, software development. 

 
INTRODUCTION 

Previous work has studied the implications of product 
architecture decisions to various aspects of the firm [e.g., 1, 2, 
3]. Yet, little attention has been paid to understanding how 
product architectures evolve over time. How does the 
architecture of a product evolve over several generations? 
That is the central question we address in this paper. We 
propose a theoretical framework and research approach to 
study the dynamics of complex product architectures. We 

illustrate our approach by examining the architecture of software 
products because they are complex, exhibit fast change rates 
(like fruit flies in studies of biological evolution), and offer 
(through their source code) an efficient, reliable, and 
standardized medium to capture their architecture. 

Studying how system architectures are established and how 
they evolve over time is important to help organizations cope 
with changes throughout the life cycle of a product. We still do 
not fully understand what underlying forces drive changes in the 
architecture of products from one generation to the next. As a 
result, organizations typically struggle to manage the 
architectural changes associated with their products [4]. 

Complex systems require both decomposition and 
integration, which in turn determines their architecture. The 
formal literature on product decomposition and product 
architecture begins with Alexander [5], who describes the design 
process as the decomposition of designs into minimally coupled 
groups. Simon [6] elaborates by suggesting that complex 
systems should be designed as hierarchical structures consisting 
of “nearly decomposable systems,” such that strong interfaces 
occur within systems and weak interfaces occur across systems. 
Hence, complex software and hardware products are typically 
decomposed into sub-systems and components in order to be 
designed. Yet, such sub-systems and components then need to 
be integrated to ensure that the overall product functions as a 
whole.  

In the product domain, Ulrich [2, p. 419] defines product 
architecture as the “scheme by which the function of a product is 
allocated to physical components” and by which components 
interact. The IEEE similarly defines product architecture as “the 
fundamental organization of a system embodied in its 
components, their relationships to each other, and to the 
environment, and the principles guiding its design and 
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evolution” [7].  Establishing the architecture of a system 
includes breaking down the product into functional and 
physical elements, mapping the functional elements onto the 
physical elements, and specifying the interfaces among the 
interacting elements [8]. In the software domain, architecting 
involves organizing or structuring the code into modules and 
layers with the appropriate set of dependencies between them 
[9-11]. 

The product architecture is typically established during 
the concept development phase of product development [8]. In 
a completely new system, the architecture is established from 
scratch and evolves in subsequent generations of the product. 
However, in most product development efforts, system 
architects start with the existing architecture of the product (or 
a similar one) and modify it to map the added functionality 
into the product [4]. This is particularly true in software 
development, where products can be developed in a more 
flexible and additive manner. Software products evolve 
rapidly by adding features and fixing bugs from one version to 
the next, which poses important coordination challenges for 
organizations that need to manage their resources carefully to 
cope with such changes [12].  

The fast dynamic evolution typically associated with 
software development makes software products especially 
attractive for a study of how complex product architectures 
and organizations evolve over time. Understanding the 
structure (or architecture) of systems is important because 
“structure always affects function” [13, p. 268], yet the 
architecture of evolving systems is complex in different ways, 
which makes studying their dynamics a challenging endeavor.  

This paper makes two important contributions. First, it 
provides a theoretical framework, a basic set of metrics, and a 
research approach for exploring the dynamics of complex 
software architectures. Second, based on empirical evidence 
from a case study of an open source project, we uncover 
several patterns and insights regarding the dynamics of 
software architectures and their relationships to organizational 
dynamics. These findings indicate several promising avenues 
for future research. 

THEORETICAL FRAMEWORK 
We argue that complexity and how designers deal with it 

is the key product property we need to study to gain 
understanding of the evolution of product architectures. What 
is complexity? Although previous research in varied fields has 
studied complex systems, neither precise definition nor 
specific measures of system complexity have been agreed 
upon [6, 13-16].  At a minimum, the common understanding 
seems to be that complexity is a property of a system that 
depends on the number of elements that form the system and 
the way they interact [17]. Because the architecture of 
products not only affects and reflects their complexity but also 
the mechanisms to deal with it, we focus on examining the 
dynamics of product complexity as a way to explore the 
evolution of product architectures. 

Intrinsic Software Complexity 
In the context of designing hardware products, Suh [16, 18] 

defines absolute complexity as the vector sum of two orthogonal 
components, real and imaginary complexity.  We are interested 
in real complexity and will term our complexity measure 
intrinsic complexity, because it is the complexity the product 
intrinsically shows upon examination of the code itself.  

Obviously one element of intrinsic complexity is the 
number of elements comprising the system. The other main 
driver of intrinsic complexity is the coupling among the 
elements.  While each element in a system, to be a proper 
member of that system, typically requires at least one direct 
relationship with another element, many elements often have 
much more than this nominal connection to the rest of the 
system.  The greater an element’s connectedness to other 
elements, the greater its potential impact on the overall system 
(all else being equal)—e.g., the greater the cost of changing the 
element, as additional tests must be performed, and the greater 
the likelihood of constraints.  Increased connectivity increases 
the possibility of change propagation [19-22].  Moreover, if 
components are connected in multiple ways, this can create 
loops where change feeds back, and the resulting cycles may not 
dissipate for some time. We call these coupled elements. 
Coupling dramatically increases complexity, because it implies 
rapid growth in the number of design conditions that must be 
considered and accommodated. 

