

VC investment analysis

Quantum Computing

April 2018

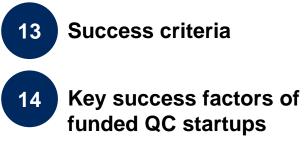
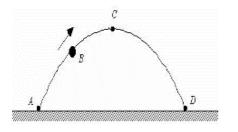

Julian Diederichs Ritika Goyal Gonzalo Laffitte Michael Mueller Rafael Scaglia de Paula

Table of contents

Success criteria

Interview summary


Interview insights

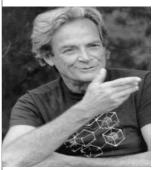
1. Quantum computing as an alternative to classical computing was thought up by Feynmann in 1982

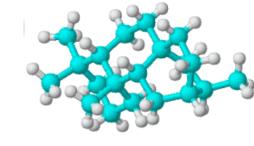
In the macroscopic world the laws of classical mechanics rule

Isaac Newton (1643-1727)

$$F_m = ma; \quad a = \frac{d^2x}{dt^2}$$

643-1727)


Characteristics of classical behavior:


- Deterministic: end result of a physical situation can be predicted deterministically and is always the same given equal starting points.
- Causal: action is reaction one thing leads to another.

Classical computing is ruled by classical mechanics, but it has limits:

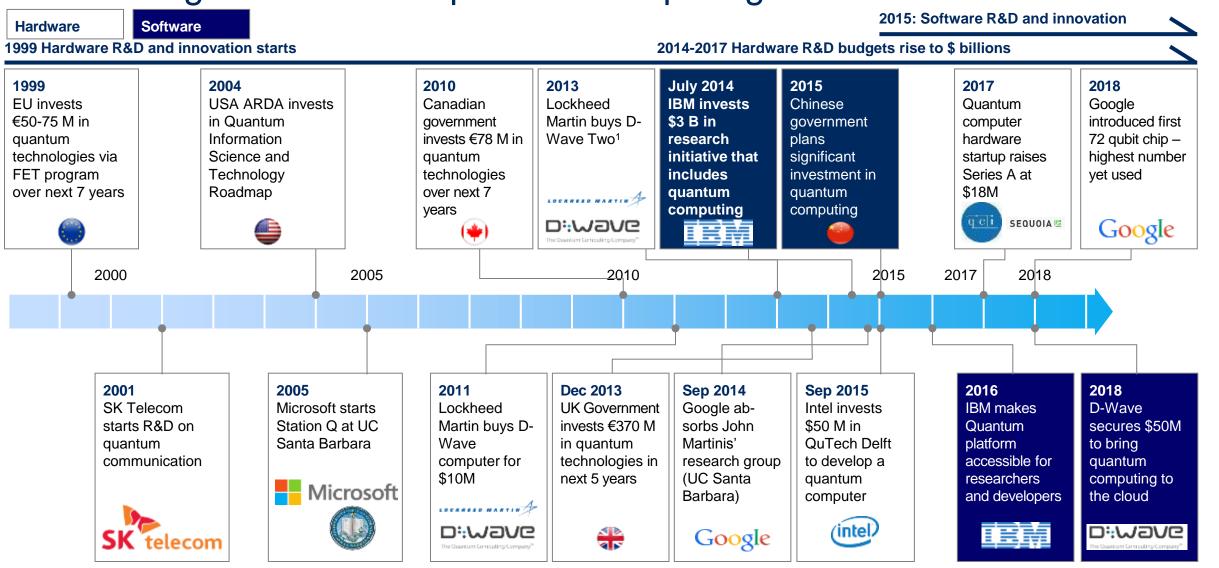
- Moore's/Amdahl's Laws: Number of transistors doubles every 24 months. Benefits of parallelization.
- Limit: As transistors' size reaches the size of an electron, it's behavior is governed by quantum mechanics, not classical.
- When: Current commercial size is 5nm transistor. 1-3 nm is predicted as limit and that will happen as soon as 2022.

