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Abstract

The design of many production and service systems is informed by stochastic model analy-
sis. But the parameters of statistical distributions of stochastic models are rarely known with
certainty, and are often estimated from field data. Even if the mean system performance is a
known function of the model’s parameters, there may still be uncertainty about the mean per-
formance because the parameters are not known precisely. Several methods have been proposed
to quantify this uncertainty, but data sampling plans have not yet been provided to reduce
parameter uncertainty in a way that effectively reduces uncertainty about mean performance.
The optimal solution is challenging, so we use asymptotic approximations to obtain closed-form
results for sampling plans. The results apply to a wide class of stochastic models, including
situations where the mean performance is unknown but estimated with simulation. Analytical
and empirical results for the M/M/1 queue, a quadratic response-surface model, and a simulated
critical care facility illustrate the ideas.

Category: G.3: Probability and Statistics, Probabilistic algorithms (including Monte Carlo)
experimental design

Category: I.6: Simulation and Modeling, Simulation output analysis
Terms: Experimentation, Performance
Keywords: Stochastic simulation, uncertainty analysis, parameter estimation, Bayesian statis-

tics

1 Introduction

Stochastic modeling and simulation analysis are useful approaches to evaluate the performance of
production and service systems as a function of design and statistical parameters [e.g., Buzacott and
Shanthikumar 1993; Law and Kelton 2000]. Models of existing systems, or variations of existing
systems, can help inform system design and improvement decisions. Data may be available to
help estimate statistical parameters, but estimators are subject to random variation because they
are functions of random phenomena. Parameter uncertainty means that there is a risk that a
planned system will not perform as expected [Cheng and Holland 1997; Chick 1997, 2001; Barton
and Schruben 2001], even if the relationship between the parameters and system performance is
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completely known. For example, the stationary mean occupancy of a stable M/M/1 queue is a
known function of the arrival and service rates, but the mean occupancy is unknown if those rates
are not precisely known. When the system performance is an unknown function of the parameters,
and is estimated by simulation, the problem is aggravated. The common practice of inputting
point estimates of parameters into simulations can dramatically reduce the coverage of a supposedly
100(1− α)% confidence interval (CI) for the mean performance (Barton and Schruben 2001).

Bootstrap methods (Cheng and Holland 1997; Barton and Schruben 2001), asymptotic normal-
ity approximations (Cheng and Holland 1997; Ng and Chick 2001), and Bayesian model averaging
[Draper 1995; Chick 2001; Zouaoui and Wilson 2003, 2004] can quantify the effect of input param-
eter uncertainty on output uncertainty.

This paper goes beyond quantifying uncertainty by suggesting how to reduce parameter uncer-
tainty in a way that effectively reduces uncertainty about the mean performance of a system. We
do so for a broad class of stochastic systems by using asymptotic variance approximations for the
unknown mean system performance. Section 2 formalizes the stochastic model assumptions along
with examples. Section 3 introduces the asymptotic variance approximations for input parameter
uncertainty. Section 4 describes how input parameter uncertainty affects output uncertainty and
formulates an optimization problem to reduce output uncertainty. When the system response is
a known function of the inputs, the optimal sampling plan turns out to be very similar to known
results for stratified sampling. When the system response must be estimated with simulation, a
different sampling allocation is obtained. The allocation shows how to balance the cost of running
additional simulations (to reduce uncertainty about the mean response and its gradient) and data
collection (to reduce uncertainty about the inputs to the system). Under some general conditions,
the optimal sampling allocations are shown to have the attractive property of being invariant to the
coordinate systems used to represent the parameter of each input distribution. Section 5 applies
the results to several examples. This paper extends preliminary work (Ng and Chick 2001) by gen-
eralizing results to a broader class of distributions, and by providing results for unknown response
functions. An appendix also describes how to reduce the mean-squared error (MSE) rather than
the variance. The approach taken is Bayesian, so parameter uncertainty is quantified with random
variables.

2 Model Formulation and Examples

Consider a system with multiple statistical parameters Θ = (θ1, θ2, . . . ,θk) that influence the
system performance g(Θ). Simulated performance realizations Yl (“output”) with input parameter
Θl for replication l = 1, 2, . . .,

Yl = g(Θl) + σ(Θl)Zl,

may be observed if g(Θ) is unknown, where σ2 is the output variance, and the Zl are independent
zero-mean random variables with unit variance.

The system is driven by k scalar (real-valued) input processes that are mutually independent
sources of randomness. Given the parameter vector θi for the ith input process, the corresponding
observations {xi` : ` = 1, 2, . . .} are independent and identically distributed with conditional prob-
ability density function pi(xi` | θi). Uncertainty about the parameter θi is initially described with
a probability model πi(θi). In Bayesian statistics, πi(θi) is called a prior probability distribution.
Here we presume joint independence across sources of randomness, π(Θ) =

∏k
i=1 πi(θi).

Each θi is assumed to be inferrable from data. The data xi = (xi1, xi2, . . . , xini) that has been
observed so far for the ith input process can be used to get a more precise idea about the value of
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the unknown parameter θi, whose uncertainty is characterized by the posterior distribution

fini(θi | xi) ∝ πi(θi)
ni∏

`=1

pi(xi` | θi), (1)

for i = 1, 2, . . . , k. We will use those distributions to figure out how to collect additional data, if
needed, to reduce uncertainty about input parameters. Let n = (n1, . . . , nk) specify the number
of data points observed so far for each source of randomness. Probability statements below are all
conditional on all data collected so far, En = (xT

1 , . . . , xT
k ), unless otherwise specified.

A tilde denotes the maximum a posteriori (MAP) estimate of any parameter, e.g. θ̃ini maximizes
fini . Maximum likelihood estimates (MLEs) are denoted with a hat, θ̂ini . Given the data xi, the
MLE maximizes

∏ni
`=1 pi(xi` | θi).

Parameters may be multivariate, such as θ1 = (ϑ1, ϑ2). It will be convenient at times to refer to
the individual components of the parameter vector Θ = (θ1, θ2, . . . , θk) encompassing all k sources
of randomness; and for this purpose we write Θ = (ϑ1, ϑ2, . . . , ϑK), where K > k when at least one
of the θi are multidimensional. Decision variables and system control parameters are considered
to be fixed and implicit in the definition of g, so that we focus upon the effects of input parameter
uncertainty. Table 1 summarizes this notation, as well as much of the notation used in the rest of
the paper.

The M/M/1 queue can be described with this notation as a system with k = 2 sources of
randomness (arrival and service times), with arrival rate θ1 = λ and service rate θ2 = µ. There
are a total of K = 2 components of the overall parameter vector Θ, so Θ = (λ, µ). The stationary
mean occupancy is known in closed form if the queue is stable, g(Θ) = λ/(µ− λ).

A less trivial example for which the system response is unknown is the critical care facility
depicted in Figure 1. Schruben and Margolin (1978) studied that system to determine the expected
number of patients per month that are denied a bed, as a function of the number of beds in the
intensive care unit (ICU), coronary care unit (CCU), and intermediate care units. Patients arrive
according to a Poisson process and are routed through the system depending upon their specific
health condition. Their analysis presumed fixed point estimates (MLE) for the parameters of the
k = 6 sources of randomness: the patient arrival process (Poisson arrivals, mean θ̂1n = 3.3/day),
ICU stay duration (lognormal θ2 = (ϑ2, ϑ3), with mean ϑ̂2n = 3.4 and standard deviation ϑ̂3n = 3.5
days), three more bivariate input parameters θ3, θ4, θ5 for the lognormal service times at the
intermediate ICU, intermediate CCU, and CCU processes, and a sixth parameter for patient routing
(multinomial, θ̂6n = (p̂1, p̂3, p̂4) = (.2, .2, .05), note that p2 = 1− p1 − p3 − p4). There are therefore
a total of K = 12 components of the overall parameter vector Θ. The function g(·) is not known,
and is to be estimated from simulation near the point Θ̂n.