Dealing with Complexity: Modules and Layers 
Good software architects know the value of grouping and 

layering as a way to manage complexity [9]. As a result, they 
organize and group elements into modules and organize modules 
into layers to form a hierarchy. While having 100 elements 
together might be too complicated to manage, having ten groups 
of ten elements—where each group makes sense from a 
functional, structural, or some other accepted perspective—
makes things simpler, even though the intrinsic complexity of 
the system is the same in terms of the number of elements and 
interactions [23]. Two types of groups (or modules) are 
commonly used in software: (1) functional groups, where 
elements perform similar types of functions but have few or no 
direct data exchange relationships (e.g., a function library), and 
(2) iterative groups, where elements are highly coupled, to the 
point that it makes sense for them to be developed with close, 
mutual consideration. The literature on modularity has measured 
product modularity based on the notion that modules enclose 
highly interdependent components which are more loosely 
connected to other components in the product [24, 25]. Others 
suggest using the eigenstructure of the product design structure 
matrix (DSM) to determine the modules that are inherently more 
interdependent based on their patterns of interactions [26]. In 
this paper, we do not measure modularity explicitly, but instead 
measure the complexity of various aspects of the product 
architecture which are determined by the presence of modules 
and layers. 

Layering is the process of arranging modules in a 
hierarchical manner. That is, layering imposes an authoritative 
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hierarchy among certain groups, such that elements in a higher 
layer can “call” (unilaterally send outputs to or request inputs 
from) an element in a lower layer, while the reverse situation 
would violate the intent (or the rules) of the design [1, 27, 28]. 

A RESEARCH APPROACH TO STUDY SOFTWARE 
ARCHITECTURE DYNAMICS 

To explore the dynamics of complex software 
architectures, we structure our research approach in three 
steps: 
• Capture the evolution of software architecture properties. 

To do this it is important to use appropriate product 
architecture representations and metrics that allow us to 
capture the relevant aspects of both the intrinsic 
complexity of software products and how software 
architects deal with it using modules and layers. We 
develop two sets of metrics that capture both structural 
complexity and architectural evolution. We track these 
metrics over time over several product generations. 

• Capture the evolution of organizational attributes. In 
addition to software architecture properties, it is also 
important to capture process and organizational variables 
associated with the establishment of the software 
architecture. We focus on three types of variables: 1) 
Organizational workload determined by the new 
functional requirements of the product; 2) Organizational 
resources dedicated to carrying the workload; and 3) 
Organizational coordination associated with the informal 
communication patterns among development actors during 
the development effort.  

• Compare the dynamics of product architectures and 
organizational attributes. To understand what drives the 
dynamics of software architectures, we compare product 
architecture metrics and organizational attributes over 
time. 

REPRESENTING SOFTWARE ARCHITECTURES 
To measure the complexity associated with software 

architectures, we first need to represent how the components 
of the product interact, how they are grouped into modules, 
and how modules are organized into a hierarchy. To capture 
the basic features that characterize complex system 
architectures, we use two complementary representations:  a 
hierarchy tree and a partitioned product DSM. A tree 
representation indicates module membership and layering, 
whereas a product DSM captures the interactions between 
components both within and across modules. 

Figure 1 shows the tree representation of one of the 
versions of the software product we study in this paper, Ant 
1.30. The tree representation shows how the 126 components 
comprising this version of the product are organized into eight 
modules and three layers. To define modules and layers, we 
first define the tree’s top and bottom levels. The top level is 
the root node, which represents the entire product as an 
integrated whole. The bottom level is the “leaf” level in which 
one finds individual components that comprise the product.  

Note that where one chooses to end the decomposition and 
declare the lowest level is the modeler’s choice.  In our analysis, 
we stop at the “source file” level,2 although we could go down 
further to the level of lines of code or even machine language. 
However, two main arguments led to our choice: First, source 
files tend to provide a set of common functionality (e.g., a set of 
low-level mathematical functions) and are often maintained by a 
single author, who designs them as one integrated piece of 
software. Second, the main attributes of the architecture become 
apparent by the “class file” level, so further decomposition 
would only obscure these insights. This is consistent with 
previous work focused on representing software architectures 
[e.g., 22, 27]. 

We define a module as a group of components (or other 
modules). Because a module can group other modules (in lower 
levels), a hierarchy is inevitably formed between the top and 
bottom levels. We distinguish two types of modules:  component 
modules that cluster product components (“class files”) and are 
defined immediately above the leaf level, and sub-system 
modules which cluster other modules (and perhaps also some 
individual components). For example, Figure 1 shows eight 
component modules and three sub-system modules (“ant”, 
“taskdefs”, and “util”). 

Next, we define layers to indicate the distance from the root 
level at which modules are formed. For example, the first layer 
in Figure 1 is formed by the three modules below the root node 
(layer 0). Such a tree representation has three layers because one 
of the modules in layer 1, “ant,” is formed by four modules:  two 
component modules, “types” and “*,” which cluster 12 and 23 
components, respectively, and two sub-system modules, 
“taskdefs” and “util,” which use another layer to cluster their 
components into two modules each. It is important to note that 
lower layers have higher layer numbers. 

 

 
Figure 1:  Tree diagram of Ant version 1.30 

 
To represent the interactions between the components of the 

product, both within and across modules (and across layers), we 
use a product DSM representation. A DSM is a matrix 

                                                             
2 In Java, files and classes are typically the same, except for “inner classes” 

(classes within classes), which we do not consider explicitly. 
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representation introduced by Steward [29], originally used to 
analyze task interdependencies in complex development 
projects [30, 31]. Such a matrix representation has also been 
used to capture the architecture of complex products to 
analyze the patterns of interactions between components in 
complex (hardware) products [21, 32-34]. A product DSM is a 
square matrix whose rows and columns are identically labeled 
with the product components, and whose off-diagonal cells 
indicate component interfaces. We use the convention where 
the components labeling the columns depend on the 
components labeling the rows. 