On a subatomic scale, the laws of quantum mechanics rule

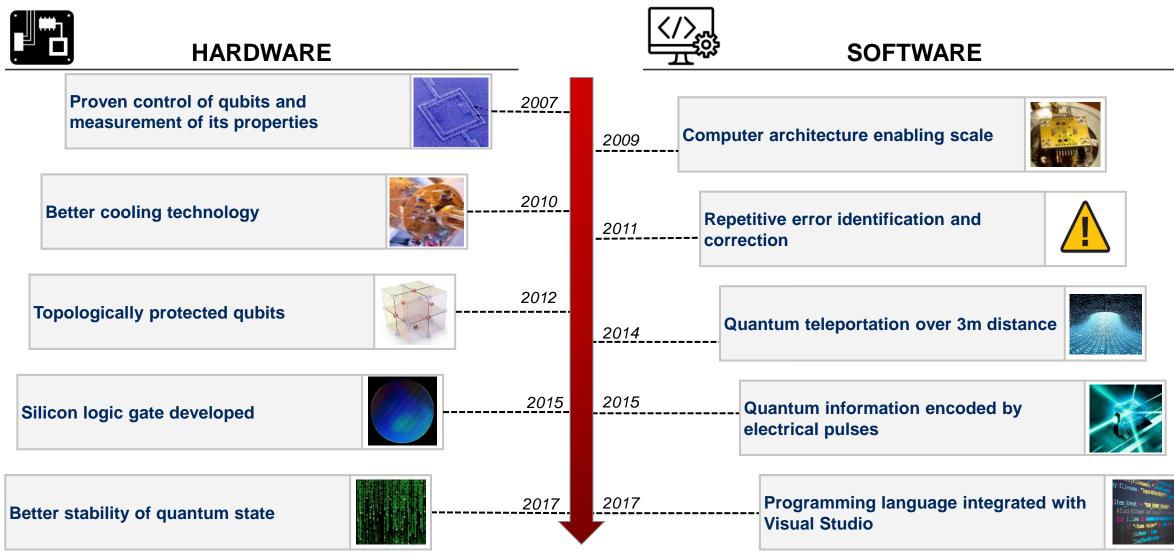
Richard Feynmann (1918 – 1988)

$$H(t)|\psi(t)
angle=i\hbarrac{\partial}{\partial t}|\psi(t)
angle$$

Characteristics of quantum mechanics:


- Superposition: object can have multiple states simultaneously
- Entanglement: quantum states of particles are correlated even though spatially separated

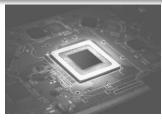
Measurement paradox: measurement affects outcome, there is no single outcome unless it is measured


How quantum mechanics can be the answer to the limits of classical:

- **Storage:** 20 q-bits can store a million variables in parallel.
- Reading time: as q-bits values are correlated, reading just one gives you information about the rest.
- Calculations: Using superposition and entanglement, quantum computers can calculate all possible calculations solutions at once.

2. Only since 2014 we have seen a massive uptake of industry interest and funding in the field of quantum computing

3. Recent investments in scientific and technological developments have brought feasibility and application of quantum technology closer



Notes: Non-exhaustive selection of developments (other developments can be found online https://en.wikipedia.org/wiki/Timeline_of_quantum_computing) Source: Internal research

4. However, experts believe that universal quantum computing is not going to be viable in the next five years

What is needed to have a commercially available quantum computer?

Processing power (Qubits quantity)

• Large number of qubits for processing power and error correction

Experts' opinions:

"To be useful (logic + error correction) a quantum computer would need at least 1 million qubits! I cannot see it happening in the next 10 years" Visiting Professor and Principal Investigator, Centre of Quantum Technologies at NUS

- "It is hard to say when we are going to see an useful quantum computer. It may happen in 5 years, it may happen in 15."
 - Associate Professor and Principal Investigator, Centre of Quantum Technologies at NUS

Stability (Quantum coherence)

 Protection of quantum state from decoherence during calculation and measurement in large scale systems

"Decoherence is the biggest obstacle today. Today we can maintain a quantum state for just a few microseconds"

