The Effect of Drone Strikes on Civilian Communication: Evidence from Yemen

Though covert warfare does not readily lend itself to scientific inquiry, new technologies are increasingly providing scholars with tools that enable such research. In this note, we examine the effects of drone strikes on patterns of communication in Yemen using big data and anomaly detection methods. The combination of these analytic tools allows us to not only quantify some of the effects of drone strikes, but also to compare them to other shocks. We find that on average drone strikes leave a footprint in their aftermath, spurring significant but localized spikes in communication. This suggests that drone strikes are not a purely surgical intervention, but rather have a disruptive impact on the local population.

In this note, we propose new ways to study the effects of unmanned aerial vehicles, which play an important role in America’s wars. Drones, fitted with missiles to track and target individuals or groups often in remote areas, are a weapon increasingly employed in conflict zones around the world (Weidmann, 2015; Berman et al., 2018). They can loiter above battlefields for 24 hours while pilots remain out of harm’s way (Williams, 2013). People on the ground, including the targets, do not know of an impending attack until seconds before a missile makes impact. The U.S. army and the CIA have launched drone strikes targeting suspected militants in Pakistan, Yemen, and Somalia.
Existing attempts to study the effects of drone strikes confront a paucity of information. Some scholars assail them as ineffective and even counterproductive (Boyle, 2013; Hazelton, 2017). Others contend the opposite: they inflict little harm on civilians and decimate terrorist organizations (Jordan, 2014; Mir, 2018; Mir and Moore, 2019). It has proven difficult to settle these debates as these new forms of stealth warfare are by their very nature hard to study using existing methods such as in-the-field interviews, survey experiments or randomized control trials (RCTs). Even when possible, these means of data collection are likely to be confronted with several sources of bias (Blair et al., 2013; Beath et al., 2013; Blair et al., 2014). Our research note highlights how tools from emerging technologies such as big data and improved computational methods could be effectively brought to the task.

Specifically, we overcome obstacles associated with data collection by examining how exogenous drone strikes impact levels of communication, with an original dataset of over 9-billion call detail records (CDRs). These CDRs consist of time- and antenna-stamped indicators of calls, offering high temporal and spatial resolution along with extensive coverage. Researchers have drawn on cellphone data generally (Eagle et al., 2009; Gonzalez et al., 2008; Blumenstock, 2012, 2016) and CDRs specifically, to examine the change in patterns of communication after emergencies (Candia et al., 2008; Bagrow et al., 2011). But leveraging CDRs to study conflict in particular is both novel and, we believe, a promising way to shed light on the impact of opaque phenomena, such as drone strikes, on civilians in data poor contexts (Lazer et al., 2014; Bertolotti et al., 2020).

We spatially combine call data with information on drone strikes from the New America Foundation and the Bureau of Investigative Journalism (SI Data Appendix). We focus our examination on the effects of drone strikes on nationwide cell phone usage in Yemen from 2010 to 2012, a critical time when al-Qaeda took control of swathes of territory and the
United States escalated its campaign of drone strikes in response.

The large scale of our data lends itself to anomaly detection methods analysis, which enables us to examine the intensity and duration of individual strikes. Our anomaly detection methods achieve this by constructing a statistical model for “normal behavior” using a training dataset, and then calculate the likelihood that a test instance has been generated from the learnt model. If a test instance has sufficiently low probability of being generated from the “normal” model, it is considered an anomaly. Anomaly detection analysis not only overcomes the limitations of traditional fixed effects methods, which only provide a reliable estimate of the average effect of drone strikes, but also gives us better contextual understanding of the effects as it allows for comparisons of drone strikes to other violent and non-violent events.

Our work suggests that the impact of drone strikes in Yemen is not purely surgical. Violence causes persistent disruptions to those living nearby - even when it is as “precise” as a drone strike. Rather than affecting only militants, they appear to have a wider ripple effect on the civilian population in the broader strike area. As the United States increasingly moves away from deploying boots on the ground and turns to indirect means of warfare, these effects are worth bearing in mind. As well, we find that drone strikes have a higher impact than al-Qaeda attacks in Yemen, even though the latter get more media attention.