This paper will use approximations that assume a constant variance, σ(Θ) = σ (homoscedastic).
If the variance actually depends upon Θ (heteroscedastic), then we will estimate σ by the MAP
estimator σ̃(Θ̃n), a Bayesian analog of the usual MLE for the standard deviation, σ̂(Θ̂n). This
approximation is a standard assumption in the design of experiments literature (Box, Hunter, and
Hunter 1978; Box and Draper 1987; Myers, Khuri, and Carter 1989), and is asymptotically valid
under certain conditions (Mendoza 1994, p. 176) if σ(Θ) is a “nice” function of Θ near Θ̃n.

The approximations made below in a Bayesian context are analogous to frequentist approxi-
mations by Cheng and Holland (1997). The modification of the analysis is with a straightforward
application of results of Bernardo and Smith (1994), and result in a decoupling of stochastic un-
certainty from parameter uncertainty when g(·) is a known function. Zouaoui and Wilson (2001)
used a similar decoupling to obtain a variance reduction for estimates of E[g(Θ) | En] with the
Bayesian Model Average (BMA) when multiple candidate distributions are proposed for a single
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Table 1: Summary Of Notation1

k number of independent sources of randomness, each consisting of i.i.d. scalar
(real-valued) random variables

θi statistical input parameter for ith source of randomness (can be multivariate
with dimension di ≥ 1), i = 1, 2, . . . , k

K total number of components of all k parameter vectors, K =
∑k

i=1 di

Θ vector of all statistical parameters, Θ = (θ1, θ2, . . . ,θk)
ϑj the jth individual component of Θ for j = 1, . . . ,K, so that we have

Θ = (θ1, θ2, . . . ,θk) = (ϑ1, ϑ2, . . . , ϑK)
g(Θ) the mean response of the model, as a function of the statistical parameters

r number of replications a simulated model
σ standard deviation of output of a simulated model
ni number of observations taken from the ith source of randomness and used

to estimate the associated parameter vector θi, for i = 1, . . . , k
n vector of number of observations, n = (n1, n2, . . . , nk)
xi` `th observation for ith statistical parameter, i = 1, . . . , k; ` = 1, 2, . . . , ni

xi vector of observations xi = (xi1, xi2, . . . , xini) for ith statistical parameter
En all data observed so far, En = (xT

1 , xT
2 , . . . ,xT

k )
πi(θi) prior probability density of parameter θi, i = 1, . . . , k

pi(x | θi) density function for data x given parameter θi, i = 1, . . . , k
fini(θi) posterior probability density of parameter θi given data xi (ni observations)

θ̃i MAP estimate for ith statistical parameter, i = 1, . . . , k

θ̂i MLE for ith statistical parameter, i = 1, . . . , k

Gi = Σ−1
i observed information matrix associated with the parameter vector θi, given

xi for i = 1, . . . , k. Also sometimes written Gini = Σ−1
ini

to emphasize the
dependence on the sample size ni

Σ Block diagonal matrix Σ = diag[Σ1, . . . ,Σk] = diag[G−1
1 , . . . , G−1

k ]
H i Expected information matrix of one observation for parameter i, i = 1, . . . , k

βj Derivative of g(Θ) with respect to jth component of Θ, evaluated at θ = θ̃,
for j = 1, . . . , K

βi ∇θig(Θ) |θ=θ̃, the gradient vector of the function g(Θ) with respect to the
parameter vector θi for the ith source of randomness, evaluated at θ = θ̃

β ∇Θg(Θ) |θ=θ̃, the gradient vector of the function g(Θ) with respect to the
parameter vector Θ, evaluated at θ = θ̃

mi number of additional data points to be collected for ith statistical parameter
m vector of number of additional points, m = (m1, m2, . . . , mk)
m0 number of additional simulation replications to be run
D all additional data to be collected (mi points for ith source, i = 0, 1, . . . , k)

1 A subscript i may be dropped to denote a generic source of randomness to simplify notation. The addition of (a)
a ˆ denotes maximum likelihood estimate (MLE), (b) a ˜ denotes a MAP estimator, (c) an extra subscript n, ni or
n emphasizes the number of data points that determine the estimate, (d) an extra subscript Θ, ψ may be added to
emphasize the coordinate system for the parameters, as in ΣΘ, Σψ.
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Figure 1: Fraction of patients routed through different units of a critical care facility.

source of randomness, and the response is homoscedastic. Their result appears to be extendable
to the heteroscedastic case (n → ∞) by approximating σ with σ̃(Θ̃n). The idea of decoupling
stochastic and parameter uncertainty is applied to the case of an unknown g(Θ) with an unknown
gradient in Section 4.2.

3 Approximations for Parameter Uncertainty

Uncertainty about parameters, and the effect of data collection variability, is approximated by the
variance. The mean squared error (MSE) of estimates is treated in Appendix A. The analysis is
motivated by analogy with the following well-known result for confidence intervals based on asymp-
totic normality. Suppose that the simulation outputs y1, . . . , yr are observed, with sample mean
ȳr, sample variance S2

r , and 100(1− α)% CI for the mean ȳr ± tr−1,1−α/2(S2
r/r)

1
2 . An approximate

expression for the number of additional observations m∗ required to obtain an absolute error of ε is
m∗ = min

{
m ≥ 0 : tr+m−1,1−α/2

[
S2

r/(r + m)
]1/2 ≤ ε

}
. For large r, tr+m−1,1−α/2 does not change

much as a function of m. The CI width is essentially scaled by shrinking the variance for the
unknown mean from S2

r/r to
S2

r/(r + m). (2)

Analogous results exist for asymptotic normal approximations to the posterior distributions of
input parameters.

For the rest of this section, we focus on one parameter θ = (ϑ1, . . . , ϑd) for a single source of
randomness (dropping the subscript i for notational simplicity).

Proposition 3.1. For each n, let fn(·|xn) denote the posterior p.d.f. of the d-dimensional pa-
rameter vector θn; let θ̃n be the associated MAP; and define the Bayesian observed information
Gn = Σ−1

n by

[Gn]jl =
[
Σ−1

n

]
jl

= −∂2 log fn(θ | xn)
∂ϑj∂ϑl

∣∣∣∣
θ=θ̃n

for j, l = 1, . . . , d. (3)

Then the random variable Σ−1/2
n (θn − θ̃n) converges in distribution to a standard (multivariate)

normal random variable as n →∞ if certain regularity conditions hold.
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Proof. See Bernardo and Smith (1994, Prop 5.14). The regularity conditions presume a nonzero
prior probability density near the “true” θ, and the “steepness”, “smoothness”, and “concentration”
regularity conditions imply that the data is informative for all components of θn, so the posterior
becomes peaked near θ̃n.

Colloquially, Σn is proportional to 1/n, so the posterior variance shrinks as in Equation (2)
as additional samples are observed. Gelman, Carlin, Stern, and Rubin (1995, Sec. 4.3) describe
when the regularity conditions may not hold, including underspecified models, nonidentified param-
eters, cases in which the number of parameters grows with the sample size, unbounded likelihood
functions, improper posterior distributions, or convergence to a boundary of the parameter space.

The expected information matrix in one observation is

[H(θ̃n)]jl = EX`

[
−∂2 log p(X` | θ)

∂ϑj∂ϑl

] ∣∣∣∣
θ=θ̃n

for j, l = 1, . . . , d.

so the analog to the asymptotic approximation in Equation (2) for the variance of θ, given that m
additional data points are to be collected, is

(Σ−1
n + mH(θ̃n))−1. (4)

Equation (4) simplifies under some special conditions. A sufficient condition is that the distri-
bution for θ be in the regular exponential family (which includes the exponential, gamma, normal,
binomial, multinomial, lognormal, Poisson, and many other distributions) and that a conjugate
prior distribution be used to describe initial parameter uncertainty (see Appendix B). Use of a
conjugate prior distribution implies that the posterior distribution will have the same functional
form as the prior distribution.