> Visiting Professor and Principal Investigator, Centre of Quantum Technologies at NUS

"In the beginning it was a physics problem, but today is an engineering problem. The greater the number of qubits, the harder it gets to isolate the system" Visiting Professor and Principal Investigator,

Centre of Quantum Technologies at NUS

Quality (Error correction)

• Error identification and correction to assure a confident output from calculations in large scale systems

"We have seen experiments demonstrating quantum error correction on small systems. A universal errortolerant quantum computer is still a long way off" Visiting Professor and Principal Investigator, Centre of Quantum Technologies at NUS

"QC 'real advantage' will happen with +1000 error corrected qubits. My expectation is 5 to 15 years."

> CEO, Quantum software Startup

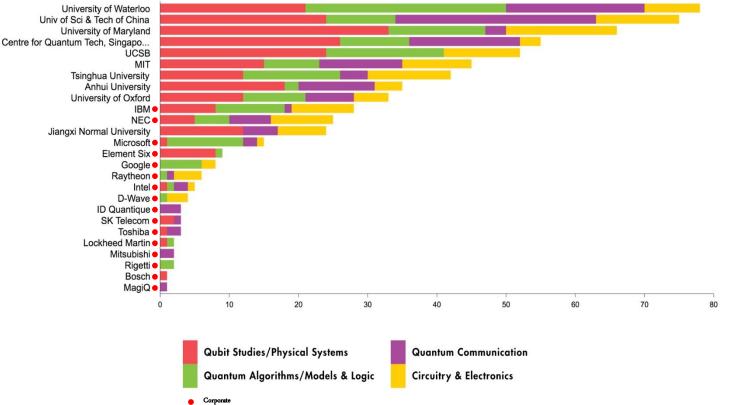
5. Processing power and quantum physics drive use cases of quantum computing – algorithms for which have been around for +20 years

Use cases	Description	Development Reason & Current stage	Current Challenges & Barriers	Maturity of algorithms and key players
1 Quantum Simulation	Special purpose quantum systems used for simulating behavior of quantum mechanical systems, i.e. molecules, materials	 Molecules' simulation is a quantum mechanics problem and suitable for quantum computer Mathematical formulation of algorithms is well- known among scientists and professionals Largest molecule simulated (BeH₂) has only 3 atoms and used 6 qubits 	 Larger molecules would need a massive number of qubits: caffeine, with 24 atoms, would require ~1000 qubits Results are not perfect due to errors in quantum calculations 	 Universities' research departments Corporations (eg. Google, Microsoft, IBM)
2 Encryption (Prime factorization)	Prime factorization in order to break encryption and get access to (military) intelligence	 Mathematical formulation of algorithms that crack encryption are well-known Current algorithms, such as Shor's Algorithm (formulated in 1994), can break RSA cryptography (widely used for secure data transmission) 	 Need for qubit scalability: a RSA-15 key requires 5 qubits to have a confidence level of 99% Terabyte-size RSA keys may require large amounts of time in a quantum computer 	 Universities' research departments Corporations (eg. Google, Microsoft, IBM) Governments' intelligence and security departments
3 Big Data computing	• Applications for data mining (Big Data), machine learning and optimization problems applied to the most suitable for quantum computing problems	 Algorithms have been proposed, but just a few have been through an implementation tentative (still few proof-of-principle demonstrations) Currently few wide-spread algorithms, such as Grover's searching database algorithm 	 Large number of qubits, with improved characteristics Error still high: need to achieve error correction threshold by increasing number of error-correcting qubits 	 Universities' research departments Corporations (eg. Google, Microsoft, IBM) Governments' intelligence and security departments
4 General purpose computing	General purpose computing that allow generic algorithms for different types of problems	 There is no existence of general purpose machine No algorithms in different class of problems than previously stated Quantum physics Processing power 	 Large number of qubits, with improved characteristics Error-correcting qubits to improve precision and reduce noise General purpose suitable problems for quantum computing algorithms 	