In the software domain, a DSM representation has been 
used to capture the interactions between “class functions” that 
comprise software applications [22, 27, 28]. Typically, the 
rows and columns in a product DSM are ordered so as to 
maximize the density of clusters of components along the 
diagonal, so that clusters (modules) encapsulate the majority 
of interfaces. This approach, called clustering [31], is 
generally recommended for hardware products because of the 
highly symmetric nature of many spatial and structural design 
dependencies between physical components [32, 33]. 
However, when analyzing the architecture of software 
products, we instead use the clusters defined by the system 
architects and partition (triangularize) the DSM, also called 
sequencing [31], to uncover the dependencies that define the 
truly coupled components. To this end, the usage of a 
sequencing algorithm is appropriate because software products 
exhibit a significantly large proportion of uni-directional 
dependencies (e.g., “calls”) between components [22, 27].  In 
that sense, software components are more similar to activity- 
and time-based processes than hardware products. Software 
components process inputs to produce outputs that will be 
used by other components in the application.   

Because we want to be consistent with the convention 
used in software development in which software components 
(e.g. Java classes) are built on top of other ones that serve as 
platforms, we place the outputs of a component in the columns 
of the DSM while the inputs are placed in the rows of the 
DSM. As a result, a sequenced DSM is one where the rows 
and columns are ordered so as to minimize the number of 
marks above the diagonal, so that the elements sequenced first 
in the matrix depend on the elements sequenced last. This 
follows the convention of block diagrams used in software 
development, in which the library and utility modules are at 
the bottom of the diagram and serve as platform upon which 
other software components are built. Super-diagonal marks in 
the sequenced DSM represent feedback marks, where 
components that are supposed to provide outputs to other 
components also receive inputs from them. Note that our 
partitioning-based approach to organize the software 
architecture data starts with the hierarchical “clusters” (or 
modules) defined by the systems architects and uses the 
partitioning algorithm to identify the interdependent set of 
components within each module (within each layer). Hence, in 
the presence of several layers we partition each layer of the 
system recursively starting from layer 1. This distinguishes 

our approach to document software architectures from previous 
work, both in the product and software domains, which has 
typically relied on clustering algorithms or heuristics to group 
the elements of the system without regard to layering [22, 34]. 
Moreover, it is important to emphasize that our intention is 
simply to document the software architecture to analyze its 
evolution over time rather than to find the optimal architecture 
for a given version. 

On a side note, those familiar with DSM techniques will 
notice two innovations here.  First, we are applying a sequencing 
algorithm to a component-based DSM, a combination which did 
not exist [31] prior to the work by Sangal et al. [27].  Second, 
we reverse the typical order of dependency in the DSM.  
Traditionally, a DSM using the convention where the 
components labeling the columns depend on the components 
labeling the rows would show feedback below the diagonal.  
This is done because, as is conventional in software, the “higher 
level” components are said to depend on the “lower level” ones 
for functionality, and, unlike other time-based DSM applications 
to date, all of the components indeed exist simultaneously.   

In a complex software product with several layers, like in 
Figure 1, we partition the DSM layer by layer so that modules 
within the same layer are arranged so as to minimize super-
diagonal marks. (To sequence within each layer, we use the 
algorithm originally proposed by Steward [29].) Figure 2 shows 
a DSM representation of Ant 1.30. The DSM shown is a 
126x126 matrix with 476 off-diagonal marks representing the 
“calls” between the 126 “classes” that comprise Ant 1.30. The 
DSM is sequenced by layer so that feedback marks above the 
diagonal are minimized both within and across modules. This 
DSM has 12 marks above the diagonal, six of them in layer 2 
within module (“ant”—“*”) and six of them across modules 
(four within layer 2 and two within layer 3.  Note that the 
branches of the tree in Figure 1 are arranged to correspond to the 
sequenced DSM. The branches on the left of the tree depend on 
the branches on the right. 

 

   
Figure 2:  Complete DSM for Ant 130 
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METRICS TO STUDY SOFTWARE ARCHITECTURES 
We develop two types of metrics to study the dynamics of 

software architectures: (1) Structural architectural metrics, 
which measure various aspects of software complexity for 
each version of the product, and which we track over several 
product versions; and (2) Dynamic architectural metrics, 
which capture architectural changes from one version to the 
next.  

Structural architectural metrics 
We measure intrinsic complexity as a function of the 

number of product components and the number of interactions 
among them. Here, we disregard the hierarchical organization 
of modules, treating interactions within a layer or module and 
across layers and modules the same. Then, we take into 
account how system architects manage intrinsic complexity 
with layers and modules. 

Intrinsic Complexity 
At a basic level, intrinsic product complexity is a function 

of the number of elements (n) and the interactions between the 
elements (k) [6]. The simplest metric of complexity is just        
C1 = n*k.  From there, the metrics become more sophisticated. 
For instance, metrics should take into account that feed-
forward and feedback interactions contribute differently to the 
complexity of the product. One way to consider that begins by 
simply separating the contribution of these two types of 
interactions as: C1 = n*k = n*(kfeed-fwd + kfeedback). 