Appendix B shows that if the prior distribution before observing any data is a conjugate prior,
then Σ−1

n = (n0 + n)H(θ̃n) for some n0 and Equation (4) simplifies:

(Σ−1
n + mH(θ̃n))−1 =

H−1(θ̃n)
n0 + n + m

. (5)

Equation (4) also simplifies if the MLE θ̂n replaces θ̃n and the expected information Σ̂
−1
n = nH(θ̂n)

replaces Σ−1
n .

All of the distributions for the M/M/1 queue and the critical care facility are in the regular
exponential family and satisfy the regularity conditions of Proposition 3.1. The specific numbers
of service time and routing decision observations for the critical care facility were not published.
For the analysis here, we presumed standard noninformative prior distributions for each unknown
parameter (Bernardo and Smith 1994). We further assumed that the published point estimates
were MLEs based on 100 patients, so that 20 patients were routed to the ICU alone, 5 were routed
to the CCU alone, and so forth. This assumption uniquely determines the sufficient statistics of
the data and the proper posterior distributions for the parameters. It also uniquely determines the
observed information matrices Σ−1

n for each parameter. Ng and Chick (2001) provided details for
the information matrix and input uncertainty of the Poisson and lognormal distributions. For the
multinomial routing probabilities, the Dirichlet distribution is the conjugate prior, π(p1, p3, p4) ∝
pα01−1
1 pα03−1

3 pα04−1
4 (1 − p1 − p3 − p4)α02−1, with noninformative distribution α0j = 1/2 for j =

1, . . . , 4 (Bernardo and Smith 1994). Reparametrizing this into the canonical conjugate form as in
Appendix B, we have ψ = (log p1, log p3, log p4). Since this mapping is bijective, the results from
Appendix B also hold in the (p1, p3, p4) coordinates. If sj patients are routed to location j, then the
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posterior distribution is Dirichlet with parameters αj = α0j+sj . If αj > 1 for all j, then the MAP is
p̃j = (αj−1)/[

∑4
j=1(αj−1)], and Σ−1

n = [
∑4

j=1(αj−1)]H(θ̃n) = [42 +n−4]H(θ̃n) = (n0+n)H(θ̃n),
where n0 = −2.

4 Parameter and Performance Uncertainty

Section 4.1 derives approximations for performance uncertainty, measured by variance, as a function
of parameter uncertainty when g(·) is a known function. It formulates and solves an optimization
problem that allocates resources for further data collection to minimize an asymptotic approxima-
tion to performance uncertainty. Section 4.2 identifies sampling allocations when g(·) is unknown.
It shows whether it is more important to run more simulation replications (to improve the gradient
estimate) or to collect more field data (to reduce parameter uncertainty).

4.1 Known Response Function

Denote gradient information of the known response surface, g(Θ), evaluated at the MAP estimator
of Θ, by

βj =
∂g(Θ)
∂ϑj

∣∣∣∣
Θ=Θ̃n

for j = 1, . . . , K (6)

βi = ∇θig(Θ)
∣∣∣∣
Θ=Θ̃n

for i = 1, . . . , k

β = (β1, β2, . . . , βk).

Suppose that the parameters for each source of randomness are estimated with n observations each,
and that each satisfies the asymptotic normality properties of Proposition 3.1. Proposition 4.1 states
that g(Θ) is also asymptotically normal as more observations are collected from each of the sources
of randomness.

Proposition 4.1. Use the assumptions, notation and technical conditions of Proposition 3.1, with
the modification that Θn = (θ1n, . . . ,θkn) is the nth vector of parameters, so that fin(·) is the poste-
rior density function of the random variable θin, the MAP estimator of Θ is Θ̃n = (θ̃1n, . . . , θ̃kn),
and Σn = diag [Σ1n . . .Σkn] is the nth block diagonal matrix with appropriate submatrices for
parameters i = 1, . . . , k, assuming n observations are available from each source of randomness.
Suppose that Θ has an asymptotic Normal

(
Θ̃n,Σn

)
distribution, as in the conclusion of Propo-

sition 3.1. Suppose that g is continuously differentiable near Θ0, that σ̄2
n → 0 and Θ̃n → Θ0 in

probability, and σ̄2
n = O(σ2

n), where σ̄2
n and σ2

n respectively denote the largest and smallest eigen-
values of Σn.

The random variable (βnΣnβT
n )−1/2[g(Θ) − g(Θ̃n)] converges in distribution to the standard

normal distribution. Colloquially, g(Θ) is asymptotically distributed

Normal
(
g(Θ̃n), βnΣnβT

n

)
.

Proof. Mendoza (1994) and Bernardo and Smith (1994, Prop. 5.17) provide an analogous result for
bijective functions g(Θ) when k = 1. The result holds for univariate g(Θ) because the marginal
distribution of a single dimension of a multivariate joint Gaussian is also Gaussian. That result
generalizes directly to k ≥ 1, as required here, with straightforward algebra. This is a Bayesian
analog for classical results from Serfling (1980, Sec. 3.3).
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Block diagonality reflects an assumption that the parameters for different sources of randomness
are a priori independent, and that samples are conditionally independent, given the value of Θ.

The plug-in estimator g(Θ̃n) converges to g(Θ0) but is biased for nonlinear functions. Ap-
pendix A discusses bias and the mean squared error of estimates, using a first-order bias approxi-
mation. For now we focus on the variance of the estimators.

The number of observations for each of the k sources of randomness may differ, as may the
number of additional data points to collect. Let ni be the number of data points for source i,
suppose that mi additional points are to be collected for each source of randomness i, and set
m = (m1, . . . , mk). Using the approximation of Equation (4), we see that the variance in the
unknown performance after collecting additional information is approximately

Vpar(m) =
k∑

i=1

βini(Σ
−1
ini

+ miH i(θ̃ini))
−1βini

T (7)

If each observed information matrix is proportional to the corresponding expected information
matrix, as when conjugate priors are used, then Equation (7) simplifies:

Vpar(m) =
k∑

i=1

ξi

n0i + ni + mi
, where ξi = βiniH

−1
i (θ̃ini)βini

T . (8)

The optimal sampling plan for reducing this asymptotic approximation to the variance in system
performance, assuming that sampling costs for source i is linear in the number of samples, is
therefore the solution to Problem (9).

min Vpar(m) (9)
s.t. mi ≥ 0 for i = 1, . . . , k∑

cimi = B

Cost differences may arise if data collection can be automated for some but not all sources of
randomness, if suppliers differ in willingness to share data, and so forth.

Proposition 4.2. If Vpar(m) simplifies to Equation (8), the integer restriction is relaxed (contin-
uous mi), and B is large, then the solution to Problem (9) is:

m∗
i =

B +
∑k

`=1(n0` + n`)c`

∑k
j=1

(
ξjcicj

ξi

)1/2
− (n0i + ni) for i = 1, . . . , k (10)

Proof. See Appendix C.

For small B, the nonnegativity constraints for the mi need consideration. Special features of
the data collection process can be handled by adding constraints, e.g. set a subset of mi’s to be
equal for simultaneously reported data.

Example: The mean occupancy of an M/M/1 queue is g(λ, µ) = λ/(µ− λ) when µ > λ. The
gamma distribution is the conjugate prior for an unknown rate of samples with an exponential
distribution. Suppose that a gamma prior distribution Gamma (α, ν) models uncertainty for the
unknown arrival rate, with mean α/ν and density fΛ(w) = ναwα−1 exp(−wν)/Γ(α) for all w ≥ 0.
If na arrivals are observed, the posterior distribution is also Gamma with parameters αλ = α +
na, νλ = ν +

∑na
l=1 xil. The MAP estimate is λ̃ = (αλ − 1)/νλ, and H1(λ̃) = 1/λ̃2 = ν2

λ/(αλ − 1)2.
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With calculus, Σ−1
1na

= (αλ − 1)/λ̃2 = ν2
λ/(αλ − 1). Similarly assume the service rate has a

conjugate gamma prior, that ns service times are observed, resulting in a Gamma (αµ, νµ) posterior
distribution. If µ̃ > λ̃ (otherwise, we would consider a multiserver system), then Equation (7)
implies

Vpar(m) =
λ̃2µ̃2

(µ̃− λ̃)4

(
1

αλ − 1 + ma
+

1
αµ − 1 + ms

)
.