Source: Companies' and Universities' website, Internal research

6. Based on quantum characteristics, specific application fields are suitable for QC adoption

			STATUS QUO – CLASSICAL	QC VALUE-ADD	QC DEVELOPMENTS
Chemistry	Catalyst reactions and Material Discovery	Ł	Classical computing limit is at a molecule with 50 electrons, with errors.	Molecules are formed following quantum mechanics' laws. Quantum computers inherently show quantum characteristics and are expected to model larger molecules in the future.	Simulation to date limited to small molecules (beryllium hydride, lithium hydride, and hydrogen)
Q Chen	Drug development		Trial and error - it takes pharmaceutical companies up to 10+ years and billions of dollars to discover a new drug and bring it to market.	Understanding the interactions of drugs with proteins will be much more accurate, faster and cost effective by harnessing the power of QC	Biogen, Accenture and 1Qbit have show- cased in a joint effort the potential to speed up drug discovery for diseases such as multiple sclerosis, Alzheimer's and Parkinson's.
	Cyber Security	<u></u>	Significant share of encrypting currently based on RSA and Elliptic-curve cryptography.	Shor's algorithm can solve the factorization problem, but requires powerful computing, such as QC.	Technology resistant to Quantum hacking is being developed already by top universities and startups. The flipside is the increased security that could be offered and needed with quantum-based cryptography.
Optimization	Supply Chain and Logistics		Classical computing at its limit trying to solve large scale optimization problems.	Quantum gates are able to produce all possible solutions at once using entanglement and superposition.	Research to date limited to study and development of algorithms for semi-definite problems, but not implementations or test cases to date.
Optin	Financial Modelling	\$	Advanced portfolio optimization (returns, risk) done using time-intensive and inefficient Montecarlo simulations	Quantum gates are able to produce all possible solutions at once using entanglement and superposition.	Current size of problems that can be solved is small. Optimizing a portfolio of 3 assets already requires 84+ qubits – <u>1Qbit</u> <u>experiment</u>
	Artificial Intelligence and Machine Learning		Classical computing at its limit trying to solve large scale AI/ML problems	QC enabled algorithms, such as Grover, can accelerate data based search problems.	Enormous potential for applications such as Voice, Image and writing recognition. Use cases: <u>Lockheed Martin</u> (autopilot), <u>Google</u> (Self-driving)


7. Technology incumbents are getting involved in QC activities, increasingly also on the software side

	Companies ¹⁾	Recent headlines	Role in the quantum computing ecosystem		SW
	Google	 Released Bristlecone a 72 qubits system, in 2018 Started Google's Artificial Intelligence Lab in partnership with John Martinis' research group and NASA in 2014 	 Currently one of the strongest player in the ecosystem with its proprietary research and its investment in D-Wave 	\checkmark	\checkmark
 US tech incumbents — 	Microsoft	 Recently previewed a quantum computing development kit Started own research center Station Q in 2005 at UCSB and supports several research groups around the world to develop a reliable topological qubit 	 Microsoft has been working on full-stack solutions including hardware platforms, software and programming languages/ SDKs 	\checkmark	\checkmark
	IBM.	 Announced a 50 qubits system in 2017 Has in-house quantum research group which aims to develop an end-to-end quantum computer based on superconducting qubits 	 Seeks to be a leader in QC ecosystem and wants to drive developers to their cloud platform with SDK 	\checkmark	\checkmark
	(intel)	 Announced a 49 qubit system in 2018 Starts a ten year intensive collaboration with QuTech Delft in 2015 to develop a fault tolerant quantum computer 	 Seeks to be the leader for quantum computing chips, however covers full stack through collaboration with QuTech 	\checkmark	\checkmark
	Hewlett Packard Enterprise	 Runs a Quantum Information Processing (QIP) Group in their HP lab Focus on quantum computation, cryptography and teleportation/ communication 	 Limited information of HPE's strategy available 	\checkmark	
— China	Alibaba Group 阿里巴巴集団	 Cloud service subsidiary Aliyun ("Alibaba Cloud") and the Chinese Academy of Sciences jointly launched an 11-qubit quantum computing service, which is available to the public on the Quantum Computing Cloud Platform 	 Compete for leading role in China, trying to establish standard with its cloud solution 	\checkmark	\checkmark
	Bai db 百度	 Announced the launch of a quantum computing institute with over \$15 billion funding for the next 5 yers Plan gradual integration of quantum computing in their core business 	Compete for leading role in China, currently far behind Alibaba		\checkmark
Ē	HITACHI	 Started the Hitachi Cambridge Laboratory in 1989 Publicly reporting activities in quantum experimental and theoretical research 	 Currently focusing on basic research through Hitachi Cambridge Lab 	\checkmark	
Others -	TOSHIBA Leading Innovation »	 Develops technologies to make Quantum Key Distribution commercially available, including use of QKD over single optical fibre 	Aims to be a leader in quantum cryptography	\checkmark	
	NOKIA Bell Labs	 Bell Labs is a leader in research on topological quantum computational qubits that would allow more robust quantum computers 	 Focus on basic research 	\checkmark	