These findings suggest that CDRs can be leveraged for modeling and predicting the full impact of conflict, including hard-to-measure phenomena such as drone strikes or militant attacks. Furthermore, our findings allow for the comparison of drone strikes to other violent and non violent categories such as conventional strikes and civilian targeted attacks, as well as religious holidays and popular sports events. However, although we identify an increase in call volume, we are unable to assess how this increased communication facilitates the continuation or end of a conflict, and how militant groups might use such
events to recruit supporters in affected areas as we have no information on the content of the calls. These remain important questions for future study.

As such, our note highlights the need for a broader research agenda on the theories and mechanisms behind big data empirical research on covert warfare. With our discipline shifting towards big data empirics and machine learning tools, traditional in-the-field survey work and qualitative research will remain an essential complement for scientific inference.

Theory

Existing literature has examined the effects of drone technology on a variety of dependent variables. These include the organizational longevity or capacity of the group (Price, 2012; Jordan, 2014; Shah, 2018), the group’s ability to carry out terrorist attacks (Johnston et al., 2016), and long-term stability of and relations with the target country and its population (Johnston, 2012; Boyle, 2013; Horowitz et al., 2016). We extend this research by examining the broader impact of drone strikes on civilian daily life. As noted by scholars, civilians have a significant impact on the dynamics of conflict, as they are capable of both aiding insurgents or cooperating with the government (Berman et al., 2018).

We measure the impact of drone strikes on civilian lives by utilizing changes in real-time call volume during drone strikes. In the broader literature, call volume has been frequently used as a proxy to measure the scale and duration of an emergency among the general population (Wang et al., 2020). For instance, it has been used to address an array of issues ranging from natural disasters (Tomaszewski, 2014), to the spread of disease (Baldo and Closas, 2013; Lima et al., 2015; Tompkins and McCree, 2016; Mari et al., 2017), and population displacement (Bozcaga et al., 2019). Furthermore, call volume has
been used to measure other social phenomena such as socio-demographics and poverty levels (Blumenstock and Eagle, 2012; Blumenstock, 2016).

In this way, measuring changes in call volume can proxy to what extent people register drone strikes as physical threats and social disruptions. As noted by Bertolotti et al. (2019), changes in call volume are also associated with other broader negative outcomes such as civilian displacement. Such disruptions are also likely to impact civilian support for operations against militants (Boyle, 2013; Horowitz et al., 2016).

Data

Drone strikes in Yemen have a relatively long history: indeed, the first American drone strike outside of a war zone occurred in Yemen in 2002, when the U.S. killed a member of al-Qaeda who was believed to be behind the attack on the USS Cole in 2000. According to the New America Foundation, there have been over 370 U.S. drone strikes in Yemen that have killed over 1200 militants. Between January 2010 and October 2012, the United States launched 108 drone strikes and other covert actions in Yemen. Drone strikes peaked in 2012 as part of a larger campaign to retake territory from Islamic movements in the aftermath of the 2011 Yemeni revolution. Each entry in the strike dataset includes the date, location, and estimates for militants killed and civilian casualties. For most strikes, we also know the estimated time of day of the strike, the type of target, and whether militant leaders were killed. Figure 1 shows drone strike locations for the period we examine. Many strikes occurred in the southwestern towns of Zinjibar and Jaar, where government forces battled Islamist groups for control. The majority of strikes caused fewer than ten casualties each (Table S1).