We developed an alternative metric of system complexity, 
C2, which accounts for the amplifying effects of feedback 
interactions and coupled components. The details of this 
metric are included in a separate appendix available from the 
authors upon request. However, for initial simplicity, we base 
our analyses on C1. (In the case of the Ant product, which has 
a relatively small number of feedback interactions, the general 
results are fairly consistent with the ones obtained using C2.) 

Note that C1 assumes that complexity grows 
proportionally to both the number of elements and number of 
interactions in the system; it is not normalized against system 
size. This is intentional, because at this point we simply want 
to apply a general expression of complexity that allows us to 
measure complexity in various regions inside the product. 
Normalizing against size would take away this dimension of 
complexity.  

Obviously, capturing the notion of complexity into one 
single measure is an abstraction from reality. Thus, one might 
question how good our measure for capturing the complexity 
of a system is, beyond its obvious face value. Since there is no 
agreed upon measure of complexity, ultimately this question 
can only be answered by relating alternative complexity 
measures of a system with meaningful process or 
organizational attributes to test which measure has better 
predictive value. In that sense it is an empirical question upon 
which we shed light in the next section. 

 

The Effects of Modules and Layers  
Because interactions among components are not randomly 

distributed within the product, but instead are clustered within 
modules, which in turn are organized into layers, we measure 
complexity considering the interaction of components within the 
modules themselves and then across modules per each layer. As 
before, we distinguish between the complexity associated with 
feed-forward and feedback interactions. 
 
Internal complexity of component modules: 

To measure the average internal complexity of the modules 
that cluster product components, we consider each module 
above the “bottom level” (or leaf level) as an isolated system 
and determine its internal complexity by considering feed-
forward and feedback interactions separately. Then, we take a 
simple average of these values across the number of component 
modules present in the product. (Weighting the average by the 
number of components in each module provides similar results.) 
Note that the strength of the interaction between two 
components is “1” when there is at least one function call from 
the first component to the second, and zero otherwise. Hence,  

! 

Avg module internal feed forward complexity =  

nmodule • kmodule feedforward

module

"

number_of_modules

 

 

! 

Avg module internal feedback complexity =  

nmodule • kmodule feedback

module

"

number_of_modules

 

 
Cross-module complexity 

To determine the complexity associated with the 
interactions between components across modules, we calculate 
feed-forward and feedback average complexities for each layer. 
To do this, we estimate the strength of the interaction between 
two modules by the density of the cross-boundary interaction. 
That is, if one module (formed by two components) interacts 
with another module (formed by three components), then there 
are six possible ways in which one module can interact with the 
other module. The strength of the interaction is therefore the 
number of actual interactions divided by the potential number of 
interactions. In this case, if there were two actual interactions, 
then the strength of the cross-module interaction would be 0.33. 
Finally, to measure the complexity of the layer, we consider it as 
a system with m modules and interactions equal to the 
summation of the cross-module interactions (ρ). Hence,  

! 

feed forward cross - module complexity =  m • " feedforward

 interactions

#  

 

! 

feedback cross - module complexity =  m • " feedback

 interactions

#  

Our measures differ from previous metrics used to characterize 
product architecture. Similar to Guo and Gershenson [24], we 
recognize that it is important to distinguish between interactions 
within and across modules.  Yet, their aggregated metric is based 
on the notion of density, while ours are built on the notion of 
complexity described above. In the software domain, 
MacCormack et al. [22] suggest using a measure of propagation 
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cost associated with a product architecture, based on the 
reachability matrix [14, 21]. Although such a metric is 
informative for assessing how changes in one component can 
potentially propagate to other components in the product (and 
we show it for comparison in the table of data in the 
Appendix), it does not appropriately capture the complexity 
dynamics of a system because it is normalized against the size 
of the system. As mentioned, normalizing against system size 
suppresses an important aspect of complexity that may itself 
pose important organizational coordination challenges. For 
example, we expect to observe different coordination effort 
between an organization that develops a fully connected 
product with a dozen components and an organization that 
develops a fully connected product with hundreds of 
components.  

Dynamic architectural metrics 
Dynamic metrics capture the architectural change relative 

to the previous version of the product. This set of metrics is 
designed to explore how software designers structure their 
work and more importantly how that structure changes over 
time.  Especially, we want to be able to detect reorganizations 
of code (often called refactoring [35]). 

The hierarchical structure of a software product is 
embedded in the tree as represented in Figure 1.  Hence, our 
metrics need to characterize the essence of the tree.  Our most 
prevalent static measure, Nx, is the total number of subsystem  
and component modules (nodes of the tree above the leaf 
level) in the tree the designers used to structure the code for 
version x  of the product. Note that this measure can be used 
recursively for different subsections of the entire tree.   

We define De,x, Da,x and Dt,x as the evolution metrics for 
Nx. To measure De,x, we consider that a node has been 
eliminated if in the following version the node is not part of 
the same layer. Note that eliminations include shifting a node 
to a lower or higher layer. Ex is the number of eliminations 
from version x-1 to version x. To measure Da,x we consider 
that a node has been added if the node does not exist on a 
given layer in version x-1 but does exist for the version x. 
Again note that additions include shifts from a lower or higher 
layer. Ax is the number of additions from version x-1 to 
version x. Finally, Dt,x measures the total changes due to both 
additions and eliminations from version x-1 to version x. 
Hence, we can define evolution metrics as follows: 

! 

D
e,x

=
E
x

N
x

 ;   

! 

D
a,x

=
A
x

N
x

 ; 

! 