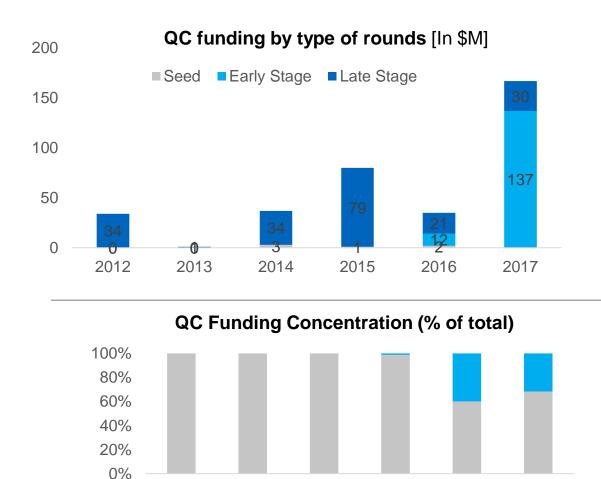
Notes: 1) Non-exhaustive selection of companies (other companies on the watch list include Lockheed Martin, Raytheon, Airbus, Amgen & Biogen) Source: Company websites, desk research

8. Academic research in QC is led by North America and China – Singapore is recognized as global leader

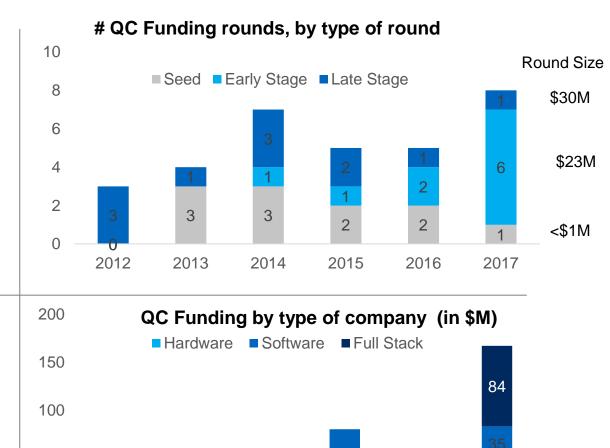
Leading academic institutions & organizations in quantum computing [# of publications; as of July 2017]

Additional information & comments

University of Waterloo, Canada: Institute of Quantum Computing (IQC) was launched in 2002 and initially funded by Mike Lazaridis (Founder of RiM/BlackBerry)¹⁾