With the cooperation of a major cellphone service provider in Yemen, we obtained
Figure 1. Drone Strikes in Yemen (2010-2012)
We label as high-casualty strikes the strikes with ten or more total casualties. See Table S1 for summary statistics.

nationwide CDRs for our three years of interest. This trove of data, encompasses more than 9 billion incoming and outgoing calls by 40 million distinct and fully anonymized phone numbers. For each call, we possess a unique anonymized identifier for who initiated the communication and for who received the call; the start and end time of the communication;
and an identifier of the tower that serviced the communication on the side of the initiator and recipient. We also obtained information on the location of each cellular tower.

The data are broadly representative of communication patterns among Yemenis. In 2010, Yemen’s population stood at 23.5 million, and though it had low Internet penetration and no mobile data network available at the time, a large proportion of Yemenis owned cell phones and predominantly drew on them during this period to make calls, rather than access the Internet or social media sites (Gelvanovska et al., 2014). Figure 2 plots the total number of daily calls serviced by all towers across Yemen in our data. Daily call volume increased on average from around 7 million in early 2010 to over 13 million in late 2012.

Results

We present two sets of empirical results. First, we use a traditional panel setup with two-way fixed effects that exploits the temporal and spatial variation in drone strikes. Thus, our strategy is similar in spirit to a difference-in-differences approach that uses the variation of drone strikes over space and time to control for possible space- or time-specific effects. However, it must be acknowledged that this design does not strictly allow for making causal inferences (Papadogeorgou et al., 2020).

Our main dependent variable is call volume (incoming and outgoing), which captures levels of civilian communication in Yemen. To account for the fact that people’s call patterns differ by time of day, we divide the day’s calls into three tighter eight-hour intervals: morning, midday, and evening. Subsequently, we aggregate our spatial data by eight-hour intervals for each unique tower location. To account for overall call volume increases over time between 2010 and 2012, we normalize call volume. Our main treatment variable is the occurrence of a drone strike within a given proximity.
Figure 2. Daily Call Volume across Yemen
The volume includes incoming and outgoing calls in our data. Ramadan periods are highlighted in yellow.

The results in Figure 3 indicate that the impact of drone strikes is strongest for towers within a short range of five to 25 miles. Drone strikes increase call volume by about one fifth of a standard deviation on average, representing about 850 calls during an eight-hour span for each of the surrounding towers. The impact remains significant on towers within
a 100-mile range, although the effects are weaker (about one tenth of a standard deviation).

![Figure 3](image)

Figure 3. Impact of Drone Strikes on Call Volume.
The plot shows the coefficients and 95% CIs from separate regressions using our OLS panel two-way fixed effects regression. Our model includes fixed effects for the tower and month and a covariate for uncertainty of the time of the strike. Standard errors are clustered by tower.

Our results are robust to different model specifications (Table S2, Table S3) and varying measures of call volume (Table S4, Table S5). We also show that our results are
not driven by tower shutdowns, drone strikes during conflict, the holy month of Ramadan, multiple drone strikes on the same day, or bots (Table S6). We also test whether call volume depends on the nature and number of targets. We rerun our main specification with a series of interaction models. We find that drone strikes have a larger impact on call volume when there are more casualties. Though militant casualties prove more influential than civilian ones, militant rank does not play a role (Figure 3).

While the fixed effects methods provide a reliable estimate of the average effect of drone strikes, we also employ anomaly detection methods to learn about the impact of individual strikes, including the duration and intensity. Our anomaly detection methods apply a statistical test to compare the observed volume of calls during each five-minute interval against a baseline sample of “normal behavior”, and determine whether the realization is likely to be part of normal behavior, or rather is anomalous (Figure 4).