D
t,x

=
A
x

+ E
x

N
x

 

Treating elimination and addition separately allows for 
differentiating between simple growth and active 
reorganizations of code. Making the measures relative takes 
into account that what defines a major reorganization depends 
on the existing architecture of the product. All measures can 
be defined for each individual layer. 

Other metrics could characterize the tree. Depth and 
average breadth would be among the obvious candidates. The 
distribution of depth per “leaf” and the distribution of breadth 

per node would be more complicated measures. Alternative 
evolution measures include “minimal number of moves” with 
moves either being a shift in layer, an addition, or an 
elimination. We prefer the measures above for their simplicity 
and ease of interpretation, on one hand, and their explanatory 
power on the other. 
 

How informative are these static and dynamic architectural 
metrics?  Again, this is an empirical question. We will consider 
them to be informative if they capture the variation in software 
architecture across product versions so that they help us interpret 
product changes. They will be even more insightful if we can 
relate such variation to product, process, or organizational 
performance indicators. That is what we investigate next for the 
case of one software product, Ant. 

ANT: AN EXAMPLE FROM OPEN SOURCE 
SOFTWARE DEVELOPMENT 

About Ant 
We studied a readily-accessible, open-source software 

application called Apache Ant.  Ant is a Java-based tool for 
automating software build processes.  Further information is 
available at www.apache.org. 

To get information about Ant’s product architecture, we 
used the openly available source code of the product. The first 
version, 1.0, was released in July 2000, and six major releases 
have followed, with additional minor releases in between. To 
capture the architecture of the software product, we used a 
commercial software application which builds a partitioned 
DSM representation of the software architecture [27]. The 
“bottom-level” of components is defined by the source files or 
“classes,” and the interactions (or design dependencies) are 
function calls. Hence, if the source code for class A references 
the source code for class B, then the designer of A might need to 
be aware of what class B does. The membership of the 
components in layers and modules is captured in the source code 
via the naming convention. That is, the naming of the classes 
reflects not only the unique identifier of the class but also the 
module and branch in the product hierarchy to which it belongs. 
Hence, we are able to objectively and automatically capture the 
product components, their interactions, and their organization 
into modules and layers. 

From an organizational viewpoint, Ant is developed by 
volunteers [36], who fall into three categories:  users, 
developers, and committers.  Users provide feedback to 
developers in the form of bug reports and feature suggestions.  
Developers contribute time, code, documentation, or resources. 
A developer that makes sustained, welcome contributions may 
be invited to become a committer.  Committers are responsible 
for Ant’s technical management. All committers have write 
access to Ant’s source repositories. Committers may cast 
binding votes on any technical discussion regarding the project 
(www.apache.org). 

The committers involved with each version of Ant are listed 
in its documentation.  The other developers are not.  To find an 
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approximate list of developers, we scanned most of the e-
mails in the developer e-mail archive over the time interval 
from version x-1 to version x.  This method provided us with a 
larger list of contributors than could be found in the 
documentation, and it also allowed us to count the 
approximate number of e-mails associated with each 
developer. 

Software Product Data 
In this subsection we report the product data associated 

with each version of Ant. We first illustrate the hierarchy of 
the product data via a tree representation. Then we use DSMs 
to show the interaction data (at layer 2). 

The plots included in Figure 3 illustrate the evolution in 
the product hierarchy of Ant. The first three versions of the 
product exhibit the most significant changes. In version 1.10, 
Ant is part of a bigger system that includes “Apache tools” 
and “Oreilly servlet.” In version 1.20, Ant becomes a 
standalone application complemented with other utilities such 
as “mail” and “tar.”  Version 1.20 does not show a dominant 
architecture for the salient module, “ant.” The dominant 
architecture appears to emerge in version 1.30 and continues 
to grow in the subsequent versions. 

 

 

 

 

 

 

 
Figure 3:  Tree representations of versions of Ant 
 
The DSMs in Figure 4 show the interactions across 

component modules for each version. Note that these DSMs 
show only the interactions across modules for each layer. The 
cross-module interactions in layer 1 are shown by the green 
cells, in layer 2 by the yellow cells, in layer 3 by the rose cells, 
and by the blue cells in layer 4 (where present). The DSMs are 
sequenced, so we can distinguish between feed-forward and 
feedback interactions by examining the marks below and above 
the diagonal, respectively. By inspection, the majority of the 
cross-module interactions occur in layer 2, which is formed by 
the modules comprising the “ant” module. The interactions at 
layer 1 represent the interactions between “ant” and the other 
utility modules such as “mail” and “tar.” The interactions at 
layer 3 provide a finer level of granularity within modules of 
“ant,” such as “taskdefs” and “util.” 
 

Ant 1.10  

Ant 1.20  
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Ant 1.30  

Ant 1.40  

Ant 1.50  

Ant 1.60  

Ant 1.65  
Figure 4:  DSM representations of versions of Ant 

Organizational Data 
As described above, Ant is developed by volunteers 

forming a kind of virtual team.  We gathered organizational 
data along three dimensions: workload, resources, and 
coordination effort. 
 
The workload associated with Ant: 

For each version, workers made up to three types of 
modifications from the previous version:  “changes,” “tasks,” 
and “bug fixes.”  Changes, as the term is used by Apache Ant, 
signify a new and better way of implementing an existing 
feature or capability of the software.  That is, the feature was 
not necessarily performing incorrectly (which would be a 
bug), but someone found a way to provide the feature more 
efficiently or effectively—or, the way the feature was 
implemented had to be adjusted to accommodate some other 
change, bug fix, or task.  Tasks are new features or capabilities 
added to the current version.  Bug fixes are corrections of 
existing features that were not performing correctly. Bug fixes 
range from major to almost unnoticeable.  Only the ones 
deemed significant enough by the developers were actually 
documented and counted. 
 