As conjugate priors are used, Σ−1
1na

= (αλ− 1)H1(λ̃na) and Σ−1
2ns

= (αµ− 1)H2(µ̃ns). This reduces
to Equation (8) where n0a + na = αλ − 1 and n0s + ns = αµ − 1.

If ma interarrival times can be collected at cost ca each, and ms service times can be collected
at cost cs each, then by Proposition 4.2, it is optimal to sample with m∗

s = (B − cam
∗
a)/cs and

m∗
a =

B + (αλ − 1)ca + (αµ − 1)cs

ca + (cacs)1/2
− (αλ − 1)

for large B. If ca = cs, this choice minimizes the difference between αλ + ma and αµ + ms (the
same effective number of data points is desired for both parameters).

If the arrival and service rates are believed to have a gamma distribution, then the queue is
unstable with positive probability. In fact, the expectation of the average queue length does not
exist even after conditioning on stability, Eλ,µ[λ/(µ − λ) | λ < µ] = ∞ (Chick 2001). This means
that using Bayesian models for unknown statistical input parameters may lead to simulation output
processes whose expectation is not defined. At least two alternative approaches can be taken. First,
a similar analysis can be done for a model that not only has finite moments but is also more realistic
(say, by considering a finite waiting capacity or by modeling a finite time horizon rather than an
infinite horizon time average). Second, one can use the asymptotic normality approximation in spite
of the lack of moments as a starting point for reducing input uncertainty. Section 5.2 illustrates by
example when this second alternative might be expected to work well or not.

The optimal allocation for Problem (9) does not depend on the parametrization Θ under cer-
tain conditions. Let T : RK 7→ RK be a one-to-one continuously differentiable transformation
ψ = (ψ1, . . . , ψK) = T (Θ) = [T1(Θ), . . . , TK(Θ)] with differentiable inverse Θ = T−1(ψ), and
nonsingular matrix of derivatives JT (Θ), where [JT (Θ)]j` = ∂Tj/∂ϑ`. We write JT−1(ψ), where
[JT−1(ψ)]j` = ∂T−1

j /∂ψ`. Let ψ̃n be the MAP estimator for ψ given En. Denote the response gra-
dient with respect to ψ by βψ and the gradient in Equation (6) with respect to Θ by βΘ. Similarly
denote the observed information matrix and expected information in one observation (measured
in ψ coordinates) by Σψ,n and Hψ to emphasize the coordinate system. The expression Vpar(m)
in Equation (8) explicitly depends upon Θ. We write Vpar(m;Θ) to denote that dependence ex-
plicitly. Let Vpar(m;ψ) denote the analogous approximation approximation when computed in ψ
coordinates.

Proposition 4.3. Suppose the setup of Proposition 4.1, that the distribution of Θ is in the regular
exponential family, and that a conjugate prior is adopted. Let T : RK 7→ RK be a one-to-one
continuously differentiable transformation ψ = T (Θ) = [T1(Θ), . . . , TK(Θ)] with differentiable
inverse Θ = T−1(ψ), and nonsingular Jacobian JT (Θ). If conditions (a) for each i, ψi = Ti(Θ)
depends upon only one θj, and (b) ψ̃n = T (Θ̃n) are true, then Vpar(m;Θ) = Vpar(m; ψ).

Proof. Presume the setup of Proposition 4.1, define T and the other notation as in the problem
statement, and suppose conditions (a) and (b) hold. Condition (a) means that JT (Θ) has the
same block diagonal structure as Σ, and that no ψi is a function of parameter vectors for multiple
sources of randomness.

9



Suppose first that there is only k = 1 source of randomness with parameter θ and drop the
subscript i for notational simplicity. In this notation, ξi can be rewritten ξ = βΘH−1

Θ (Θ̃n)βΘ
T in

Θ coordinates. By the chain rule for partial differentiation, and the assumption ψ̃n = T (Θ̃n),

βψ = ∇ψg(ψ)
∣∣
ψ=ψ̃n

=
(
∇Θg(Θ)

∣∣
Θ=Θ̃n

)(
JT−1(ψ̃n)

)
.

By Schervish (1995, p. 115), Hψ(ψ) = JT
T−1(ψ)HΘ(Θ)JT−1(ψ), so that with additional calculus

H−1
ψ (ψ) = (JT

T−1(ψ)HΘ(Θ)JT−1(ψ))−1 = JT (Θ)H−1
Θ (Θ)JT

T (Θ). Therefore, in ψ coordinates,

ξ = βψH−1
ψ (ψ̃n)βψ

T

= [∇Θg(Θ̃n)JT−1(ψ̃n)][JT (Θ̃n)H−1
Θ (Θ̃n)JT

T (Θ̃n)][JT
T−1(ψ̃n)∇T

Θg(Θ̃n)]

= ∇Θg(Θ̃n)H−1
Θ (Θ̃n)∇T

Θg(Θ̃n)
= βΘH−1

Θ (Θ̃n)βΘ
T.

The third equality follows because JT (Θ̃n)JT−1(ψ̃n) = JT−1(ψ̃n)JT (Θ̃n) is the K ×K identity
matrix, when ψ̃n = T (Θ̃n) holds.

For k > 1, the block diagonality assumption of Condition (a) assures that the ξi decouple, one
for each of the k independent sources of randomness.

The MAP estimator is not invariant to coordinate changes. That is, if Θ̃n is the MAP in Θ
coordinates, and ψ̃n is the MAP in ψ coordinates, then it may not be true that ψ̃n = T (Θ̃n). For
example, if the unknown rate ψ of an exponential distribution has a Gamma (αn, νn) distribution,
then ψ̃n = (αn − 1)/νn and the mean θ = 1/ψ has an inverted gamma distribution, with MAP
θ̃n = νn/(αn + 1) 6= 1/ψ̃n. The multivariate generalization of Proposition 4.1 implies that ψ̃n and
T (Θ̃n) are asymptotically equal. For a Bayesian, then, the allocations are asymptotically invariant
to parametrization, in this sense.

For a frequentist, the allocations are invariant for finite n, as the MLE is invariant, given mild
regularity conditions (Edwards 1984), and expected information matrices behave as required for a
development parallel to Proposition 4.3.

4.2 Unknown Response Function

If the response function g(Θ) is unknown, an approximation is needed to estimate the mean of
some future output Yr+1. The asymptotic approximations above “hit their limit” in some sense
with linear approximations, so we approximate g(Θ) near Θ̃n with a first-order regression model
that may depend on past simulation output.

E[Yr+1 | Θ] ≈ h(Θ, β) = β0 +
K∑

j=1

βj(ϑj − ϑ̃j) (11)

The notation h(Θ,β) replaces the notation g(Θ) to make it explicit that the estimated response
depends upon both Θ and β. Note that β0 takes the role of g(Θ̃) and βj takes the role of ∂g(Θ)/∂ϑj .
If the derivatives βj = ∂h/∂ϑj are estimated from simulations, for j = 1, 2, . . . ,K, then uncertainty
about both Θ and β must be considered. We take a Bayesian approach and presume β to be a
random vector, whose posterior distribution is updated when simulation replications are run.
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Suppose that r replications have been run, with r×(K+1) design matrix M = [(Θ1−Θ̃n), (Θ2−
Θ̃n), . . . , (Θr − Θ̃n)]T , resulting in outputs y = [y1, . . . , yr]T with sample mean ȳ = r−1

∑r
i=1 yi.