We test three prominent anomaly detection methods on the classification task of deciding between strikes and non-strikes, based only on the volume of calls, and without knowledge of whether a strike happened or not.¹

Using the selected anomaly detection settings, we detect up to 58.1% of all strikes with a tower within fifteen miles in the dataset, indicating that the majority of strikes have a significant impact on communication patterns in Yemen. Across our selected detection settings, we find that the median duration of a call volume anomaly among the

¹As noted in our Appendix on anomaly detection methods, the detection settings are selected so as to maximize the area under the ROC (Receiver Operating Characteristic) curve (AUC). For a given ROC curve, the detection threshold is selected so as to maximize the true positive rate of the classifier, subject to restricting the false positive rate below a threshold, thus balancing sensitivity and specificity. All the proposed anomaly detection methods have an AUC higher than 0.70 (Method 1: 0.710, Method 2: 0.728, Method 3: 0.736), indicating a good classification performance (Figure S1, Figure S2)
Figure 4. Spikes in the Call Volume Due to Strikes. Call volume over time on the day of the strike, in red, as compared to call volume on 20 baseline days (same day of the week, for the ten weeks preceding and the ten weeks following the attack), in blue, for four strikes that our anomaly detection methods detect.
detected strikes is between 75 and 100 minutes (Figure S3). The median largest deviation in the volume of calls (z-value) during a five-minute interval is about four to five standard deviations above the mean volume (Figure S3). Overall, we find strong evidence that drone strikes have a notable impact on patterns of communication, and that our results are not driven by a few well-publicized strikes.

Drone strikes are just one type of shock detected by our anomaly detection methods. To place them in context, it is important to analyze other shocks as different event attributes (type of violence, localization, and duration) can contribute to how people react to an event. Thus, we compare the effects of drone strikes to other violent episodes, such as al-Qaeda militant attacks and the bombing of Yemen’s Presidential Palace during the Arab Spring; the religious holiday marking the end of the Islamic holy month of Ramadan (Eid al-Fitr); and the big sports event of 2010 men’s soccer FIFA World Cup final.

Our results suggest that instantaneous violent events, such as drone strikes and the Presidential Palace bombing during the Arab Spring, yield significant but localized effects on call volume. On the other hand, Al-Qaeda attacks, which are violent but protracted events in the Yemeni context as they include battlefield combat, register no such effect (Figure 5). As for nonviolent phenomena, consistent with expectation, we find they have a countrywide rather than a localized effect: Yemenis across the country make many more calls on the religious celebration of Eid al-Fitr than on a typical weekday during Ramadan. The World Cup final, a popular event in soccer-loving Yemen, causes nationwide spikes in call volume corresponding to key junctures during the game (Figure 5).
Figure 5. Detection of Non-Drone Strike Events. The call volume the day of the event, in red, is compared against the baseline call volume, in blue.
Discussion

Three U.S. presidents since 2001 have embraced drones as a preferred means for striking suspected militants. As demand for such actions continues, we find that drone strikes are disruptive, leaving a clear and measurable communications footprint. The methods and data presented in this work provide a framework for combining machine learning techniques with other analytic tools to capture the effects on cellphone communication brought about by exogenous violent shocks such as drone strikes. While we hope this starts a broader research agenda on the theory and mechanisms behind this effect, we want to emphasize the added value of analytic tools, as our analysis combines results from a traditional panel fixed effects model with anomaly detection methods. Beyond providing robust empirics, this combination allows us to quantify the effects of drone strikes and compare them to other shocks such as bombings, al-Qaeda attacks, or important religious and social events. Our findings suggest that drone strikes have a disruptive effect with a notable local increase in communications, a result consistent with other work that finds that drone strikes cause information cascades within networks as well as increased displacement (Bertolotti et al., 2019).

The nature of the data, however, divulges nothing about the content of those calls or how militants, religious leaders, or other influential figures may use them as rallying cries for increased violence (Hudson et al., 2012; Dafoe and Lyall, 2015; Shapiro and Weidmann, 2015). Traditional shoe leather, in-the-field data collection in the form of interviews or survey work will thus remain an important complement to contextualizing such big data work.
References

Tompkins, A. M. and N. McCreesh (2016). Migration statistics relevant for malaria
transmission in Senegal derived from mobile phone data and used in an agent-based migration model. *Geospatial health* 11(1 Supp), 408.