Resources used to carry out the workload: Number of developers 
As open source software, Ant’s number of developers is 

determined by their volunteerism, which is of course determined 
by many personal factors such as available time, enthusiasm, 
interest, etc. Conventional wisdom would also suggest that the 
way the software architecture handles the complexity of the 
product through modules and layers has some influence here, 
since it affects the learning curve for a new developer.  Most 
new developers start by contributing to a small, localized portion 
of Ant, so the product architecture is probably not immediately 
apparent to many of them. However, as their proposed changes 
and fixes require checks against more and more other files and 
modules (because of a large number of dependencies), they 
could become discouraged by the high coordination costs. 
 
Coordination effort: E-mail communication 

The primary coordination mechanism for Ant’s virtual 
development team is e-mail.  There are two main e-mail forums, 
called the user list and the developer list.  The user list is 
primarily to collect user inputs and feedback, while the 
developer list is where developers and committers exchange 
ideas, plans, and votes on changes, bug fixes, and tasks.  We 
therefore focused e-mail counts on the developer list. 

 
Table 1 (included in the appendix) summarizes the product 

and organizational data relevant for our analysis 
 
ANALYSIS 

We performed two types of analysis. First, we analyze the 
evolution of software architectures by examining how product 
complexity and the product architecture change over time. Then, 
we compare these software architecture dynamics with the 
evolution of the organizational attributes. Because of the 
exploratory nature of our work at this point, our analysis is 
focused on uncovering patterns of dynamics rather than 
statistical inference. 

Software Architecture Dynamics 
In this subsection we plot various measures of product 

complexity over time. The horizontal axis represents the number 
of days from the first product release. Figure 5a shows the 
evolution of the overall complexity of Ant measured by C1. To 
distinguish between feed-forward and feedback product 
complexity, Figure 5b plots the ratio of feedback to feed-forward 
interactions for each version. 

  
Figure 5:  Product complexity: (a) C1 (b)  Ratio 

feedback/feed-forward 
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To evaluate how developers manage complexity using 
modules and layers, we plot the average number of 
components per module (Figure 6a) and the average number 
of modules per layer (Figure 6b). These plots illustrate the 
“volatile” nature of the architectural changes in the first few 
versions before a dominant architecture emerges. After 
version 1.30 the use of modules and layers stabilizes. 

  
Figure 6:  (a) Average number of components per 
module and (b) Average number of modules per 

layer 
 

Because interactions between product components are not 
randomly distributed, but instead are organized into modules 
and layers, we measure complexity in various areas of the 
product to take such an organization into account. Figure 7 
shows the average internal complexity of component-modules 
(both feed-forward and feedback). Although feed-forward 
complexity does not show a clear pattern, feedback 
complexity shows a significant increase in later versions, 
which suggests that software architectures increase their use of  
“shortcuts” and “design rule” violations, as indicated by the 
presence of feedback interactions within component modules.  
(Fowler et al. refer to this phenomenon as “software decay” 
[35, p. xvi].) 

  
Figure 7:  Average internal component-module 

complexity:  (a) Feed-forward (b) Feedback 
 

To take into account the effects of layers, we measure C1 
separately at layers 2 and 3. Such measures capture the 
complexity associated with interactions across sub-system 
modules. Figure 8 shows the value of complexity (both feed-
forward and feedback) for layers 2 and 3, respectively. The 
complexity at layer 2 increases significantly until version 1.50 
and then decreases. 

  
Figure 8:  Cross-module complexity in layer 2:  (a) 

Feed-forward (b) Feedback 
 

Looking at layer 3, Figure 9 plots C1 for the largest sub-
system module of “ant,” called “taskdefs.”  Since “taskdefs” was 
a component-module in version 1.10, the plots start after version 
1.20. The complexity of “taskdefs” increases significantly after 
version 1.30. 

  
Figure 9:  Cross-module complexity in layer 3:  (a) 

Feed-forward (b) Feedback 
 

Figure 7 examines the evolution of the internal complexity 
of component modules (both feed-forward and feedback 
complexity, but note the different y-axis scales). Figure 7b 
shows how component modules become more interdependent 
over time as the number of feedback dependencies increased the 
coupling of their components. Figures 8 and 9 show the 
evolution of complexity of the most relevant sub-system 
modules of Ant at layers 2 and 3, respectively. In both cases, a 
significant increase in complexity is observed once the dominant 
architecture is established in version 1.30. Moreover, when 
examining the complexity of sub-system “ant” (at layer 2), a 
peak in complexity is achieved in version 1.50, after which the 
subsequent versions show a decline in complexity (Figure 8). 
That is, it seems developers focused on reducing the 
dependencies across the modules that form “ant.” Moreover, 
such a reduction in complexity is not accompanied by reducing 
the complexity of “taskdefs” (at layer 3), which remains 
relatively stable after version 1.50 (see Figure 9), but instead is 
achieved by removing dependencies across modules (at layer 2) 
and by adding new components to existing modules rather than 
creating new ones.  