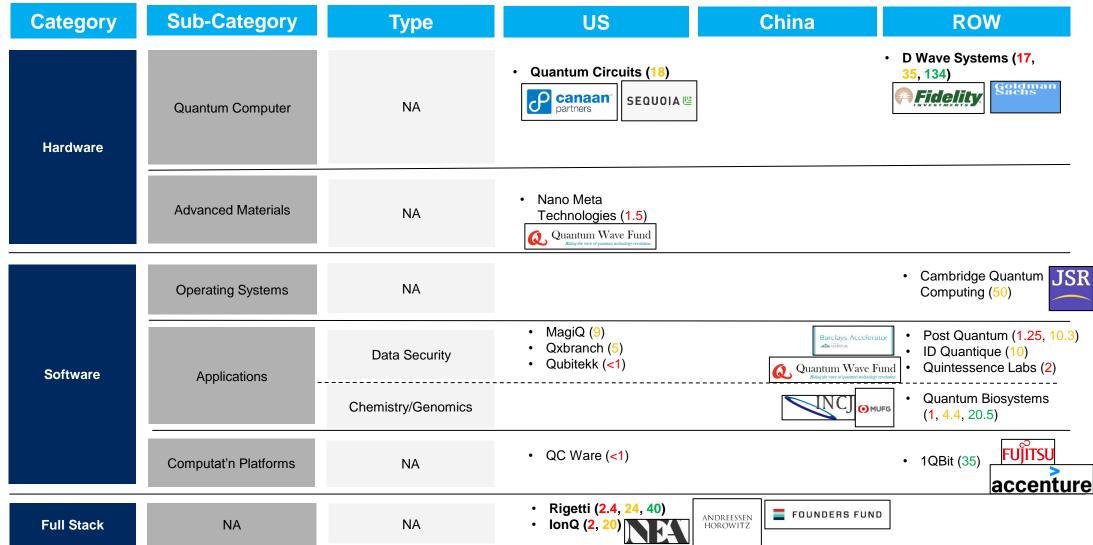

University of Science & Technology, Anhui, China: Leading institution in China under the leadership of Pan Jianwei ("Father of Quantum"), new quantum research supercentre with US\$ 10 Billion funding to be opened in 2020

JOINT SUANTUM INSTITUTE **University of Maryland**, USA: Joint Quantum Institute (JQI) is a leading US American research institute in Quantum Computing; Founded in 2006; less focus on Quantum Communication than IQC and USTC



Corporate research centers of **IBM** (IBM Q)²⁾ and **NEC** leading among non-academic institutions in number of publications

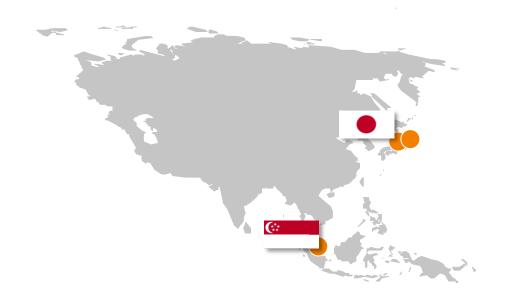
Notes: 1) As of January 1, 2017, IQC personnel includes 26 faculty members, three research assistant professors, 36 postdoctoral fellows and over 100 students 2) www.research.ibm.com/ibm-q/ Source: quid.com; Scopus; websites 9. Funding for QC startups is increasing over the years- with more software/full stack companies getting funded at seed and early-stage