The r runs may have come from q replications at each of t design points selected with classical
design of experiments (DOE) techniques, with r = qt. Or the Θi may have come from using a
BMA to sample t values of Θi independently from f(Θ | x), with q replications for each Θi (Chick
(2001) used q = 1, Zouaoui and Wilson (2003) extended to q > 1 to assess stochastic uncertainty,
also see Zouaoui and Wilson (2004)). In either case, the posterior distribution of β, assuming the
standard linear model with a noninformative prior distribution p(β, σ2) ∝ σ−2, and that r > (K+1)
(Gelman, Carlin, Stern, and Rubin 1995, Sec. 8.3), is

p(β | y,M, σ2) ∼ Normal
(
β̂r, (M

TM)−1σ2)
)
, (12)

p(σ2 | y,M) ∼ Inverse-Chi2
(
r − (K + 1), s2

)
,

β̂r = (β̂0, β̂1, β̂2, . . . , β̂k) = (MTM)−1MT y

s2 =
1

r − (K + 1)
(y −Mβ̂r)

T (y −Mβ̂r).

The standard classical estimate for β is β̂r, and for σ2 is s2.
The posterior marginal distribution of β is actually multivariate t, not normal. We approxi-

mate this distribution by estimating σ2 by s2 and presuming the variance is known, as we did in
Equation (2), to arrive at a normal distribution approximation for the unknown response vector
that has mean β̂r and variance of the form Σβ/(r0 + r). Similarly, we presume that the poste-
rior variance of β is of the form Σβ/(r0 + r + m0) when m0 additional replications are run (cf.
Equation (8)). Amongst other scenarios, this approximation makes sense when m0 = q′t, with q′

additional replications are run at each of the t originally selected Θi as above.
Then the approximation Vtot = Var(h(Θ, β) | En,y,M, σ2 = s2) for overall performance un-

certainty Var(E[Yr+1] | En, y,M) asymptotically consists of components that reflect parameter
uncertainty (Vpar), response surface/gradient uncertainty (Vresp), and stochastic noise (σ2 = s2).
The following expectations, through Equation (13), implicitly condition on all observations so far,
En, y,M.

Vtot ≈ s2

r0 + r
+

K∑

i=1

K∑

j=1

E
{[

βi(ϑi − ϑ̃i)(ϑj − ϑ̃j)T βj

]

−E
[
βi(ϑi − ϑ̃i)

]
E

[
βj(ϑj − ϑ̃j)

]}

=
s2

r0 + r
+

K∑

i=1

K∑

j=1

E [βiβj ] Cov(ϑi, ϑj)

=
s2

r0 + r
+

K∑

i=1

K∑

j=1

Cov(ϑi, ϑj) [E(βi)E(βj) + Cov(βi, βj)]

≈ s2

r
+

k∑

i=1

∇θih(Θ̃n, β̂r)Σini∇θih(Θ̃n, β̂r)
T

+
K∑

i=1

K∑

j=1

[Σβ]ij
r

[Σn]ij

def
= Vstoch + Vpar + Vresp (13)
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The last equality defines Vresp. The preceding equalities depend upon independence and asymp-
totic normality assumptions. The term Vstoch = s2/r in the second approximation (with r0 = 0)
follows directly from plugging in s2 for σ2 and examining the posterior conditional variance of β0

in Equation (12). Cheng and Holland (2004) also found an estimator of Vstoch that is proportional
to 1/r.

Cheng and Holland (2004) describe several methods to estimate the gradients of a stochastic
simulation model with an unknown response model, and use those results to approximate Vstoch and
Vpar. A full study of the merits of the many ways to estimate the gradient β, and their influence
upon Vtot, is an area for further study.

Since Cov(βi, βj) is inversely proportional to the number of runs, the asymptotic approximation
for all uncertainty if m0 more replications and mi data samples for each input are collected can be
approximated (cf. Equation (8)) by

Vtot(m,m0) =
s2

r + m0
+

k∑

i=1

ξi

n0i + ni + mi
+

ai

(r + m0)(n0i + ni + mi)
, (14)

where ai represents the sum of the subset of the terms in
∑K

l=1

∑K
j=1[Σβ]lj

[
H−1

n

]
lj

that have both
l and j indexing components of the overall parameter vector that deal with θi, for i = 1, . . . , k.
The double sum decouples into one term per input parameter vector due to the block diagonality
of Σn. Derivatives confirm that Vtot(m,m0) is convex and decreasing in m0 and each mi.

Suppose there is a sampling constraint for more field data and simulation runs,

B = c0m0 +
k∑

i=1

cimi.

By Proposition 4.2, the m that minimizes Vtot(m,m0) for a fixed m0 < B/c0, subject to the
sampling constraint, can be found by substituting B with B − c0m0, and replacing ξi with ξi +
ai/(r + m0) for i = 1, 2, . . . , k in Equation (10). The optimal (m,m0) can then be found by
univariate search for the optimal m0. In practice, one might run more replications if Vstoch + Vresp

is large relative to Vpar(m), and do more data collection if Vpar(m) is unacceptably large.

5 Experimental Analysis

This section presents numerical studies to assess how close the asymptotic approximations are to
the actual variance. It also assesses the variance, bias, and root mean squared error (RMSE)
of estimators of the unknown mean performance as a function of both the number of initially
collected samples of data and the total number of additional samples to be collected. We evaluate
the influence of response surface uncertainty for a quadratic response in Section 5.1, consider a
known nonlinear function with unknown parameters in Section 5.2, and apply the ideas to the
ICU simulation in Section 5.3. In all three examples, we assume noninformative prior distributions
for the unknown parameters, and initial data collection is complemented with a follow-up data
collection plan based upon Equation (7) or Equation (14).

5.1 Unknown Nonlinear Response

The first numerical experiment assesses the reduction in uncertainty about the mean performance
assuming that the response surface is unknown. Assume that the unknown parameters are the
mean µi and precision λi of k = 3 sources of randomness for which data xi` has been observed
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(i = 1, 2, 3; ` = 1, 2, . . . , ni). The response function is quadratic in Θ = (µ1, λ1, µ2, λ2, µ3, λ3), with
known functional form but unknown response parameters.

Figure 2 summarizes the experiment. Based on initial data collection, the input parameters of
the k normal distributions are estimated. The “true” response is

Y = g(Θ) + σZ = β0 +

(
k∑

i=1

β2i−1µi + β2iλi

)
+ β7µ1µ2 + β8µ

2
1 + σZ

where β = (0,−2, 1,−2, 1, 1, 1, 1, 1), µ = (2, 10, 2), λ = (1, 2, 1), σ2 = 1/2. The vector (β, σ2) is
estimated from independent model output tested with q = 1 replication at t = 29 design points
from a central composite design (CCD, Box and Draper 1987, with a 26−2 design for the factorial
portion, 2× 6 star points with α = 1, and one center point, for 16+12+1=29 points total). Design
points were taken to be the MAP and endpoints of a 95% credible set for the six parameters (using
a normal distribution approximation). Follow-up data collection and simulation run allocations
from Equation (14) are used to reduce input and response parameter uncertainty.

For the inference process, we used a noninformative prior distribution πi(µi, λi) ∝ λ−1
i for

i = 1, 2, 3. After n observations for a given source of randomness, and dropping the i mo-
mentarily for notational clarity, this results in normal gamma posterior pdf fn(µ, λ | En) =
(nλ)

1
2√

2π
e−

nλ
2

(µ−µ̃n)2 ναn
n

Γ(αn)λ
αn−1e−νnλ, where µ̃n =

∑n
`=1 x`/n, αn = (n − 1)/2, and νn =

∑n
`=1(x` −

µ̃n)2/2 (Bernardo and Smith 1994). This implies that the posterior means of an unknown mean µ
is the sample average µ̃n, and the posterior marginal distribution of λ is a Gamma (αn, νn) distri-
bution, with MAP λ̃ = (αn − 1)/νn = (n− 3)/(2νn) and posterior variance Var[Λ | En] = αn/ν2

n.
We estimated the mean of the variance approximation, EEn [Vpar(m∗)], the expectation taken

over the sampling distribution of the initial data samples, and with m∗ computed for B =
0, 10, . . . , 100; and the variance VarEn,D[h(Θ̃n+m∗ , β̃n+m∗)] and bias κ = EEn,D[h(Θ̃n+m∗ , β̃n+m∗)]−
g(Θ) of the overall estimator of the mean, determined with respect to the sampling distributions
of both rounds of sampling. Those samples determine the estimates Θ̃n+m∗ , β̃n+m∗ and best
local linear approximation h(Θ, β̃n+m∗) to g(Θ) near Θ̃n+m∗ . Estimates are based on 1000
macroreplications of data collection experiments for each combination of the number of initial
samples (ni = n = 10, 20, . . . , 100 for i = 1, . . . , k).