 
Finally, we explicitly analyze how designers deal with 

complexity by monitoring the changes in the module and layer 
structure from one version to the next. First, Figure 10 plots the 
number of modules (Nx) and thus shows the evolution of the 
total number of modules in the code. As with the intrinsic 
complexity in Figure 5a, the overall tendency seems to represent 
continuous growth, which conforms with the general belief that 
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an architecture starts out simple and then grows to become 
more and more complex. (The local peak at version 1.20 is 
due to the fact that the former version used code from a 
different branch of the apache tree that later became 
incorporated into the “ant” tree. This artificially increased the 
number of modules in version 1.20.)  

 
Figure 10:  Number of component modules 

 
Figures 11 and 12 reveal that the dynamics of this 

evolution are more complicated than the overall growth in 
modules might suggest. Figure 11 plots metrics Da,x, De,x and 
Dt,x for the modules of Ant for versions under analysis. 
Clearly, the earlier versions are characterized not only by 
additions in the architecture but also by eliminations of some 
modules. Figure 12 plots the same metrics for the components 
(or leaves of the product tree), and interestingly the pattern is 
mirrored. Taking both results into account, it becomes 
apparent that the shift from version 1.20 to version 1.30 of the 
code is characterized by a major reorganization in which not 
only virtually the entire tree is eliminated, but a major portion 
of the leaf code is redone. From then on the code base mainly 
grows with the shift from version 1.40 to 1.50 marking a 
minor reorganization. In that sense the pure growth model 
needs to be modified. For Ant, code evolved with growth and 
reorganizations interacting. 

These plots provide the basis for some interesting (albeit 
tentative) insights about the development of software products 
like Ant. First, Figure 5 shows that the intrinsic complexity of 
Ant and the efforts of designers to deal with it through code 
structuring increase over time in a non-linear manner 
following an S-shaped curve. This suggests that the 
architecture of software products follows a cycle similar to the 
one followed by new technologies at the industry level [37, 
38]. Figure 6a, 11 and 12 suggest that the dominant version for 
Ant is established after version 1.30. Two aspects of the 
analysis lead us to draw this conclusion. Figure 6a shows that 
after the dominant architecture is established, the average size 
of modules remains relatively stable.  Hence, as new 
components are added to the product, new modules are created 
to maintain the average size of modules. Figures 11 and 12 
suggest that the architects, while coding, found that the 
original architecture had its limitations and needed to be 
redone. They used the first versions as learning vehicles that 
provided them with insights to establish the final architecture 

in version 1.30 so that they could build the functionality 
thereafter – with version 1.50 introducing a minor revision. 
Hence, these dynamic metrics allow for a differentiated 
evaluation of code evolution. 

 
Figure 11 Changes in modules between versions 
 

 
Figure 12:  Changes in leaf nodes between versions 

 

Comparing Product and Organizational Dynamics  
How do software architecture dynamics compare with 

organizational dynamics? We address this question in this 
subsection. The following plots summarize the organizational 
attributes associated with each major release. Figure 13 shows 
the workload associated with both “product changes and tasks” 
(i.e. number of product improvements and new features) and the 
number of  “documented bug fixes.”  

 
Figure 13:  Workload associated with Ant 

 
Figure 14 shows the amount of resources and the 

coordination effort dedicated to Ant development. We capture 
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this by plotting the number of developers involved, the 
number of e-mails exchanged on each release, and the number 
of e-mails per developer.  Note that the number of “product 
improvements and new features” (Figure 13) and the “number 
of e-mails” exhibit correlated patterns, suggesting that the 
coordination effort is significantly associated with the added 
features rather than the bug fixing. Yet, it would be interesting 
to explore further what proportion of e-mails were associated 
with bug fixing versus intended product changes. 
 

 

  
Figure 14:  (a) # of developers; (b) # of e-mails;       

(c) # e-mails per developer 
 

To better compare architectural and organizational 
metrics, we overlap product complexity metrics and 
organizational metrics in the same plot. Figure 15 shows how 
product complexity (C1) and the overall workload exhibit 
similar patterns. Interestingly, there is a strong association 
between the complexity across modules at layer 2 and 
“product changes” (Figure 16). 

 
Figure 15:  Comparing overall workload and product 

complexity 
 

 
Figure 16:  Comparing “ant” module complexity and 

workload 
 

We also compare product complexity and coordination 
effort by comparing the complexity of the most relevant module 
(“ant”) and the number of “e-mails per developer.” Figure 17 
shows the similar evolution of these two metrics. 

 
Figure 17:  Comparing product complexity and 

coordination effort 
 

Comparing the evolution of product complexity metrics and 
organizational features such as workload and coordination effort 
leads to important insights. First, there is a significant 
relationship between the dynamics of the product architecture 
and the organization. Product changes and bug fixes increase in 
a way similar to the complexity of the overall product (Figure 
15). Moreover, when examining product complexity at a finer 
level of granularity, we found that the most informative level of 
analysis (for the case of Ant) is layer 2, which is the one that 
contains the most important sub-system module of the product 
(“ant”). Figure 16 shows the strong association between the 
evolution of “ant” complexity and “product changes,” and 
Figure 17 shows the strong association between “ant” 
complexity and the coordination effort, measured by the number 
of e-mails per developer exchanged prior to each release. Hence, 
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it seems product changes are strongly associated with cross-
module interactions of the sub-system “ant,” which in turn are 
strongly associated with the coordination effort needed to 
implement such changes. The causal loop diagram shown in 
Figure 18 summarizes the links we observed between the 
workload, product complexity, and coordination effort during 
the development of Ant. It remains to be investigated if there 
is a feedback link from the coordination effort to the 
workload. 