Others

Source: Secondary Research

🗖 D::Wave rigetti

10. Startup creation and funding in operating systems and data security apps space is on the rise

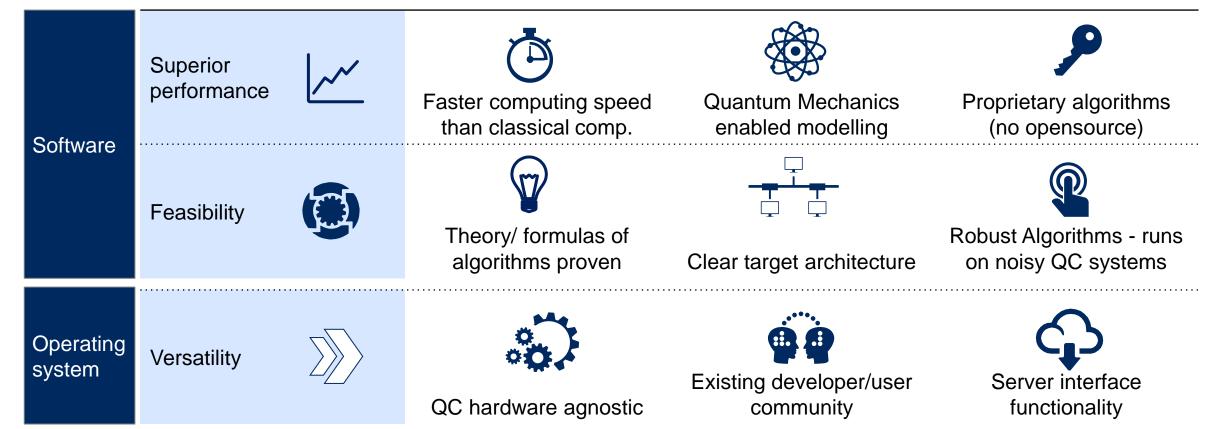


Bold means funded by marquee investors e.g. Sequoia, A16Z, Goldman Sachs, Google Capital

Source: Secondary Research; Note: Numbers in brackets indicate amount raised till date in USD M: colors indicate seed, series A, series B. Included startups with ~\$1M funding or above

11. Most QC start-ups in South East Asia and other Asian markets are in nascent stages

Desk research, VC databases and several interviews with quantum computing experts allowed us to identify only two early-stage startups, and one growth-stage startup in the target region


All startups in the region currently focus on software					
	Tokyo Quantum Computing	HORIZON	B		
HQ	Tokyo	Singapore	Osaka		
Year of founding	2017	2018	2013		
CEO Profile	BS, MA & PhD ('03), Physics, Tokyo Metropolitan University	PhD, University of Oxford ('07), 5+ years at Centre for Quantum Technologies, Asst Prof at SUTD	MS, Analytical BioChem, University of Tokyo, MBA, Columbia University, McK, Innovation Network Corp of Japan		
Investors (\$ funded)			JAFCO, Mitsubishi UFJ Capital, Innovation Network Corporation of Japan (\$26M)		
Focus area	Computational software: Quantum annealer simulation software	Software dev tools to help engineers write applications for quantum computers	Low-cost, high-throughput, real time DNA sequencing platform based on quantum mechanics		
Website	To-qc.com	Horizonquantum.com	Quantumbiosystems.com		

12. All kinds of capital chasing QC startups- from traditional VC, government grants to venture debt- most not following a deep thesis at this point

NAME	COUNTRY	INVESTMENT THESIS	HW/SW	INVESTMENTS	INVESTMENT TIMELINE	AVG ROUND SIZE
ANDREESSEN Horowitz	USA	Full Stack approach- allows for rapid testing and pushing innovation on all fronts- chips, programming language, fab units	Full Stack	Rigetti (Series A, Series B)	2017, 2017	\$24M -\$40M
Data Collective	USA	Deep tech investments to transform existing giant industries	Full Stack	Rigetti (Series A, Series B)	2017, 2017	\$24M -\$40M
E FOUNDERS FUND	USA	Focused on taking technology risk and funding revolutionary tech in – advanced machines/computing power/biotech	Full Stack	Rigetti (Series A, Series B)	2017, 2017	\$24M -\$40M
	USA	Accelerator with focus on B2B startups	Full Stack, Software	Rigetti (Seed) , QC Ware (Seed)	2014, 2015	<\$1M
EPSRC Engineering and Physical Sciences Research Council	UK	Focused on hardware investments- in spaces where lab prototypes are already beating classical counterparts e.g. quantum sensors	Hardware	QT Hub for Sensors, Networked Quantum Information Technologies	2014, 2013	\$100M-\$400M grants
Quantum Wave Fund Refing the rate of quantum inclusively revolution	USA	Focused on investing in companies with developed products (not idea/research stage) in the QC space- specifically in areas of quantum encryption security, new materials and quantum devices.	Hardware , Software	Nano Meta Technologies (Seed), Quintessence Labs (Series A)	2013, 2013	\$1-6M

13. Successful quantum computing software applications depend on superior algorithm performance, and close-to-market feasibility