Figure 3 shows that EEn [Vpar(m∗)] and VarEn,D[h(Θ̃n+m∗ , β̃n+m∗)] track each other reasonably
well, which is expected since the response is a low order polynomial. The allocations tended to
allocate more samples from inputs with a larger variance and/or larger influence on the output
(intuitive, so data not shown). In spite of the relatively close match of variance, Figure 4 indicates
the fraction m∗

1/B of samples allocated to learning about the major quadratic term (µ1, λ1) varies
as a function of B and n more significantly when there is less information about the response
parameters (small r = qt). This indicates that variability in the regression estimates may affect
the optimal data collection allocations.

Figure 5 illustrates how significantly deleterious ignoring parameter uncertainty can be for
the coverage probability and the mean half-width size of confidence intervals. For this example,
constructing 95% CI with stochastic uncertainty alone (using z97.5

√
Vstoch) results in an extremely

poor coverage probability (about 0 to 2% rather than 95%) because input parameters are poorly
identified. The wider CI half-widths based on z97.5

√
Vtot result in much better coverage (empirical

coverage of 93-95%, very close to the nominal 95% level, when ni = n = 20, 40, 60, 80 data points
were initially collected and when B = 0). For a fixed B, the coverage is worst when the least
amount of initial data is available (smaller n). For a fixed n, the coverage declined somewhat with
increasing B, dropping to 87-89% when B = 1000 and down further to 77-82% when B = 4000. For
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1. For i = 1, 2, . . . , 1000 macroreplications

(a) Sample n conditionally independent, normally distributed
samples (k = 3 sources of randomness), xj` ∼
Normal(µj , λ

−1
j ), for j = 1, . . . , k; ` = 1, 2, . . . , n.

(b) Determine MAP estimators µ̃i =
∑ni

`=1 xi`/ni, λ̃i given the
samples from Step (a).

(c) Generate q independent samples of y(l−1)q+j = g(Θ(l−1)q+j)
for j = 1, . . . , q, at each design point Θl, for l = 1, 2, . . . , t.
The design points were on the lattice generated by the MAP
and MAP±z0.95SE for each of the 2k components of the pa-
rameter vector (the unknown µi, λi).

(d) Estimate the response surface parameters β, σ2, using Equa-
tion (12).

(e) Compute the optimal sampling allocations m∗
ji,m

∗
0i for

the ith macroreplication to minimize the approximation
Vtot(m,m0) in Equation (14) (given sampling budget B with
costs c0 = cj = 1, for j = 1, . . . , k).

(f) Generate m∗
0i more additional runs at the simulation design

points and reestimate the response surface (update β̃, σ̃).

(g) Observe m∗
i additional data points then update the estimates

µ̃j , λ̃j for j = 1, 2, 3, and ỹi = h(Θ̃, β̃) (i.e. the estimate of
the response function g(Θ)).

2. Compute the sample mean ¯̃yn =
∑1000

i=1 ỹi/1000, sample bias κ̄n,
sample variance S2

n of the ỹi, and average number of additional
samples m̄.

Figure 2: Algorithm to assess variance, bias, and RMSE for the response surface example in
Section 5.1, assuming Θr = (µ1, λ1, . . . , µk, λk) and Yr = g(Θr) + σZr.

fixed n, we hypothesize that the coverage degrades somewhat as B increases because the allocations
and response surface estimates may be influenced by errors in the gradient estimators. In spite of
the degradation in coverage for large B, the coverage is still orders of magnitude better than the
coverage that considers stochastic uncertainty alone. Note that z97.5

√
Vtot does not depend strongly

upon n for large B in this example because Vresp remains a factor in the uncertainty. That term
could be reduced by running additional replications at each design point.

Similar results were obtained for the first-order bias corrected estimators, for a different values
of the response gradients, and for the 90% confidence level.

5.2 M/M/1 Queue

We assessed the influence of input uncertainty about the arrival rate λ and service rate µ on the
stationary mean g(λ, µ) = λ/(µ − λ) for an M/M/1 queue. Noninformative prior distributions
are used for the unknown arrival and service parameters so that πΛ(λ) ∝ λ−1 and πµ(µ) ∝ µ−1.
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Figure 3: Comparison of mean asymptotic variance approximation EEn [Vpar(m∗)] (labeled “Asymp.
Approx.”) with realized sample variance estimate of VarEn,D[h(Θ̃n+m∗ , β̃n+m∗)] (labeled “Sample
Approx.”), if q iterations are taken from each of t = 29 design points in a CCD.

After observing n simulated arrival times and service times, En = (a1, a2, . . . , an, s1, s2, . . . , sn),
the modeler’s posterior distribution for Λ is Gamma (n,

∑n
`=1 a`) (Bernardo and Smith 1994). A

similar posterior distribution holds for µ. Interarrival times and service times were simulated from
the “true” exponential(λ) and exponential(µ) distributions respectively.

Additional data D collected from m∗ = (m∗
a, m

∗
s) optimally-allocated follow-up samples were

then simulated. We compared the mean of the asymptotic variance approximation EEn [Vpar(m∗)]
predicted after the initial samples were collected but before the follow-up samples were collected
(averaged over realizations of the initial n data observations) with the variance of the estimated
mean VarEn,D[g(Θ̃n+m∗)] (expectation with respect to both stages of sampling that estimate
Θ = (λ, µ)) and computed the overall bias κ = EEn,D[g(Θ̃n+m∗)] − g(Θ) after both rounds of
sampling. Because expectations may not exist, we conditioned on the utilization being less than
0.995. Estimates are based on 1000 macroreplications of data collection experiments as in Figure 6,
for each combination of the number of initial samples (n = 20, 40, . . . , 100), follow-up samples
(B = m∗

a + m∗
s = 0, 10, . . . , 100, 200, . . . , 1000), and “true” utilizations (λ/µ = 0.2, 0.4, 0.6, 0.8 with

µ = 1).
Several qualitative points that can be made. One, the mean asymptotic variance approximation

EEn [Vpar(m∗)] better matches the sample variance estimate of VarEn,D[g(Θ̃n+m∗)] in areas where
g is more linear (low utilization) and/or the number of initial samples n is larger (Figure 7). The
approximation can be considered very useful when g is relatively linear in the area where most of
the posterior probability of the parameters is found. For higher utilization levels and fewer data
points, the asymptotic approximation for variance and for bias was higher than the empirically
observed variance and bias.

Two, the variance, bias, and MSE of the plug-in estimator g(Θ̃n+m∗) was still reduced even
when the approximation was poor. For example, the solid line in Figure 8 predicts how much
first-order bias is expected, given that n observations of arrival and service times have been ob-
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Figure 4: Fraction of budget for sampling from source of randomness 1, if q iterations are taken
from each of t = 29 design points in a CCD.

served, and another m∗
a,m

∗
s observations are expected (based on the variance-reducing solution in

Proposition 4.2). The first-order bias estimate is given in Appendix A. The dotted line represents
the empirically observed bias after those additional observations were collected, and the updated
plug-in estimator is used. The bias is low and the predicted bias is proportional to the estimated
bias when the response surface is linear (note the scale in the row for ρ = 0.2). The approximation
is worse where the response surface is nonlinear, but an improvement in bias is still observed with
more data.

Three, the optimal allocation for variance reduction samples both service times and arrival
times equally, but the optimal MSE allocation tends to allocate more samples for service times,
particularly with a small budget for additional samples or a high utilization (Figure 9).