 
Figure 18: Linking workload, product complexity, 

and coordination effort 

DISCUSSION 

Implications for Software Developers 
It is important to monitor the architecture of the product 

and identify the key sub-system modules that drive most of the 
product changes. Interactions across modules require 
particular managerial attention. 

It is also important to define the most appropriate level of 
granularity at which to analyze the architecture. Based on our 
case study, it seems like one or two sub-system modules are 
the ones that concentrate most of the development effort. 
Hence, particular effort should be put into understanding the 
architecture of these salient modules. In the case of Ant, the 
most informative module is the sub-system module “ant” in 
layer 2, which contained over 90% of the product components. 
Understanding the drivers of architectural complexity in “ant” 
by focusing on the interactions across the modules that form it 
would be a major predictor of the coordination effort 
associated with Ant development. 

As for the architectural evolution of Ant, it is important to 
emphasize that the architecture of a new product does not 
magically emerge in the first version of the product. 
Establishing the architecture of the product is a dynamic 
process that goes through distinct phases which require 
different managerial competences. The initial phase is a phase 
characterized by experimentation in which a search for the 
optimal architecture takes place. After a few versions, a 
dominant configuration emerges and the growth phase takes 
off.  This phase focuses on taking advantage of the established 
architecture to improve and increase the functionality of the 
product.  Eventually, limits to growth start appearing and the 
complexity of the architecture saturates, which might call for a 
refactoring of parts of (or the entire) product architecture. 

What does the dynamic evolution of the product data tell 
us?  It confirms that massive reorganizations of code are part 
of software development. This is somewhat in contrast with 
large-scale development efforts in other mature industries. In 
large assembly projects such as cars and airplanes, major 

reorganizations are avoided once the project has been started. In 
that sense we can see the prototyping approach of software 
development at work. But while reorganizations happen, they 
nonetheless tend to subside towards the later stages of 
development. As a result, the Ant project followed a prototyping 
approach during the beginning and became a more linear project 
towards the end of building the functionality. 

Theoretical Implications 
This paper presents a structured research approach to 

investigate the dynamics of software architectures. We have 
developed architectural metrics of product complexity that 
capture not only intrinsic complexity but also the mechanisms 
by which developers manage complexity (i.e. modules and 
layers). We propose a three-step approach to study the dynamics 
of software architectures over a large number of products so that 
theoretical propositions about architectural dynamics can be 
tested statistically: (1) capture the architectural dynamics, (2) 
capture the organizational dynamics, and (3) compare product 
and organizational dynamics. Our current efforts are focused on 
applying this approach across several software products. 

One of our basic findings is that the dynamics of software 
architectures follow an S-shaped path. That is, the complexity of 
the architecture slowly increases in the first few versions of the 
product as the effort is focused on organizing the architecture 
(mapping functional and “physical” elements of the product). 
Once the dominant architecture emerges, then significant growth 
in complexity will be visible, until limits to growth saturate the 
current architecture, leading to some additional reconfiguration 
of the dominant architecture. This is consistent with the model 
of technology evolution based on industry studies that have 
examined the emergence and adoption of new technologies [37, 
38]. 

Another interesting outcome from this study pertains to the 
ability of our approach to identify the layer(s) and module(s) 
wherein most of the complexity and architectural dynamism 
reside.  This is extremely important for modelers to know, since 
it has been noted that product architecture models can differ 
greatly depending on the chosen level of analysis [39].   

Studying the product and organizational dynamics of Ant 
has allowed us to address some methodological challenges 
associated with studying software architectural dynamics. Yet, 
many open questions remain to be addressed in future research. 
Does software complexity always increase over time?  How do 
open source and “closed source” software architectures differ?  
How does the architecture of the product impact the 
participation of new developers? Our current research efforts 
aim to find insightful answers to these questions. 
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APPENDIX: SUMMARY OF DATA 
 

Table 1:  Summary of product and organizational data for Ant’s major releases 
 Version 

Variable 1.10 1.20 1.30 1.40 1.50* 1.60* 1.65* 
Release Date 7/19/2000 10/24/2000 3/3/2001 9/3/2001 7/10/2002 12/18/2003 6/2/2005 
Days Since Last Release N/A 97 130 184 310 526 532 

Product Data 
# Components (n) 70 122 126 178 293 352 380 
# Component Modules (m) 4 13 8 13 21 24 25 
# Layers 3 4 3 3 3 4 4 
# Dependencies (k) 206 465 476 706 1137 1434 1389 
Dependencies below 
diagonal (feed forward) 204 446 464 687 1086 1355 1307 

Dependencies above 
diagonal (feedback) 2 19 12 19 51 79 82 

Product complexity, C1=n*k 14420 56730 59976 125668 333141 504768 527820 
Product complexity, C2 2124 9974 8183 15617 32958 46719 51735 
Propagation cost  
(% reachable dyads) 11.5% 15.5% 14.6% 12.4% 13.0% 15.5% 16.7% 

Organizational data 
# Developers & Committers 88 78 91 66 56 155 149 
# New Developers N/A 48 40 0 9 130 117 
# "Changes" N/A 42 26 83 147 131 94 
# Bugs Fixed (documented) N/A 5 17 36 62 122 116 
# Tasks Added N/A 19 13 18 23 24 2 
# E-mails (developer list) 2494 2728 4581 6404 16912 18438 14256 

*The measures for these versions include interim minor versions; e.g., 1.5 was released 310 days after 1.4, but during that time 
there was a 1.4.1.  The bugs fixed as part of 1.4.1 are counted as part of those fixed for 1.5 (i.e., everything since 1.4), etc. 