For QC OS versatility is the key evaluation criteria

14. Evaluation criteria matches success factors of current QC software

startups		Cambridge Quantum Computing	Post-Quantum	
	HQ	Cambridge	London	
	Year of founding	2014	2009	
	CEO Profile	BA Hons, Univ of London SOAS, Partner- Stanhill Capital Partners	BSc Civil Engg, MSc in Mgmt Science- Imperial College, Carlyle, JP Morgan	
	Investors (\$ funded)	JSR Corporation (\$50M)	AM Partners, Barclays Accelerator (\$12M)	
	Focus area	Quantum computing O/S, compiler and some Applications in the field of Data Security	Quantum resistant data security solutions. Developed apps such as encrypted data sharing, enterprise-grade secure voice and messaging app, biometric authentication, quorum based consensus approval	
	Business Model	Licensing	Licensing + API as a service for some applications	
	Key Success Factors	 QC Hardware Agnostic Modular design allows for optimization for each hardware type Platform agnostic: works with all gate based platforms that generate, measure, manipulate qubits Robust Algorithms: developed using a proprietary custom designed high speed supercomputer to accurately simulate a quantum processor 	 Prop algorithms: 20 patents granted and pending approval for its technology Modular approach: Targeting multiple industries/customers with host of modular solutions that can be mixed/matched Tech expertise: crypto experts panel to pressure test algorithms for 'cryptographic robustness' 	

15. Industry experts are aligned with academics that commercially viable QC is still a decade away Academics Industry

ADOPTION OF QC

 "QC advantage" will happen with stable (error corrected) qubits between 100-1000. Expectation: 10-15 years.

 OS development stands as a crucial enabler, not so much as a common platform but as a framework for developers (libraries, toolkits)

- Since 1998 we hear that QC is going to play a big role in the near future.
- Since 2016 we feel in academia additional money and search for talents in the QC space – almost 50% of the Singaporean QC lab was hired by Chinese tech companies.

AREAS OF APPLICATION

• The most likely areas of application in the near future are optimization (portfolio, schedule, logistics) due to low sensitivity to noise and error.

• Grover's algorithm enables quadratically faster large scale database search and could disrupt recommendations systems, machine learning and risk management.

• New quantum safe encryption standard to be defined next year, driving adoption of quantum security.

 Currently no viable commercial applications of QC and not expected in the next five years.

PROMINENT PLAYERS

- D-Wave model is very different to that of Google or IBM. Is focused on optimization problems and will probably never be able to solve Quantum Mechanics related problems.
- No one exactly knows what the D-Wave's 2000 qubits QC is
- NA is forefront of QC R&D, Europe follows and APAC currently behind. APAC QC hubs are Japan, China, Australia, Singapore.
- IBM's top QC startups: Zapata Computing, Strangeworks, QxBranch, Quantum Benchmark, QC Ware, Q-CTRL, Cambridge Quantum Computing (CQC), 1QBit – Link
- After Chinese govt. announced USD +10bn investments in QC hardware, Chinese software players are also investing heavily, focusing on SW (e.g. Alibaba USD +15bn)

16. Case Study: QC Software Startup- QxBranch

Company Description

- Spinoff from Aerospace Concepts, another Quantum Computing venture
- Develops and tests commercial applications for quantum computing. It is betting on the computer power of QC to develop solutions for optimization problems and use Machine learning for AI.
- HQ is in Washington, D.C., with offices in Hong Kong, London, and Adelaide, Australia.

Focus

- Wide range of advanced analytics problems and is recently partnering and making some significant progress with financial institutions.
- Unique approach: it is trying to develop advanced analytics solutions simulating a QC environment and, in words of Michael Brett, its CEO, when true QC power becomes available *"we just swap out our simulation for the real hardware."*

Team Profile

- Multi-disciplinary team including systems engineers, computer scientists, mathematicians, quantum physicists, and economists.
- Michael Brett, CEO, who came to found QxBranch from a COO position in Aerospace Concepts, QxBranch parent
- Roy Johnson, chairman, who served as CTO of Lockheed Martin and who led that company to purchase the first Quantum Computer outside the public sector from D-Wave

Funding and recognition

- Raised a total of \$5.5M so far in Seed and Series A funding
- Selected by IBM, one of the leaders in QC Hardware development, among only other eight startups, to partner for the development of the first QC based applications.