Four, the MSE allocation does slightly better than the variance allocation in terms of bias and
MSE, but not significantly so. Including the bias term in the optimal sampling allocation therefore
added to the computing time to determine the optimal allocation, but did not significantly improve
the statistics of any estimates (data not shown, graphs are so similar to the variance allocation
graphs).

Five, the function g is particularly nonlinear for larger values of ρ̂, so the estimator g(λ̂, µ̂) is
biased. We also checked the variance, bias, and MSE of the first-order bias-corrected estimator (the
plug-in estimator g(λ̂, µ̂) minus the bias correction from Equation (15) in Section A) and found
that the bias correction actually hurt the variance, bias and MSE of g(λ̂, µ̂) because the first-order
bias correction fared particularly poorly when ρ̂ > 0.92. We therefore recommend the plug-in
estimator and asymptotic variance sampling allocation for the M/M/1 queue, and by extension
to other functions where the first-order bias correction is poor. We do not replicate the poor
confidence interval coverage for the M/M/1 queue already demonstrated (Barton and Schruben
2001) in related work.

5.3 Critical Care Facility

The critical care facility described in Section 2 can be used to illustrate the above analysis on a
practical problem when the response surface is unknown. Suppose initial field data is collected,
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Figure 5: Empirical coverage and half-width of CIs constructed with Vtot (accounts for input and
output uncertainty) and Vstoch (output uncertainty only).

resulting in asymptotically normal approximations θi ∼ Normal
(
θ̂ini ,Σini

)
for each of the k = 6

input parameters. For the unknown arrival rate λ for a Poisson number of arrivals per day, we
used a noninformative prior distribution, π(λ) ∝ λ−1/2, resulting in a Gamma (1/2 +

∑n
`=1 x`, n)

posterior distribution after observing n daily counts of arrivals (Bernardo and Smith 1994). So
λ̃ = (−1/2 +

∑n
`=1 x`)/n. The prior distribution for the unknown routing probabilities is given in

Section 3. The prior distributions for the lognormal service time parameters were chosen identical
to those for the unknown normal distribution parameters in Section 5.1.

We used a BMA to sample 32 independent sets of input parameters for the critical care simu-
lation. For each set of input parameters, we ran q = 4 independent replications of the critical care
unit, for a total of r = 128 replications. Each replication simulated 50 months of operation (after
a 10 month warm-up period).

Assuming the linear model in Equation (11), the simulation output implies that β̃ = (28.9, 1.52,−0.29, 29.4,−0.57, 11.5, 0.0018,−2.05, 0.045,−55.5,−9.64,−47.0),
and σ̃2 = 1.078. This results in Vpar ≈ 98.1 and approximations for the variance in the performance
due to parameter uncertainty of Vresp ≈ 0.99. The uncertainty due to unknown parameters greatly
outweighs the response parameter uncertainty, which in turn outweighs the stochastic uncertainty
from the random output Vstoch ≈ σ̃2/128 = 0.0084.

The mean allocations for further data collection suggested by minimizing Equation (13) subject
to nonnegative sampling constraints for a variety of sampling budgets are shown in Table 2. The
table presumes that a total of B data points can be collected, that the collection cost for each area
is the same (ci = 1 for i = 1, . . . , k), and that each “real” data sample is 4 times as expensive as
running one more replication at each of the original 32 design points (c0 = 1/(4× 32)). The most
important area for additional data collection, based on this analysis, is the arrival rate. Uncer-
tainty about routing probabilities and intermediate ICU service times are of secondary importance.
Simulation replications may help reduce performance uncertainty due to response surface uncer-
tainty. Uncertainty about the other input parameters play a much less important role for output
uncertainty.

The specific mechanism for estimating the gradient in this example did not significantly affect
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1. For i = 1, 2, . . . , 1000 macroreplications

(a) Sample n independent exponential(λ) inter-arrival times and
n independent exponential(µ) service times to obtain MAP
estimates µ̃i, λ̃i (resampling until λ̃i/µ̃i < .995), assuming a
noninformative prior distribution p(λ, µ) ∝ λ−1µ−1.

(b) Given a sampling budget B with costs ci = 1, com-
pute the optimal sampling allocations m∗

a,v,m
∗
s,v to minimize

the variance approximation Vpar(m) and optimal allocations
m∗

a,mse,m
∗
s,mse to minimize the MSE approximation (see Ap-

pendix A).

(c) Collect additional input samples to obtain updated estimates
λ̃i,v, µ̃i,v, and yi,v = g(λ̃i,v, µ̃i,v) for the variance allocation,
and λ̃i,mse, µ̃i,mse, and yi,mse = g(λ̃i,mse, µ̃i,mse) for the MSE
allocation.

2. Compute the sample mean ȳn,v to estimate g(λ, µ), the sample
bias κ̄n,v, and the sample variance S2

n,v of the output, as well
as the average number of additional samples m̄∗

a,v, m̄
∗
s,v for the

variance-based allocation (subscript v), and analogous statistics
ȳn,mse, κ̄n,mse, S2

n,mse, m̄∗
a,mse, m̄

∗
s,mse for the MSE-based allocation

(subscript mse).

Figure 6: Algorithm to the assess variance, bias, and RMSE for the M/M/1 queue example in
Section 5.2 for a given λ, µ and sampling parameters n,B.

the data collection allocation that was ultimately suggested. Kleijnen (2001) notes that spurious
regressors in parametric regression can deteriorate the predictor, so a parsimonious metamodel is
desirable. We repeated the experiment with another technique for response surface modeling due
to Raftery, Madigan, and Hoeting (1997) that identifies the most important response parameters
(effectively screening out βj that are relatively close to 0). That analysis determined essentially
the same sampling plans in Table 2. We did not check the CI coverage for this example since the
true performance is unknown.

6 Comments and Conclusions

Stochastic models are useful system design and analysis tools. The mean system performance
depends on statistical parameters that describe the model. There are several ways to handle
parameter uncertainty. One is to design a system to handle “worst case” scenarios, but this may
be cost ineffective. Another way is to develop robust designs that perform well over a range of
parameter values. This begs the question of what range to consider. A reduction of parameter
uncertainty can reduce the range of parameters for which the design must perform well. When
possible, a third way is to learn about parameters as the system operates and adapt the operation
of the system to the extent possible as parameters are inferred, given the existing design of a system
(e.g. as did Scarf (1959) for the news vendor problem).
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Figure 7: Comparison of mean asymptotic variance approximation EEn [Vpar(m∗)] (“Asymp. Ap-
prox.”) with realized sample variance estimate of VarEn,D[g(Θ̃n+m∗)] (“Sample Approx.”).

Another approach, taken by this paper, assumes that a number of parameters may need es-
timation, and that data sampling is possible to better infer their values before a final design is
chosen. Asymptotic approximations simplify the problem, and closed form solutions can be found
for a broad class of input distribution models. One advantage of this approach is its generality
for input models, and the ability to use a variety of gradient estimation tools, including but not
limited to regression with the BMA, a natural tool for exploring input parameter uncertainty. Our
approach was Bayesian, but some frequentist results emerge as corollaries.

Several issues warrant further exploration. The asymptotic variance approximation is poor for
some systems, including the M/M/1 queue where even the posterior mean of the system performance
may not exist. The nonexistence of moments might be avoided by making the model more realistic
(assume capacitated queues, run transient rather than steady state simulations), but nonnormal
approximations may be of use. Also, some Bayesian representations of parameter uncertainty
may have no obvious sampling mechanism for further inference. Nonetheless, the formulas in this
paper present an implementable mechanism for guiding data collection plans to reduce parameter
uncertainty in a way that in some sense effectively reduces performance uncertainty.

APPENDIX

A Reducing MSE with Bias Estimates

The paper principally discusses sampling plans to reduce an approximation to the variance of
the unknown performance, based on parameter variance and gradient information. The linear,
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Figure 8: Bias comparison using the optimal allocation for variance, measuring the predicted bias
and the empirical bias.

gradient-based approximation of the response function ignores bias introduced by naive estimates
of the mean due to any nonlinearity of g(·). Bias increases the mean squared error. In particular,
if θ = (ϑ1, . . . , ϑd) is a single parameter for which n data points have been observed, and Σn is as
in Equation (3), then the bias E[g(θ̃n)]− g(θ) is approximately

γn =
1
2

d∑

j=1

d∑

l=1

∂2g(θ̃n)
∂ϑj∂ϑl

Cov(ϑj , ϑl) =
1
2

tr
(
∇2

θg(θ̃n)Σn

)
, (15)

a well-known result obtained with a Taylor series expansion with linear and quadratic terms. The
MSE is (asymptotically) approximately Vpar + γ2

n. Informally, as n increases, Vpar decreases like
1/n and the bias-squared term decreases like 1/n2.

If Vpar(m) simplifies to Equation (8) with k ≥ 1 input parameters then the asymptotic estimate
for MSE after m samples are collected simplifies.

MSEn(m) = Vpar(m) + γ2
n(m)

γn(m) =
1
2

(
tr

k∑

i=1

∇2
θi

g(Θ̃n)
(
Σ−1

ini
+ (miH i(θ̃ini)

)−1
)

(16)

=
k∑

i=1

ζi

n0i + ni + mi
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Figure 9: Average fraction of samples m̄∗
s/B allocated for service times for the variance allocation

(always 50%) and the MSE optimal allocation for various n).

Table 2: Predicted Input Uncertainty Vtot(m,m0) as a Function of Sampling Budget B and
Resulting Optimal Sampling Plan (m1=Days of Arrival Data, m2=# ICU Service Times, m3=#
Intermediate ICU Service Times, m4=# Intermediate CCU Service Times, m5=# CCU Service
Times, m6=# Routing Decisions, q′ = m0/32=# Replications per Design Point)

B m1 m2 m3 m4 m5 m6 q′ Vpar(m) Vtot(m, r)
0 0 0 0 0 0 0 0 98.1 99.1

100 99 0 0 0 0 0 1 53.8 54.3
200 198 0 6 0 0 0 8 38.8 39.2
500 440 0 25 0 0 30 20 23.2 23.3

1000 794 0 78 6 0 115 28 14.0 14.1

where ζi = tr[∇2
θi

g(Θ̃n)H−1
i (θ̃ini)]/2. For the M/M/1 queue in Section 4.1,

γn(m) =
λ̃

(µ̃− λ̃)3
µ̃2

(αµ − 1 + ms)
+

µ̃

(µ̃− λ̃)3
λ̃2

(αλ − 1 + ma)
.

B Canonical conjugate prior distribution.

This section justifies the claimed simplification of Equation (4) to Equation (5) when (i) the like-
lihood is in the regular exponential family and has a finite dimensional sufficient statistic, (ii) the
prior distribution for the unknown parameter is a canonical conjugate distribution, and (iii) some
differentiability conditions hold. This section fixes typographical errors in Bernardo and Smith
(1994, Prop. 5.16).

If X has a likelihood model in the regular exponential family, with d-dimensional parameter
θ = (ϑ1, . . . , ϑd), the likelihood function can be written

p (x | θ) = a1(x)g(θ) exp




d∑

j=1

cjφj(θ)hj(x)


 (17)

for some a1(·), g(·), cj , φj(·), and hj(·). The conjugate prior distribution for θ with parameter
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n0, t = (t1, . . . , td) is

p (θ | n0, t) = [K(n0, t)]−1g(θ)n0 exp




d∑

j=1

cjφj(θ)tj


 , (18)

where K(n0, t) =
∫

g(θ)n0 exp[
∑d

j=1 cjφj(θ)tj ]dθ < ∞.
Suppose that the data x1, . . . , xn are observed. Set v`j = hj(x`) and v` = (v`1, . . . , v`d) with

sample average v̄n =
∑n

`=1 v`/n. Then nv̄n is a sufficient statistic for θ and the posterior distri-
bution of θ is p (θ | n0 + n, t + nv̄n).

A final reparametrization is useful. Set ψj = cjφj(θ) and ψ = (ψ1, . . . , ψd). Equation (17)
can be rewritten in what is known as canonical conjugate form (Bernardo and Smith 1994, Defini-
tion 4.12),

p (v` | ψ) = a2(v) exp
[
v`ψ

T − b(ψ)
]

for some real-valued a2(v), b(ψ). The canonical conjugate prior distribution is

p (ψ | n0, t) = c(n0, t) exp
[
n0tψ

T − n0b(ψ)
]
,

where n0, t = (t1, . . . , td) are parameters of the prior distribution.
Bernardo and Smith (1994, Prop. 5.16) note that the posterior distribution has the same func-

tional form as the prior distribution,

p (ψ | n0, t,v1, v2, . . . , vn) = p (ψ | n0 + n, n0t + nv̄n).

Further, if ψ̃ is the MAP estimator of ψ, then
(
Σ−1

n

)
jl

= (n0 +n) ∂2b(ψ)
∂ψj∂ψl

∣∣
ψ=ψ̃

. The claim is proven
by noting that the expected information in one observation is

(H(ψ))jl = E
[

∂2b(ψ)
∂ψj∂ψl

] ∣∣∣∣
ψ̃

=
∂2b(ψ)
∂ψj∂ψl

∣∣∣∣
ψ̃

.

The relationship also holds in the θ coordinate system if the map from ψ to θ is bijective in a
neighborhood of ψ̃.

C Proof of Proposition 4.2.

Using the method of Lagrange multipliers, we obtain the Lagrangian function

L(m, τ) = Vpar(m)−
k∑

i=1

τ (cimi −B)

=
k∑

i=1

ξi

n0i + ni + mi
−

k∑

i=1

τ (cimi −B) ,

where τ is the Lagrange multiplier. Set the (k + 1) partial derivatives to 0 to get

− ξi

(n0i + ni + mi)2
− τci = 0, for i = 1, . . . , k, and (19)

k∑

i=1

cimi −B = 0. (20)
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Equation (19) implies ξi/ci

(n0i+ni+mi)2
= ξj/cj

(n0j+nj+mj)2
. After some algebra we get

cj(n0j + nj + mj) =
(

ξjcicj

ξi

)1/2

(n0i + ni + mi). (21)

Equation (20) can be rewritten
∑k

j=1 cj(n0j + nj + mj) = B +
∑k

`=1 c`(n0` + n`). Substitute
Equation (21) into this expression to obtain

(n0i + ni + mi)
k∑

j=1

(
ξjcicj

ξi

)1/2

= B +
k∑

`=1

c`(n0` + n`). (22)

Algebraic rearranging gives the claimed result for the optimal m∗
i ,

m∗
i =

B +
∑k

`=1 c`(n0` + n`)
∑k

j=1

(
ξjcicj

ξi

)1/2
− (n0i + ni).

When B is sufficiently large, the constraint m∗
i ≥ 0 is satisfied as desired.

Acknowledgments: We thank Jim Wilson for thorough and helpful feedback.

Bibliography

Barton, R. R. and L. W. Schruben (2001). Simulating real systems. in submission.

Bernardo, J. M. and A. F. M. Smith (1994). Bayesian Theory. Chichester, UK: Wiley.

Box, G. and N. Draper (1987). Empirical Model-Building and Response Surfaces. New York:
Wiley.

Box, G., W. Hunter, and J. Hunter (1978). Statistics for Experimenters. An Introduction to
Design, Data Analysis and Model Building. New York: Wiley.

Buzacott, J. A. and J. G. Shanthikumar (1993). Stochastic Models of Manufacturing Systems.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Cheng, R. C. H. and W. Holland (1997). Sensitivity of computer simulation experiments to errors
in input data. J. Statistical Computing and Simulation 57, 219–241.

Cheng, R. C. H. and W. Holland (2004). Calculation of confidence intervals for simulation output.
ACM Transactions on Modeling and Computer Simulation 14 (4), 344–362.

Chick, S. E. (1997). Bayesian analysis for simulation input and output. In S. Andradóttir,
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